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Abstract

Bayesian phylogenetic analyses estimate posterior distributions of phylogenetic tree topologies and other parameters using Markov

chain Monte Carlo (MCMC) methods. Before making inferences from these distributions, it is important to assess their adequacy. To

thisend, theeffectivesamplesize (ESS)estimateshowmanytruly independentsamplesofagivenparameter theoutputof theMCMC

represents. The ESS of a parameter is frequently much lower than the number of samples taken from the MCMC because sequential

samples fromthechaincanbenon-independentdue toautocorrelation.Typically,phylogeneticistsusea ruleof thumbthat theESSof

all parameters should be greater than 200. However, we have no method to calculate an ESS of tree topology samples, despite the

fact that the tree topology is often the parameter of primary interest and is almost always central to the estimation of other

parameters. That is, we lack a method to determine whether we have adequately sampled one of the most important parameters

in our analyses. In this study, we address this problem by developing methods to estimate the ESS for tree topologies. We combine

these methods with two new diagnostic plots for assessing posterior samples of tree topologies, and compare their performance on

simulated and empirical data sets. Combined, the methods we present provide new ways to assess the mixing and convergence of

phylogenetic tree topologies in Bayesian MCMC analyses.
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Introduction

Many areas of biology rely on Bayesian estimates of phyloge-

netic trees. Almost all modern phylogenetic studies include a

Bayesian analysis of the data, and other areas such as phylo-

geography, phylodynamics, and comparative studies rely on

Bayesian estimates of phylogenetic trees even if the tree itself

is not of primary interest (Pagel et al. 2004; Lemey et al. 2009;

Volz et al. 2013; Aberer et al. 2015; Whidden and Matsen

2015). Because Bayesian estimates of phylogenies are so

widely used, it is important that we can assess their reliability.

Bayesian estimates of phylogenetic trees take the form of a

posterior distribution, which is typically a collection of around

1,000 phylogenetic trees that describes the uncertainty about

the evolutionary relationships among a set of sequences.

Posterior distributions of trees are sampled using Markov

chain Monte Carlo (MCMC) methods, in which an algorithm

explores the space of all possible phylogenetic trees, periodi-

cally recording the trees it encounters (Nylander et al. 2008;

Ronquist et al. 2012; Aberer et al. 2014; Bouckaert et al.

2014). A key consideration when using MCMC methods is

to determine whether the chain has been run for long

enough, and whether enough samples have been taken, to

reliably estimate the posterior distributions of the parameters

of interest.

The effective sample size (ESS) is a useful tool for assessing

the adequacy of posterior samples taken from an MCMC

analysis (Drummond et al. 2006; Kuhner 2009; Rambaut

et al. 2012; Ronquist et al. 2012). The ESS is a measure of

the number of uncorrelated samples that would be needed to

estimate the posterior distribution of a given parameter with

equivalent precision to the estimate obtained from the

MCMC. The ESS can be much lower than the number of
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samples from the MCMC because sequential samples are

often autocorrelated, i.e., the difference between sequential

samples is smaller than the difference between truly indepen-

dent samples. Autocorrelation is the rule rather than the ex-

ception in phylogenetic MCMC analyses, due to limits on the

efficiency with which MCMC analyses can explore different

values of parameters and different phylogenetic tree topolo-

gies. Because of this, it is standard practice to ensure that the

ESS of every parameter is above some sensible threshold

before making biological inferences from the results of an

MCMC analysis.

Phylogeneticists have settled on the arbitrary but pragmatic

rule of thumb that the ESS of all parameters should be at least

200 for the posterior distributions to be accurately inferred

(Drummond et al. 2006). When the ESS of any parameter in

the analysis is less than 200, researchers have a number of

options: they can re-run the same analysis for longer; they can

attempt to improve the way that the MCMC samples contin-

uous parameters or phylogenetic tree topologies by adjusting

proposal moves and/or using Metropolis Coupling (known as

MCMCMC or MC3); and they can perform independent rep-

licates of the same MCMC and combine the samples post-

hoc. All of these approaches are sensible, but the current

protocol has an important omission: we lack a method to

calculate or estimate an ESS of the tree topologies sampled

from the MCMC.

Tree topologies are arguably the most important parameter

in phylogenetic MCMC analyses. The tree topology is the pri-

mary focus of many phylogenetic analyses, and regardless it

can heavily influence the estimation of many other parameters

such as substitution rates and divergence dates. On top of this,

tree topologies are often expected to have a lower ESS than

most continuous parameters; the number of possible topolo-

gies can be vast, and it is typically more difficult to sample

from the set of all possible trees (described hereafter as tree

space) than it is to sample from the set of all possible values of

a standard continuous parameter (Huelsenbeck et al. 2002;

Ronquist et al. 2012; Aberer et al. 2014; Bouckaert et al.

