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Abstract

We present IDEA (the Induction Dynamics gene Expression Atlas), a
dataset constructed by independently inducing hundreds of tran-
scription factors (TFs) and measuring timecourses of the resulting
gene expression responses in budding yeast. Each experiment
captures a regulatory cascade connecting a single induced regula-
tor to the genes it causally regulates. We discuss the regulatory
cascade of a single TF, Aft1, in detail; however, IDEA contains
> 200 TF induction experiments with 20 million individual obser-
vations and 100,000 signal-containing dynamic responses. As an
application of IDEA, we integrate all timecourses into a whole-cell
transcriptional model, which is used to predict and validate multi-
ple new and underappreciated transcriptional regulators. We also
find that the magnitudes of coefficients in this model are predic-
tive of genetic interaction profile similarities. In addition to being
a resource for exploring regulatory connectivity between TFs and
their target genes, our modeling approach shows that combining
rapid perturbations of individual genes with genome-scale time-
series measurements is an effective strategy for elucidating gene
regulatory networks.
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Introduction

A central problem in modern genomics is how to extract causality

from experimental data (Maathuis et al, 2010; Davey Smith &

Hemani, 2014). When a cause–effect relationship can be estab-

lished, direct effects usually cannot easily be discriminated from

indirect effects, thereby limiting interpretability. Causality estab-

lishes a regulator’s potential to alter the level or activity of a down-

stream target; directness increases the likelihood of information

being transmitted without adulteration.

The direct and indirect molecular interactions that achieve a

particular cellular state can be described as regulatory edges that

collectively form gene regulatory networks (GRNs) (Shen-Orr et al,

2002; Alon, 2006). As genome-scale datasets started to become

available over 20 years ago, work by Alon and colleagues estab-

lished that certain GRN topologies are enriched in biological systems

(Shen-Orr et al, 2002). Understanding the functional properties of

such “network motifs” became the subject of intense experimental

and theoretical investigation (Milo, 2002; Shen-Orr et al, 2002;

Mangan et al, 2003, 2006; Eichenberger et al, 2004; Milo et al,

2004; Alon, 2007; Goentoro & Kirschner, 2009; Goentoro et al, 2009;

Shoval et al, 2010; Murugan, 2012). Combined with genomic tools

and extensive prior knowledge, it became possible to identify

network motifs/GRNs associated with core cellular processes, with

early work in yeast focusing on cell cycle control and the DNA

damage response (Simon et al, 2001; Workman et al, 2006). The

widespread development and adoption of genome-scale technolo-

gies, including the creation of mutant libraries and the power of

CRISPR-Cas systems, have further enabled GRN discovery across

organisms, from plants (Chen et al, 2018), to yeast (Kemmeren

et al, 2014), to humans (Rubin et al, 2019).

How are genomic approaches commonly applied to identify GRNs,

and what are their limitations? One approach is to measure gene

expression profiles of deletion mutants (Kemmeren et al, 2014).

Without dynamics, however, there is limited potential for determin-

ing direct regulatory relationships because information propagation

from the deletion to each differentially expressed gene is not observed

(Kang et al, 2020). The final measurement (the gene expression pro-

file) is the asymptotic readout of many layers of regulation and unob-

served (but potentially relevant) molecular interactions. Using

methods like ChIP-seq or ChIP-exo provides another strategy for

determining GRNs that focus on transcription factors (TFs) and their

target genes (Harbison et al, 2004; Gerstein et al, 2010; Nègre et al,
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2011; Kheradpour & Kellis, 2014; Kim et al, 2014; Kang et al, 2020).

Target genes with similar ChIP profiles can exhibit opposite expres-

sion responses (Lickwar et al, 2012), and highly expressed portions

of the genome can exhibit strong ChIP signal even among unrelated

proteins (Teytelman et al, 2013). Interpreting the biological impor-

tance of such peaks must be done with sufficient controls to distin-

guish whether signals are truly biological vs. technical in origin, but

the challenge remains that ChIP-based approaches alone provide no

assessment of TF functionality. Integration of multiple ‘omic tech-

nologies combined with time-series measurements can help identify

direct functional interactions to elucidate GRNs, as was done in a

recent study that combined RNA-seq, NET-seq, and ChIP-seq to iden-

tify a core regulon for Hsf1 in yeast (Solı́s et al, 2016). Finally, there

is a growing literature of computational methods for reconstructing

GRNs from high-throughput data (Pe’er et al, 2001; Markowetz et al,

2007; Stolovitzky et al, 2009; Marbach et al, 2010, 2012a,b; Yip et al,

2010; Yang et al, 2018). The Dialogue on Reverse Engineering Assess-

ment and Methods (DREAM) project, which is organized around

annual challenges, provides a framework to benchmark network

inference methods (Marbach et al, 2010). Network inference perfor-

mance can depend on implementation as well as the network struc-

ture itself (Marbach et al, 2012a). In the DREAM5 challenge, no

single inference method performed optimally across multiple data-

sets. Integrating predictions across all participating teams (35 infer-

ence methods in total) to generate “community networks” had the

most robust performance (Marbach et al, 2012a).

We propose an alternative approach to revealing GRNs. Within a

complex network, we believe that identifying new, direct, and func-

tional regulatory relationships is best facilitated by activating one

network element followed by dynamic measurement of all other

network elements. A seminal paper from Chua et al (2006) revealed

that overexpression of TFs, followed by transcriptome profiling at a

single time point, can reveal functional regulator-gene connections

that are absent when profiling TF-deletion mutants. Following that

work, we combined TF activation with dynamic transcriptome pro-

filing to dissect the incompletely understood regulatory connectivity

of the yeast sulfur regulon (McIsaac et al, 2012). By generating

strains that separately expressed each known sulfur-related TF

(Met4, Met28, Met31, Met32, or Cbf1) from an engineered promoter

that is strongly repressed, but then activated by a small molecule

(b-estradiol), a single TF was rapidly induced and genome-wide

transcriptional responses were tracked over time. This approach

enabled the identification of a novel feed-forward loop between

Met4 and Met32, dozens of new instances of feedback, clear sub-

functionalization of Met31 and Met32 (paralogous TFs that bind to

the same sequence) (McIsaac et al, 2012), and revealed that Cbf1

could act as an activator or a repressor, depending on which

promoter it targets (McIsaac et al, 2012). For certain methionine

metabolic genes, Cbf1 can act as an activator of target genes when

yeast are limited for methionine, but can switch to being a repressor

of those same genes when yeast are limited for phosphate and have

excess extracellular methionine (McIsaac et al, 2012). Thus, TF

induction followed by dynamic transcriptome profiling can reveal

condition-dependent regulatory connections, and a single TF can act

as both a positive and a negative regulator of gene expression

depending on local DNA context and environmental conditions.