2014; Aberer et al. 2015; Whidden and Matsen 2015). This

has the important ramification that an adequate ESS for all

continuous parameters in an analysis cannot guarantee an

adequate ESS of tree topologies from same analysis. Thus,

there are few if any cases in which it would not be prudent

to assess the adequacy of the sample of tree topologies from a

Bayesian phylogenetic analysis before making biological infer-

ences from the tree topology or any other parameters of in-

terest (Kass et al. 1998).

Some methods already exist to examine posterior distribu-

tions of tree topologies, such as measuring trends in the dis-

tributions of split frequencies or the posterior distribution of

trees in tree space. For example, the software AWTY

(Nylander et al. 2008) allows users to analyse the stability of

posterior support for splits within and between chains, and

MrBayes calculates the average standard deviation of split

frequencies between independent chains (Ronquist et al.

2012). Both of these methods can provide useful information

on the stationarity and convergence of chains, but neither

addresses the question of the sample size of tree topologies.

Similarly, plotting trees in tree space (Hillis et al. 2005;

Whidden and Matsen 2015) can provide useful visual infor-

mation on MCMC performance and may provide visual clues

to autocorrelation, but does not allow users to estimate an ESS

of the tree topologies. Quantitative estimates of an ESS of tree

topologies would be useful additions to existing methods of

assessing MCMC performance. They would provide a conve-

nient ways to assess the adequacy of posterior samples of

trees from empirical analyses, and would be useful for com-

paring methods of exploring tree space, because all else being

equal we should prefer methods that generate larger ESS

values.

In this article, we present approaches to assess the auto-

correlation and estimate an ESS of tree topologies from

Bayesian phylogenetic MCMC analyses. We demonstrate

and test the methods on a collection of empirical and simu-

lated data sets, and show how they might be useful to users

and developers of Bayesian phylogenetic MCMC methods.

Materials and Methods

We present two new ways to visualise samples of tree topol-

ogies from Bayesian MCMC analyses, and two new ways to

estimate an ESS of these samples.

Visualization 1: Topology Traces: Visually Assessing the
Progress of an MCMC in Tree Space

Visual inspection of parameter traces is a simple and widely

used way of assessing MCMC performance. For a standard

continuous parameter, a parameter trace shows the value of

each sample of a given parameter on the Y-axis against the

generation of the MCMC at which that sample was taken on

the X-axis. A well-behaved MCMC (i.e., one with good mixing

and little autocorrelation) will produce a parameter trace in

which the value of the parameter appears to be sampled

from a stationary distribution (i.e., the trace shows no long-

term trends or large and sustained changes in value), and in

which sequential samples are no more similar to each other

than distantly related samples. Furthermore, parameter traces

from replicate analyses should show qualitatively similar traces.

Parameter traces can be particularly useful in diagnosing

problems with MCMC performance. Autocorrelation can be

revealed by a trace that moves slowly around the stationary

distribution. Poor mixing can be revealed by long-term trends

in a parameter trace, or by a trace that spends a large number

of generations around one value, before making a large jump

and spending a large number of generations at another value.

We propose a simple method for making traces of tree

topologies that are analogous to traces for continuous param-

eters. In a topology trace, the Y-axis shows the topological
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distance of each sampled tree from a single focal tree, and the

X-axis shows the generation at which each sample was taken

(e.g. fig. 1B and D). For the assessment of multiple replicate

analyses we suggest that a single focal tree topology is used,

such that a when two replicate chains visit the same tree to-

pology, they will show the same value on the Y-axis. This has

the advantage that topology traces from replicate analyses

that have converged to sample from the same stationary dis-

tribution should all show similar values on the Y-axis.

Topology traces have one limitation when compared with

traces of continuous parameters—more than one tree topol-

ogy in the posterior sample may share a single phylogenetic

A B

C D

FIG. 1.—Jump distance plots and topology traces for twelve simulated posterior samples of trees. The plots demonstrate that as mixing improves (top to

bottom panel in each sub-plot) autocorrelation decreases. In A and B, each data set contains 1,000 trees of 50 taxa, generated by iteratively applying a fixed

number of SPR moves to a random starting tree. The number of SPR moves between trees in the data set is given in the title bar of each sub-plot. In C and D,

each data sets contains 1,000 trees of 50 taxa, generated by sampling from two distantly-related sets of trees, where there is a probability M of switching

between sets at each generation. The probability M is shown in the title bar of each sub-plot.
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distance from any given focal tree. For example, if an MCMC

spent the first half of the analysis sampling one tree topology,

and the second half of the analysis sampling a very different

topology, a topology trace could appear completely flat if the

focal tree was equidistant from the two sampled trees. This

situation is probably very rare in practice, but it does mean that

topology traces could produce occasional false-negatives (i.e.,

they may fail to identify problematic analyses), although we

do not expect them to produce false positives (i.e., to falsely

identify as problematic an analysis that was not). These issues

could be avoided by plotting multiple topology traces with

different starting trees. Nevertheless, analysing topology

traces together with traces of other parameters may provide

useful insights into MCMC performance.