More recently, this activation-based approach was used to deter-

mine that a particular single-nucleotide polymorphism was the true

causal variant underlying an expression quantitative trait locus

(eQTL) (Lutz et al, 2019). Genome-wide association studies can

reveal regions of the genome of interest that are important for a

phenotype; targeted perturbations of individual genes followed by

dynamic expression profiling can determine whether a genetic vari-

ant is causal. Despite the successes of these studies, genome-wide

time-resolved datasets following gene induction remain uncommon.

New experimental datasets and analytical approaches are required

for revealing GRNs and for learning non-canonical regulators at the

scale of the entire genome.

We describe the creation of IDEA (the Induction Dynamics gene

Expression Atlas) and demonstrate the value of this dataset for

revealing both new and known genome-scale causal relationships.

We generated ~ 200 induction experiments in which a single yeast

TF was rapidly induced from a b-estradiol-responsive synthetic

promoter, and full transcriptome differential expression was

subsequently tracked, typically across eight time points. Such exper-

iments feature the near immediate strong induction of an inducer-

driven TF of interest, followed by rapid changes in genes that are

directly regulated by these TFs, and later changes of indirectly regu-

lated genes (Fig 1A–C). While these indirect effects contain many

uncharacterized regulatory processes, they can be difficult to attri-

bute to a specific regulator (Fig 1D) using a single time-resolved

experiment. By aggregating all experiments (each of which includes

kinetic information), we can potentially determine which regulator

(s) are acting in individual timecourses by identifying the parsimo-

nious set of regulators whose abundances account for each gene’s

expression variability (Fig 1E and F). Our approach implicitly

dissects indirect regulation into a series of direct regulatory relation-

ships. Predicted intermediate regulators span canonical transcrip-

tional regulators and genes of unknown function. We successfully

validated three underappreciated regulatory hubs among 10 model-

predicted latent regulators.

Results

Each of 201 genes’ native promoters was separately replaced with a

b-estradiol-inducible promoter as previously described (McIsaac

et al, 2012, 2013; Table EV1). This set of induced genes is heavily

enriched for non-essential TFs and chromatin modifiers. Each strain

was grown to a steady state in chemostat culture and following the

addition of b-estradiol, the full transcriptome was measured at 4–10

post-induction time points (83% of experiments contain eight time

points). We chose chemostats, in part, because the steady-state

condition of chemostat cultures is a particularly useful feature for

mathematical modeling. Under steady-state conditions, the levels of

molecules and activities of processes are not changing at a culture-

wide level. Therefore, following TF induction in a steady-state

culture, immediate dynamic changes result from the TF induction

itself. The ability to choose a single growth-limiting nutrient also

makes the chemostat ideal for exploring how input–output relation-

ships between TFs and target genes vary under different nutritional

conditions (McIsaac et al, 2012).

In total, IDEA contains > 1,650 microarrays comprising 217 distinct

induction experiments. A subset of these data (six TFs) that focused

on the sulfur regulon and amino acid metabolism (Cbf1, Gcn4, Met4

Met28, Met31, and Met32) was published previously (McIsaac et al,
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2011, 2012, 2013). Fifteen induction experiments were repeated at

least once using the same induced gene to either capture late changes

in some experiments, confirm similar expression response to two dif-

ferent induction systems [referred to as ZEV (McIsaac et al, 2013,

2014) and GEV (McIsaac et al, 2011)], or to verify reproducibility

(Appendix Fig S1A). The majority of experiments were sampled at

t = 0, 5, 10, 15, 20, 30, 45, and 90 min following b-estradiol addition
in phosphate-limited chemostats. Induction of a target TF is detectable

in < 5 min and reaches saturation within ~ 10 min following b-estra-
diol addition at a median level 53-fold higher than at t = 0 min

(Appendix Fig S1B), which, in terms of magnitude, is less than the

~500- to 1,000-fold inducibility of Gal4-driven promoters in the pres-

ence of galactose and similar to the ~50- to 100-fold repressibility of

nitrogen catabolite repression (NCR) genes in response to an increase

in nitrogen availability (Johnston, 1987; Biggar & Crabtree, 2001;

Airoldi et al, 2016). In IDEA, we estimate that 86% of synthetic

promoter-driven TF alleles have lower expression than native

promoter-driven TF alleles (Appendix Fig S2). We estimate that at

90 min following b-estradiol addition, the median TF is 28.4-fold more

highly expressed than the native promoter-driven TF allele

(Appendix Fig S2). Finally, IDEA also contains several TFs induced

under multiple conditions. Gln3, Dal80, and Gzf3 were induced under

phosphate and nitrogen limitation (with ammonium sulfate used as

the sole nitrogen source in both cases). For each TF, the resulting

expression patterns are strikingly similar in the two tested environ-

ments (Appendix Fig S3), suggesting that the activity of nitrogen-

related TFs may depend more on the quality of the nitrogen source

(proline vs. ammonium sulfate, for example), rather than the choice

of growth-limiting nutrient. In this manuscript, an experiment refers

to all of the gene expression responses that follow from induction of

single TF. A timecourse refers to the kinetic response of a single gene

within a single experiment.

Across our dataset, most genes’ expression does not change in a

typical induction experiment, with some notable exceptions (such

A B C

D E F

Figure 1. Inferring direct regulation using many TF induction experiments.

A In each experiment, one transcriptional regulator with an inducible promoter is rapidly overexpressed in response to 1 lM b-estradiol.
B Example of three genes (labeled B, C, and D) responding with different kinetics following induction of regulator A.
C Hypothetical example of a regulatory cascade in which an induced transcriptional regulator A directly inhibits C and directly activates B. B, in turn, directly activates

D.
D In practice, we do not know that A regulates D via B and instead want to infer such regulatory relationships. In this example, direct regulation of D by B is only one

hypothesis that is consistent with the data—all viable hypotheses are shown by dashed lines. A could directly activate D, C could inhibit D, or A could regulate an
unmeasured confounder U which is the true regulator. Direct regulation by a variable Y, which is independent of A, is not possible since the timecourse begins at
steady state.

E Integrating the A induction timecourse with a second induction timecourse, which perturbs B without perturbing A or C, allows us to narrow down D’s possible
sources of regulation. In this case, U may still be a possibility if it is remains correlated with B.

F Overview of data and analysis performed in this study. Over 200 induction experiments were constructed allowing for many opportunities to resolve ambiguous
regulation.
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as FMP48). Accordingly, the inducer-driven signal of interest is rela-

tively sparse and interspersed among ubiquitous noise. This noise is

governed by both a mild stress response (Gasch et al, 2000) and

log-normal noise that varies across both genes and arrays. In order

to isolate inducer-specific expression changes, the stress response

was subtracted from each experiment and then an observation-level

noise model was used to select a subset of timecourses that are

statistically inconsistent with experimental noise (Appendix Figs

S4–S6). The signals from these 100,036 timecourses were retained

(~ 8% of timecourses), while all other timecourses were set as

invariant (a log2 fold change of zero). The full transcriptional

dataset is available as Dataset EV1. Further details on processing

these data can be found in the Appendix.

Transcriptional responses vary in amplitude, kinetics, and shape

The Aft1 experiment is an illustrative example of the value of induc-

tion data for revealing intricate regulatory phenomena. Aft1 was

originally identified as an activator of genes that uptake iron into

the cell (Yamaguchi-Iwai et al, 1995). Aft1 responds to defects in

iron–sulfur cluster biogenesis (Chen et al, 2004), and its activity is

negatively regulated by Met4, the primary activator of methionine

biosynthetic genes (Chen et al, 2004; Petti et al, 2012). We highlight

Aft1, in part, because we observe a range of expression responses

following its activation. Specifically, when Aft1 is induced, two

broad classes of expression changes are observed: Fast induction of

targets reported to be bound by Aft1 based on ChIP and gradual

changes of genes whose expression has previously been shown to

be correlated with, but not bound by Aft1 (Fig 2A; Teixeira et al,

2018). Additionally, certain timecourses appear sigmoidal, while

others possess more complicated dynamics (Fig 2A).

As is the case in the Aft1 experiment, timecourses with signifi-

cant signal across IDEA typically exhibit either a sigmoidal or a

impulse-like response (double sigmoidal); thus, we fit a Bayesian

version of the Chechik & Koller (CK) kinetic model to each time-

course (Chechik et al, 2008; Chechik & Koller, 2009; see Materials

A B C

D

Figure 2. Characterizing the downstream responses of Aft1 induction.

A Heatmap summary of Aft1 induction experiment showing all genes that change with |log2(fold change)| > 1.5.
B Parametric summaries of representative sigmoidal activation and inhibition timecourses and impulse (double sigmoid) modeling of transitory inhibition. Sigmoids are

summarized by half-max time (trise) and the asymptote (vinter), while impulses include a second half-max (tfall) time and final asymptote (vfinal). The strongest
supported model for each timecourse is shown as a filled in line, while the alternative model is shown with a dashed line.

C K-mers enriched in the promoters of regulated genes are overlaid on summary of each gene’s trise and vinter. The presence of the Aft1 motif is associated with early
activation, while early inhibition is associated with the PAC motif (Tod6/Dot6).

D Response kinetics are overlaid on gene coordinates based on genetic interaction as a surrogate for functional similarity. Up-regulated genes are enriched for vesicle
trafficking/glycosylation/polarity processes, and down-regulated genes are enriched for mitochondrial/mitotic/rRNA processes.
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and Methods for more details on curve fitting; code for implement-

ing CK fits can be found at https://github.com/calico/impulse). The

CK model characterizes a timecourse as a double sigmoid but can

be reduced to a simpler sigmoid that has fewer parameters. Specifi-

cally, the original CK kinetic model contains six parameters, which

we reduced to five parameters because the initial amplitude for all

timecourses is zero due to normalization. The impulse (double

sigmoid) response is ideal for capturing two-transition behavior in

biological timecourses. One sigmoid characterizes the onset

response, and a second sigmoid characterizes the offset response

(Chechik & Koller, 2009). Parametric fits enable direct comparisons

of timecourses by revealing kinetic parameters. Our Bayesian imple-

mentation ensures that these parameters are interpretable by penal-

izing unrealistic and impossible parameterizations (e.g., step-

function responses or changes which precede b-estradiol introduc-
tion). Since the impulse and single sigmoid models are nested (i.e.,

the simpler model contains all of the terms within the more complex

model), we can—for a given timecourse—use a likelihood-ratio test

to determine whether extra parameters improve the fit sufficiently

to justify the more complex model.

Sigmoidal responses are summarized with a half-max time

constant (trise), an asymptotic expression level (vinter), and a slope

parameter (b). Impulses include two additional parameters: tfall,

which describes the time when the response returns halfway to its

final level, and vfinal, the asymptotic expression level of the impulse

(Fig 2B; Chechik et al, 2008). Utilizing these kinetic parameters, we

observed multiple binding motifs of genes associated with character-

istic response kinetics, including, as expected, the Aft1 motif associ-

ated with early activation, and a different motif [recognized by Tod6/

Dot6 (also referred to as a PAC motif)] associated with early inhibi-

tion (Fig 2C). Targets activated and repressed in the Aft1 experiment

have similar kinetic responses, and both classes contain examples of

impulse-like expression responses (Fig 2D). Beyond Aft1, other TF

experiments that contain a large number of impulse-like responses

(indicative of feedback control/perfect adaptation) include Pho4,

Mac1, Oaf1, Rtg1, Rtg2, Stb5, and Zap1 (Appendix Figs S7–S9). In

total, we find evidence of transcriptional feedback in more than 1,700

timecourses (~ 2% of all timecourses). To allow others to provide

comparable investigations into the kinetics, functional coherence,

and regulation of each timecourse in our dataset, we provide an inter-

active website (https://idea.research.calicolabs.com).

We can broadly categorize timecourses at a dataset level based

on existing knowledge. While strong acute regulation events are

frequently associated with the direct binding of the induced TF

(Kang et al, 2020), over 75% of genes responding in our dataset are

new regulatory connections (Appendix Fig S10). Additionally, we

find that 79% of genes reported as being directly bound by a TF

based on published ChIP measurements do not exhibit a significant

expression response in the corresponding TF’s induction experiment

(Appendix Fig S10; Teixeira et al, 2018). The low recall of reported

transcriptional regulation underscores the value of dynamic data.