Visualization 2: Jump Distance Plots: Visually Assessing
Autocorrelation between Tree Topologies from MCMC
Analyses

All else being equal, higher autocorrelation results in lower ESS

values for a given parameter. An MCMC in which certain

parameters show high autocorrelation might need to be run

for longer to achieve a sufficient ESS for that parameter, and/

or improvements might need to be made to the way that the

MCMC explores parameter space to reduce autocorrelation.

The degree of autocorrelation for a parameter can be ex-

pressed as the autocorrelation time, which is defined as the

minimum interval required to ensure that sequential samples

of that parameter are uncorrelated. At the limit, an autocor-

relation time of 1 implies no autocorrelation for that param-

eter. Higher autocorrelation times indicate more severe

autocorrelation. For continuous parameters, the autocorrela-

tion time can be calculated with standard methods (George

1994; Kass et al. 1998). However, phylogenetic tree topolo-

gies are not continuous parameters, and existing analytical

methods cannot be applied.

Here, we suggest that the autocorrelation of tree topolo-

gies from an MCMC analysis can be assessed by measuring

the phylogenetic distances between pairs of trees at increasing

sampling intervals (i.e., jump distances): an approach that for

convenience we call a jump distance plot. If sequential sam-

ples are uncorrelated, the phylogenetic distance between

pairs of trees will be unrelated to the sampling interval. In

this case, the jump distance plot will be approximately flat,

because the mean phylogenetic distance between pairs of

trees will not depend on the sampling interval. However, if

sequential samples are autocorrelated, then pairs of trees from

smaller sampling intervals will tend to be more similar to each

other than pairs of trees from larger sampling intervals. That is,

the phylogenetic distance between pairs of trees will increase

as the sampling interval increases, giving a jump distance plot

with a positive slope. In the presence of autocorrelation, the

jump distance plot may reach an asymptote when the sam-

pling interval is large enough that pairs of trees effectively

independent. In this case, the sampling interval at which the

asymptote is reached provides an estimate of the autocorre-

lation time for tree topologies sampled from that MCMC. Of

course, if the autocorrelation is severe relative to the length of

the MCMC, then the jump distance plot might not reach an

asymptote. In this case, the plot can only be used to place a

lower bound on the autocorrelation time (i.e., it must be larger

than the largest sampling interval in the plot), rather than a

point estimate. This reasoning assumes that one is analysing

samples from a well-mixed chain. In the absence of good

mixing, autocorrelation plots (and thus the approximate-ESS,

see below) may be misled. For this reason, we recommend

assessing mixing (e.g., using a topology trace) before making

inferences from a jump distance plot or the approximate-ESS

(see below).

We have written R code to produce jump distance plots. In

this code, we first load a posterior sample of N trees using

ape’s read.tree function (Paradis et al. 2004). We then define

a vector of sampling intervals, s, from 1 to ½N=10�, i.e., the

largest sampling interval is the largest integer not greater than

N/10. Note that these numbers correspond to intervals be-

tween sampled trees, rather than intervals in terms of

MCMC generations. If the vector of sampling intervals is

longer than 100, we subsample it to generate exactly 100

sampling intervals. This ensures that the data are easy to visu-

alise, and allows us to work efficiently with large data sets.

Next, for each sampling interval, si, we calculate a vector of

phylogenetic distances, di, between overlapping pairs of trees

from the posterior sample. For example, for s2=2, the first

three pairs of trees would comprise the first three overlapping

pairs of trees that are two trees apart in the posterior sample,

i.e., the three pairs would, respectively, have the indices: (1, 3),

(2, 4), and (3, 5). This vector of distances, di, is our estimate of

the distribution of phylogenetic distances at sampling interval

i, which we summarise by taking the arithmetic mean. We

calculate phylogenetic distances using the phangorn package

in R (Schliep 2011). Finally, we visualise these data using the

ggplot2 library in R (Wickham 2009).

We compare two methods of measuring the phylogenetic

distance between trees: the Path Difference (Steel and Penny

1993) and the Robison–Foulds distance (Robinson and Foulds

1981; Hein et al. 1996). Many other such metrics exist, includ-

ing the Subtree-Prune and Regraft distance (SPR distance;

Steel and Penny 1993; Hein et al. 1996; Whidden et al.