Realized regulation may be impacted by chromatin accessibility and

the regulatory context of the extracellular environment, which can

result in different post-translational modifications of TFs (Song et al,

2011; Arvey et al, 2012; McIsaac et al, 2012; Gomes & Wang, 2016).

This is further supported by the weak agreement between the

reported binding and coexpression partners of a TF with the number

of genes that change when it is induced (Appendix Fig S11).

Analysis of promoter composition

Induced TFs directly account for only a portion of the observed

expression changes in IDEA, leading to an obvious question:

Which regulators are actually acting in each induction experi-

ment? To investigate whether the kinetics of responding genes

can be informed by promoter composition, we carried out

systematic de novo motif discovery of all experiments and identi-

fied 715 promoter motifs enriched in the responding genes

across all experiments (Table EV2). 51% of these motifs could

be matched to known regulators and thus suggest plausible

candidates for regulators which may operate in each experiment

(Weirauch et al, 2014; Teixeira et al, 2018). While linking TFs to

their targets using motifs has been a common assumption in

order to enable genome-scale GRN inference, we find this

assumption can be limiting. Indeed, in the Aft1 induction experi-

ment, the Aft1 motif is associated with direct activation of only

a small number of genes. Since we would like to understand

regulatory cascades without requiring regulators to possess direct

DNA binding ability, we developed a model that, assuming no

prior information, could allow for the elucidation of regulators

with unappreciated transcriptional impacts.

Integrative modeling using IDEA

In a TF induction experiment, we would like to infer which early-

responding gene(s) are causally responsible for gene expression

changes occurring later in the experiment. In a single experiment,

however, we would only be able to identify a coexpressed cluster of

genes whose expression coincides with a late change, rather than a

single candidate regulator (Fig 1D). While reliably inferring regula-

tory mediators from a single experiment is a dubious prospect,

across all experiments, genes respond in a median of 12 induction

experiments (or in ~ 5% of experiments; Appendix Fig S12). There-

fore, aggregating multiple experiments provides the potential to

decouple each gene’s expression dynamics from those of spurious

correlates. As we have generated hundreds of strong orthogonal

gene-level perturbations, our dataset provides an opportunity to test

this approach. Across > 1,650 samples, most genes have a distinct

pattern of variation, and such distinctness decays quickly once an

appreciable fraction of experiments are removed (Appendix Fig

S13).

To learn direct regulatory relationships from such data, we

formulated a set of gene-level regression models that predict the rate

of change of each target gene as a sparse linear combination of all

genes’ expression:

D lnðyijtÞ=Dt ¼
X

k

aikðykjt � 1Þ þ bikðyijtykjt � 1Þ� �
=yijt (1)

Here, yijt is the expression relative to the control strain at time

zero of a gene i in experiment j at a time t (i.e., for treatment r and

control g, yijt = (rijt/gijt)/(rij0/gij0); therefore, yij0 = 1 ∀{I,J}). Here, a
represents the linear effect of one transcript on another (i.e., the

k’th transcript on the i’th transcript) and b represents the effect

proportional to the target transcript. We allow any transcript to

affect any other transcript, and thus, we sum over all genes (with

index k). Since most genes will not be regulatory, we use L1 regular-

ization (LASSO) to shrink uninformative predictive coefficients to
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zero. We also enforce a predicted rate of change of zero at time

zero, reflecting the pre-induction steady-state assumption.

To arrive at this approach, we considered a suite of modeling

strategies. We explored modeling dataset-level dynamics using a

system of differential equations; however, such a model is both hard

to fit and not robust to model mis-specification. Since a model of

cellular regulation that exclusively includes transcriptional regula-

tion is inherently incomplete, the parameters of such a model would

be inappropriately contorted to compensate for in-expressible regu-

lation. Regression models that express the measured abundance of a

gene of interest based on measured abundances of candidate regula-

tors do not suffer from such a problem. As many regression models

can be posed, we explored a wide-space of model formulations

defined by a set of hyperparameters (e.g., modeling in log- or linear-

space, allowing for interaction terms, and adjusting regularization

strength; see Appendix for complete details). To arrive at an optimal

model formalism, we used cross-validation, whereby whole experi-

ments were held-out and then predicted using all other experiments

(encompassing 50 million regressions in aggregate).

Each regression model predicts the rate of change of a target gene

based on other regulators (Fig 3A). These instantaneous estimates

can be integrated to provide estimates of log2 fold changes (Fig 3B).

Grossly, the model explains 43% of the variability in log2 fold

changes (Appendix Fig S14). While the model does not account for

all expression variability, both the dependent and independent vari-

ables are directly determined by experimental data. Accordingly,

our inability to predict one gene’s regulation does not affect model-

ing of other genes’ regulation.

Model coefficients predictive of edges in published networks

To assess the predictive power of the coefficients of this model on

published datasets, we considered whether large regression effect

sizes could predict interactions in two different genome-scale

networks [a network of genetic interaction profiles, based on the

growth of single and double mutants from Costanzo et al (Costanzo

et al, 2016; Wang et al, 2004), and a probabilistic gene network that

integrates multiple data types called YeastNet (Kim et al, 2014)] that

may be enriched for true regulator–target relationships. The magni-

tudes of regression coefficients (from equation 1) are reasonable

predictors of edges in both types of networks (AUC ~ 0.7), while

early trise times (from the CK model) do not have predictive power

of genetic interactions in Costanzo et al (Fig 4A and B; Costanzo

et al, 2016; Teixeira et al, 2018). A baseline LASSO regression

model was included which fits each gene’s expression as linear

combinations of all genes’ expression using a globally chosen k. We

find that our ODE-based model dominates a simpler regression base-

line at every rank cutoff for the Costanzo dataset, outperforms the

baseline for YeastNet at stringent cutoffs, but underperforms the

baseline model at more liberal cutoffs (Fig 4B).

Based on the ROC analysis, we next explored the strongest model

coefficients that overlapped the genetic interaction profile similarity

scores from Costanzo et al. This immediately revealed two interest-

ing biological observations. First, Rpn4, the primary TF activator of

yeast proteasome-encoding genes, is enriched for genetic interactions

with proteasomal subunits (Costanzo et al, 2016; Wang et al, 2004;

Appendix Fig S15). The straightforward interpretation of this result is

that simultaneously removing the TF (Rpn4) and reducing the activity

of individual subunits results in a negative interaction due to insuffi-

cient proteasome activity for supporting growth (Appendix Fig S15).

Additionally, we found that many model-predicted targets of the S-

phase-specific forkhead TF Hcm1 have interactions with HCM1 (Cost-

anzo et al, 2016). Loss of HCM1 has been reported to increase the

rate of chromosome loss (Pramila et al, 2006); analogous to the

proteasome example, simultaneous loss of HCM1 and Hcm1 target

genes may further exacerbate this loss, resulting in negative genetic

interactions. These results demonstrate that TFs and their targets can

deviate from independence within published interaction networks

because of direct functional regulatory interactions.

Decomposing indirect regulation into sequential
direct regulation

The parameters of equation 1 are regression coefficients that approx-

imate @yi=@yj; in other words, they capture the potential of a gene j

to alter the expression of a gene i. Within the framework of our

model, gene j must also vary in expression to realize its regulatory

potential.

To attribute changes to individual regulators, we consider their

marginal contributions to overall timecourse changes. Using this

approach, we look at each differentially expressed gene in a given

experiment and attribute each regulatory response (e.g., rise, or fall)

to one or more regulators based on regulators’ marginal contribu-

tions to the response. Revisiting the Aft1 experiment, this marginal

attribution analysis suggests that several regulators are operating in

a cascade to regulate genes with different kinetics (Fig 3C). In line

with binding data, Aft1 is predicted to be the primary regulator of

early activated genes, while Aft1 is predicted to turn off genes (in

part) through the activation of Hmx1. Each regulator–target relation-

ship can be thought of as a directed edge in a graph, with the whole

graph describing how the regulation is predicted to have unfolded

across time during each induction experiment. Applying marginal

attribution analysis to each experiment reveals that the induced TF

is the primary driver of gene expression changes in most experi-

ments (Appendix Fig S16); however, numerous other regulators are

predicted mediators of indirect effects.

▸Figure 3. Predicted causal attribution of Aft1-driven transcriptional changes.

A Using a representative Aft1-responsive gene, YHB1, fold change differences between time points (solid gray dots) are compared to the LASSO regression model’s fit
(crosses). The model’s predicted marginal contribution of three predicted regulators (Fet3, Hmx1, and Arn2) to the combinatorial control of YHB1 is shown with bars
that sum to the model’s overall fit (crosses).

B The YHB1 fold change differences fit by regression can be converted to full timecourses to determine the marginal contributions of each regulator in driving a
regulatory transition of interest (rises and falls).

C Each differentially expressed gene in the Aft1 experiment is laid out based on its kinetics and colored according to the regulator predicted to be the strongest driver
of differential expression. Model-derived fractional contributions of regulators to expression of AQY2, NSR1, YHB1, and HEM25 are depicted as donut charts.
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Figure 4. Inferred regulator–target coefficient magnitudes are predictive of interactions in published datasets.

The rankings of observed induction responses (ascending by trise) and predicted regulator relationships (descending by regression coefficientmagnitude) were used to predict
edges in two networks (Costanzo et al, 2016 and YeastNet v.3). All non-zero ODE regression coefficients were split into two classes: measured (predicted regulators with an
induction experiment) and latent (predicted regulators without an induction experiment).

A ROC curves are shown treating interactions, which overlap with the query edges (non-zero regression coefficients), as positives and all other entries as negatives.
B The AUC of the ROC curves in (A) are shown as large dots, compared to 25 random permutations (which preserve the counts of each cause and effect but randomize

their pairings) of the edge list which are shown as small dots and a boxplot of these null AUCs. Permutations with values systematically in excess of a value of 0.5, as
seen when predicting genetic interactions with rise time, are likely due to hub effects where genes that tend to be predicted regulators of many targets also tend to
have interactions. For boxplots, the central line is the median, hinges correspond to the first and third quartiles, and whiskers extend to the minimum and maximum
values.
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The synthesis of experiment-level graphs reveals a genome-scale

causal expression network (Fig 5A) that links induced regulators to

predicted intermediate regulators and downstream biological

processes. This network reveals several regulatory hubs (including

Hmx1, Stp4, and Fmp48), altered in numerous experiments, which

are associated with consistent sets of downstream targets (Fig 5B).

Regulatory potential of understudied genes

Our modeling results highlight many potential new regulators that

we sought to confirm experimentally. These regulators include both

hubs predicted to regulate targets across many experiments as well

as mediators of interesting dynamic phenomena (such as impulses).

To validate putative regulators, a separate b-estradiol induction

experiment was generated for each of ten candidate regulators

(Dataset EV2).

Three out of ten of these induction experiments (Hmx1, Stp4,

and Fmp48) showed strong changes in the putative regulators’

targets (P < 10�11; overlap of predicted and measured targets by

chi-square and Fisher exact tests; Fig 6, Appendix Fig S17,

Table EV3). One of the phosphate-related genes, Phm6, also

appeared significant in the predicted and measured effects, but the

experiment’s expression dynamics were markedly similar to a mild

stress response; thus, we did not interpret Phm6 as a likely tran-

scriptional regulator. Model-driven discovery of three transcriptional

regulators is notable, both because few genes are thought to be able
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Figure 5. Synthesis of predicted networks.

Direct regulation between genes is defined based on causal attribution analysis, and indirect regulation of an induced gene is defined if a gene is differentially expressed
regardless of whether attribution analysis indicated a direct regulatory relationship.

A Edges between both genes with induction experiments and predicted regulators were formed based on regulatory interactions predicted from individual experiments
(as shown in Fig 3C). For this visualization, major regulators selected as per Fig 3C are rooted to the induced TF regardless of whether they were directly or indirectly
regulated by this gene. Predicted regulators are linked to GO categories based on having a significant overlap with their predicted targets. Similarly, genes with an
induction experiment are linked to GO categories based on overlap of either direct or indirect targets with GO categories. Validated nodes (green) are genes where
validation experiments confirmed a significant overlap between measured gene-regulator connections and model-predicted coefficients. Invalidated nodes (red) are
genes where validation experiments failed to confirm model-predicted coefficients.

B Local networks based on upstream direct/indirect regulators and downstream direct targets of three validated regulators.
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to act as specific transcriptional regulators and because all con-

firmed regulators are poorly studied. In line with the integrative

signals that we aimed to capture in this study (Fig 1E), the three

confirmed regulators change in many experiments and act as hubs

which connect diverse TFs to prominent regulatory processes. Each

validated regulator temporally preceded its predicted targets. Addi-

tionally, variation in the regulator’s trise values were correlated with

target trise values (Appendix Fig S18A), and the regulator’s vinter
values were correlated with target vinter values (Appendix Fig S18B).

Invalidated regulators, in contrast, either temporally coincided with

their spurious targets or were active in a small number of experi-

ments making them difficult to distinguish as true regulators among

other correlated genes.

We find that as part of the iron utilization cascade, Aft1/Aft2

activate expression of HMX1. Previously, it was found that hmx1Δ

cells accumulate heme (Protchenko & Philpott, 2003). Our results

highlight a regulatory link between iron regulation, heme metabo-

lism, and sterol synthesis in which Hmx1 induction results in the

inhibition of COX genes, and genes involved in sterol biosynthesis

(a process that requires heme), including CYB5 (encodes cyto-

chrome b5) and nearly every ERG gene (Smith et al, 1996;

Appendix Fig S19A). Stp4 is annotated as a potential TF that

contains a Krueppel-like domain (Cherry, 1998). Our data suggest

that Stp4 is a bona fide TF resulting in activation/repression of

many genes (Fig 6). Strongly repressed genes are enriched for the

GNRCGGCY motif, consistent with previously published protein

binding array data of Stp4 (Zhu et al, 2009; de Boer & Hughes,

2012); genes responsive to this motif are enriched for transmem-

brane transport (corrected P-value = 2.07 × 10�8) (Appendix Fig

S19B). Fmp48, named after “found in mitochondrial proteome”, is a

putative protein of unknown function with predicted kinase activity.

Consistent with a previous study that revealed Fmp48 to be part of

the TOR signaling network, we find corroborating evidence that

Fmp48 is a transcriptional regulator that is as hub-like as the most

highly connected individual TFs (Fig 6, Appendix Figs S19C and

S20; Breitkreutz et al, 2010). While the biological role of Fmp48 is

understudied, our modeling approach and validation experiment

confirmed it to be a regulator of gene expression.

Discussion

To understand regulatory architecture, we require datasets that elicit

diverse physiological regulatory responses, and possess sufficient

information to disambiguate the drivers of each regulatory response.

As demonstrated here, synthetic biology holds great promise for

creating such datasets, and, when combined with new analytical

tools, can be utilized to identify new regulators and GRNs.

Several results are worth highlighting. First, only a small number

of genes annotated as being TF-bound, based on ChIP, respond in a

typical experiment, and most responses are previously undescribed,

including ~1,700 instances of ephemeral homeostatic impulses.

Second, expression variation is associated with a modest number of

transcriptional regulators with major effects, while many perturba-

tions elicit minimal transcriptional responses. Thirty-eight TFs

affected the expression of < 50 genes each (Appendix Fig S12A).

Third, using kinetic information can help prioritize potential causal

regulatory relationships. By integrating hundreds of timecourses

with a dynamical systems model that explicitly includes time, we

can make predictions of new regulatory interactions without the use

of prior knowledge. Fourth, model coefficients can be used to

predict interactions in published undirected networks. We expect

that using IDEA to add weights and directionality to edges in exist-

ing networks will be powerful for understanding how cellular

processes are dynamically coordinated in the cell.

Approaching genome-scale modeling of network regulation from

dynamic data yielded insights about how to collect, process, and

analyze such data. Because most genes do not respond in a typical

induction experiment, we used hard-thresholding to remove the

majority of values in our dataset, leaving ~ 100,000 gene-level

Figure 6. Model-driven identification of transcriptional regulators.

All genes passing hard-thresholding in each experiment are shown. K-means clustering was used to cluster responsive genes (K = 4 for Fmp48 and K = 2 for Stp4 andHmx1),
and GO slim gene-sets enriched in each cluster are shown.
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timecourses with coherent, biologically feasible patterns of variabil-

ity. Having identified signal-containing timecourses, we were then

able to model these signals using parametric fits and regularized

regression. When fitting a genome-scale regression model, we made

a number of assumptions about biological processes to include vs.

those we should ignore based on our experimental design. In doing

so, our model may fail to capture a number of important regulatory

phenomena including complex combinatorial regulation, post-tran-

scriptional regulation, post-translational regulation, localization,

and regulation due to non-proteins (e.g., metabolites; Buchler et al,

2003; Bintu et al, 2005; Tan et al, 2011; Chong et al, 2015; Hackett

et al, 2016). These phenomena could hamper analysis to the extent

that regulators are absent, their concentrations are misrepresented,

or their kinetics are temporally shifted. Because a transcriptional

model is inherently incomplete, our modeling approach was struc-

tured to be robust to mis-specification by describing variables

directly from data rather than creating latent variables. Our model

builds relationships between genes with coherent regulatory rela-

tionships without being grossly biased by regulation that it cannot

represent. An additional challenge we faced when fitting a model

that allows for regulation by any gene is distilling a single regulator

from a set of possibly highly correlated possibilities. Furthermore,

some regulators not well represented by our dataset may be corre-

lated with measured transcripts raising the possibility that predicted

transcriptional regulators are false-positives if they are correlated

with an unmeasured regulator. By utilizing > 200 experiments, we

are in a regime where the correlation structure among genes begins

to break down (Appendix Fig S13) and identifiability of an individ-

ual regulator among measured (and likely unmeasured putative

regulators) becomes feasible. Future experiments should continue to

erode this correlation structure, as most of our failed predictions

(e.g., of the key drivers of Pho4 impulses) likely stem from this

issue.

In this manuscript, we used synthetic perturbations and genome-

scale time-series measurements to generate the IDEA dataset. Only

one TF was perturbed at a time, resulting in a large but relatively

sparse gene expression dataset. In the future, the use of combinatorial

perturbations, as well as induction of non-TFs, will result in richer

dynamic datasets. Indeed, as new timecourse datasets become avail-

able and are integrated with time-series analysis and prior knowledge,

predictive models may require fewer experiments to build. Moreover,

dataset generation and model evaluation naturally dovetail when

using synthetic perturbations. Regulators can be easily tested with

new induction experiments. When modeling predictions succeed, we

confirm new biology; when they fail, the model gets better.

Materials and Methods

Growth conditions

For all experiments, cells were grown under continuous culturing

conditions in 500-ml vessels as previously described with minor

adjustments (Saldanha et al, 2004). Cultures were aerated with 6 l/

min of humidified air at 30°C, maintained at 300 ml, and stirred

with a magnetic impeller at 400 RPM. For the majority of experi-

ments, cultures were maintained with minimal medium under phos-

phate limitation (20 mg/l). Nitrogen-limited cultures were

maintained at 40 mg/l ammonium sulfate. Growth rates were main-

tained from 0.15 to 0.17/h. Batch growth in the chemostat vessels

was initiated from a 1:60 dilution of a saturated overnight culture

prior to turning on the chemostat pumps. Cells were grown to

steady state, as determined by culture density, prior to the addition

of 1 lM b-estradiol to the culture and subsequent sampling. Chemo-

stat experiments were performed with either the Infors Sixfors or

the Multifors systems.

Strain construction

Parent strains were engineered to constitutively express an artificial

transcription factor that is inducible with estradiol. Parent strains

used for gene expression analysis contain either the GEV or the

Z3EV transcription factor. A synthetic promoter fused to selectable

marker (typically KanMX) of ~ 2 kilobases (kb) in length was PCR-

amplified and introduced into parent strains with homologous

recombination using a standard lithium acetate transformation

procedure. For the vast majority of strains, clones containing the

synthetic promoter were selected for on rich medium [YPD (1%

yeast extract, 2% bacto-peptone, and 2% dextrose) containing G418

(200–300 lg/ml)]. Primers were designed using custom software in

R such that the cassette was introduced directly between a target

gene’s first methionine residue and its native promoter to prevent

the removal of any genomic DNA. Synthetic promoters were

inserted into the genome without removing native DNA for two

reasons. First, we believed that removing at TF’s native promoter

could disrupt expression of a divergently transcribed gene. Second,

binding sites in Saccharomyces cerevisiae need to be within a few

hundred base pairs of an ORF to be functional (Dobi & Winston,

2007). Therefore, in our case, displacement of the native promoter

by ~ 2 kb is likely to remove its regulatory potential of the TF-

encoding gene.

Extraction, labeling, and hybridization of RNA

Crude RNA was extracted using an acid–phenol procedure. RNA

was then purified using either the QIAGEN RNeasy kit or the

RNAClean Ampure XP beads. 200 ng of cleaned RNA was used as

an input to generate dye-labeled cRNA using the Agilent Quick-Amp

Labeling Kit. Labeled cRNA was cleaned using RNAClean Ampure

XP beads or RNeasy. Reference RNA was extracted from DBY12001,

a laboratory wild-type strain, grown to steady state in a phosphate-

limited chemostat at D ~ 0.18/h. RNA from references and samples

was labeled with Cy3-CTP and Cy5-CTP, respectively. Labeled RNA

was hybridized to Agilent 8 × 15k microarrays, which were then

washed, scanned, and processed using the Agilent Feature Extrac-

tion software with default settings and loess dye bias correction.

Datasets

We performed a number of signal processing steps to our microar-

ray datasets. In increasing order of processing, we refer to these as

the “raw” dataset, “cleaned” dataset, “noise-model thresholded”

dataset, and the “shrunken” dataset.

Each microarray has some number of spots (usually 2) for each

gene. For each spot, we computed ratio = max(red, C)/max(green,

C), where C = 2 in arbitrary units. This minimum value application
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only affects 0.3% of spots. Typical genes have red and green chan-

nel measurements above 200. These (red, green, ratio) values for

each spot serve as the “raw” data.

For each microarray, we aggregated the data across individual

spots. Specifically, for each gene at a given time point within an

experiment we aggregated the spot values and measured the mini-

mum value, maximum value, median value, and standard deviation

of the values. In the usual case of two spots, the median value is

equivalent to mean and standard deviation is equivalent to

(max�min)/sqrt(2).

At this stage, we corrected the most extreme outlier observations.

First, for a given sample, we examined the case where, for a given

gene, the ratio of the spot values was larger than four. Since the

spots values do not agree, we interpolated the value with the

geometric mean across bracketing time points (or neighboring time

point in the case of first or last time point). The second class of

outliers is where the median ratio moves by a factor of at least four

between two time points and then by a factor of four in the opposite

direction for the next time point. In these cases, we again replaced

the central point with the geometric mean of the bracketing points.

These corrections apply to less than 0.2% of the data.

In processing gene expression microarrays, crosstalk between

red and green channels can occur. When the red channel fluores-

cence is much larger than the green channel fluorescence, there can

be leakage of signal, and the green channel measurement is affected.

To identify instances of this occurring, we first computed the green

channel ratio relative to the time zero measurement. We then

measured the 30% quantile of this value within each timecourse

(for time points after t = 0), as well as the 30% quantile of the log-

ratio. We then flagged timecourses where the green ratio quantile

exceeded a factor of eight, and the log-ratio quantile exceeds a

twofold change. These represent cases where the green channel is

increasing a great deal when it should be constant. For these rare

cases, we repaired the red-to-green ratios by duplicating the time

zero green channel across the full timecourse. This affects about

two-dozen TF-gene timecourses (out of more than a million).

The GEV and ZEV systems both have characteristic gene expres-

sion signatures, including a mild stress response. Previously, it has

been shown that singular value decomposition (SVD) is one way to

remove such signals (McIsaac et al, 2012). Here, we used a slightly

different approach. First, we computed the median time series for

each gene in each class of experiments (GEV and ZEV). We then

subtracted this median time series, leaving a normalized log-ratio.

Because a given gene is not directly or indirectly affected by a tran-

scription factor in most experiments, the median is an accurate

reflection of any background time-dependent behavior. We refer to

the dataset where outliers are removed and the GEV/ZEV signal is

removed as the “cleaned” dataset.

Further details on data processing and modeling can be found in

the Appendix.

De novo motif discovery

To construct data-driven binding motifs for each induced TF and

suggest other TFs that may be operating in each induction experi-

ment, we sought to identify cis-regulatory motifs which are enriched

in the promoters of regulated genes and, where possible, attribute a

known regulator to those motifs. To identify enriched motifs, we

utilized the regular-expression-based software, DREME (Bailey,

2011), to identify short (8-mers or shorter) motifs that are enriched

in a set of primary sequences relative to a set of control sequences.

The sequences we focused on for all motif analyses were the

promoters of yeast genes (defined as 500 base pairs upstream of

each gene; downloaded from Ensembl on 2018-01-03). To identify

regulatory motifs, for each experiment, sequences in the promoters

of regulated genes (sigmoid or impulse responses) were compared

to non-differentially expressed control sequences. Similarly, motifs

associated with impulse-like behavior were identified by identifying

motifs enriched in the promoters of genes with impulse kinetics,

using the promoters of genes with sigmoidal kinetics as control

sequences. To attribute identities to each motifs, probability weight

matrices (PWMs) based on binding data were downloaded from

Yeastract and Cis-BP and then matched to each DREME motif using

TOMTOM (Gupta et al, 2007; Weirauch et al, 2014; Teixeira et al,

2018).

To investigate whether genes containing an enriched motif

exhibit stereotypical kinetics, we investigated whether variation in

regulatory kinetics across genes could be predicted based on

promoter composition. To carry-out such comparisons, the promot-

ers of regulated genes were matched to each identified motif based

on enrichment of high-scoring PWM k-mers (Pr(sequence|PWM)) in

the promoters of regulated compared to control promoters (using

the same primary vs. control comparisons as for DREME). Briefly,

this was done by ordering sequences in descending order of PWM

score match and then using a rolling mean estimate of k-mer

frequency to estimate the PWM score cutoff where enrichment in

the primary sequences decreases to a heuristic 1.5-fold cutoff. Using

this approach, each gene responding in a given experiment was

summarized based on how many times each motif was detected and

what its strongest PWM match was. To determine whether any

motif was associated with variation in a kinetic property (vinter, trise,

and rate for regulated genes, with vfinal and tfall added for impulse

genes), each kinetic coefficient was regressed on a motif-by-motif

basis using ordinary least squares (OLS) on three summaries of each

motif’s presence. These three predictors were as follows: the top

enriched PWM match for the gene, a binary variable indicating

whether one or more motifs were present, and counts of how many

PWM matches were found. OLS t-statistic P-values were separately

FDR-controlled for each type of motif summary (“best match”,

“motif present”, “# of matches”) and model type (regulation or

impulse) (Storey & Tibshirani, 2003).

Dynamical system modeling overview

We pursued a linear regression approach to modeling equation 1.

First, we constructed an estimator of the time derivative of the gene

expression response, which is treated as the dependent variable. We

then fit a linear model to extract the coefficients of the dynamical

system. This works because the time derivatives of the gene expres-

sion levels are modeled as linear functions of gene expression levels

(possibly with quadratic terms as well). We note that this does not

actually correspond to a full solution of the dynamical system, but

requires point-wise consistency with the dynamical system descrip-

tion. Selection of regularization levels with cross-validation yielded

a model for the transcriptional effects of gene expression levels. This

model was interrogated to identify which regulators were most
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important for predicting observed expression changes in each time-

course. Derivations implementing this modeling approach are

presented in the Appendix sections: Linear Regression, BIC regular-

ization, Hyperparameter Search, and Cross-Validation.

Marginal attribution analysis

The whole-cell regression model readily provides two important

summaries of regulation. First, the estimated coefficients of the

regression model, a and b, capture regulatory potential (i.e., a = @y/

@x). Second, the regression model combines regulatory potential with

variation in regulators through observation-level fitted values (aX) to
summarize how regulation unfolded within an experiment (where xij
is the abundance of a gene i at time j for a given experiment). To

interpret regulation, we want to be able to identify the major variable

regulators underlying regulatory phenomena of interest such as the

impulse-like dynamics of Aft1 or variable timing of expression induc-

tion or repression. Since realized regulation is a property of an experi-

ment, the fitted model (aX) informs whether the model collectively

predicts regulatory expression changes of interest and marginal inter-

pretation of components of this model (aixi.) can be used to attribute

regulation to specific regulators.

To attribute regulation, we first identify instances of regulation

that are reasonably predicted by the whole-cell model. Each

instance of realized regulation is a change in expression occurring

over a period of time. These transitions in the data can be readily

understood within the framework of the previously discussed para-

metric models since these models indicate which regulatory

phenomena to track and the saturation of the sigmoidal curves

implies the period of time over which regulation is unfolding: t

{sat = x} = tcoef + log(x/(1 � x))/a.
Here, t{sat = x} is the time at which the sigmoid is x saturated

(i.e., 90% of the response having occurred equates to x = 0.9). tcoef
is the half-max time coefficient of the transition (trise or tfall for a

given phenomena). With this convention, the end-points of each

rise and fall phenomena, tstart and tend, were defined as the time

when the rise or fall sigmoid was 5–95% saturated.

To determine when the whole-cell model accounts for an appre-

ciable fraction of observed regulatory changes, model-predicted fold

changes over each regulatory interval fmodel = log2(y[tend]) � log2(y

[tstart]) were compared with the observed change in that gene’s

expression over the regulatory interval fobserved = log2(x

[tend]) � log2(x[tstart]). Since {tstart, tend} will generally occur

between time points, linear interpolation of both log2(y) and log2(x)

with the two closest time points was used to infer these intermediate

expression states. For 47,802 responses (rises or falls), the model

had some predictive value based on the following cutoff:

minð½fmodel; fobserved�Þ=maxð½fmodel; fobserved�Þ[ 0:2

Marginal attribution analysis was used to dissect total model fits

into the marginal contributions of each regulator. Here, the marginal

attribution of each regulator to the response was defined as:

wijkz ¼
fmodel
ijkz

���
���

P
fmodel
ikz

�� ��

Here, wijkz is the model’s predicted proportional control of a regu-

lator j to a gene i in experiment k for the zth response (rise or fall)

occurring in that timecourse. w values (filtered to w > 0.2) were

used to interpret the major regulator(s) contributing to observed

responses in individual experiments and in the meta-graph of cross-

experiment regulation.

Data and software availability

Datasets and computer code used in this study are publicly

available.

• Microarray data, Gene Expression:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142864;

http://idea.research.calicolabs.com.

• Computer software, Bayesian Chechik & Koller Model:

https://github.com/calico/impulse.

• Computer software, Dynamical System Model:

https://github.com/google-research/google-research/tree/master/

yeast_transcription_network.

Expanded View for this article is available online.
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