2010) and the Nearest-Neighbor Interchange distance (NNI

distance; DasGupta et al. 2000), both of which calculate dif-

ferences between pairs of tree topologies while ignoring

branch lengths (which we ignore because they are continuous

parameters that can be assessed with conventional methods).

We chose the Path Difference and the Robinson–Foulds dis-

tance because both are relatively fast to calculate and are

implemented in R.

When autocorrelation is present, we expect all topological

distance metrics to show patterns of increasing distance
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among pairs of trees sampled at increasing intervals. However,

we do not expect all distance metrics to give quantitatively

identical results. For example, the Robinson–Foulds metric can

take a maximum value between quite similar trees, and has a

relatively small number of possible values compared with

the number of possible pairs of trees (Steel and Penny

1993). The Path Difference does not suffer from these limita-

tions to the same extent: it has a larger range and better

power to discriminate pairs of trees (Steel and Penny 1993).

Thus, although the Robinson–Foulds metric is much faster to

calculate, we expect the Path Difference to be more useful for

estimating an ESS of tree topologies. More generally, we

expect the best distance metrics for investigating autocorrela-

tion and an ESS of tree topologies to be those with the best

power to discriminate among unique pairs of tree topologies.

Method 1: The Pseudo-ESS of Tree Topologies from
Phylogenetic MCMC Analyses

Conventional methods for calculating the ESS are restricted to

continuous parameters, and cannot be applied directly to phy-

logenetic tree topologies. However, it has been suggested

before (Alexei Drummond, personal communication) that an

ESS of tree topologies could be estimated by first converting

the topologies into a continuous parameter, and then calcu-

lating an ESS with standard methods.

We estimate an ESS of tree topologies by randomly select-

ing a tree from the posterior sample as a focal tree, and then

calculating the topological distance of every tree in the chain

from that focal tree, as is visualised in the topology trace

(fig. 1). This creates a vector of distances in which the focal

tree has a distance of zero, and all trees that differ topologi-

cally from the focal tree have positive non-zero distances. We

use this vector to calculate an ESS with standard approaches

(see below). Thus, this method equates to treating the topol-

ogy trace (Visualization 1, above) exactly as one would treat

the trace of a continuous parameter.

We implement this approach in R, calculating vectors of

Path Differences and Robinson-Foulds distances between

the focal tree and all other trees using the phangorn pack-

age, as above. We then calculate an ESS of these vectors

using the coda package (Plummer et al. 2006). We note

that we cannot guarantee that this approach will yield the

smallest ESS for a particular posterior sample of trees, and

we therefore refer to it as a pseudo-ESS. Large pseudo-ESS

values should be treated with caution, because there may

be other statistics of tree topologies that would give smaller

values. Furthermore, because the choice of the focal tree is

arbitrary, we re-calculate the pseudo-ESS 100 times, ran-

domly choosing a new focal tree each time. From these 100

replicates, we calculate the median and 95% confidence

intervals of the pseudo-ESS for a given sample of phyloge-

netic tree topologies.

Method 2: The Approximate-ESS of Tree Topologies from
Phylogenetic MCMC Analyses

Standard methods to calculate the ESS divide the number of

samples by the integrated autocorrelation time. We adapt

these methods to derive an approximation of the ESS for phy-

logenetic tree topologies, by building on the approach we

describe above for producing jump distance plots. Our deriva-

tion relies on an analogy between a topology and a continu-

ous variable, such that the expected squared pairwise

distances between samples of tree topologies is analogous

to the covariance of samples of a continuous variable. This

allows us to proceed with our derivation along the same

lines as the classical approach for estimating ESS for continu-

ous variable, where the ESS is the sample size of independent

samples whose variance is equivalent to the covariance of the

observed samples.

We first define the squared distance between two inde-

pendent topologies from the posterior distribution, D, so the

expected squared distance of M independent samples is
MðM�1Þ

4M2 D. Then we ask how many independent samples will

have the equivalent expected squared distance of N topolo-

gies sampled from the posterior distribution. M can be solved

by the equation:

MðM � 1Þ

4M2
D ¼

�N�1
i¼1 �

minðm;N�iÞ
k¼1 f ðkÞ þ ðN�mþ1ÞðN�mÞ

2 D

2N2
;

where in sequential samples of the N topologies, f(k) is the

squared distance between two samples that at a sampling

interval of k. m is the minimum sampling interval between

two samples that are independent from each other, i.e., the

sampling interval at which the asymptote on the jump dis-

tance plot is reached.

To solve for M, we need to estimate f ðkÞ for each k = 1,. . .

m�1, by taking the average squared distance between two

random samples that are separated by a sampling interval of

k. We also need to estimate D, by taking the average of the

squared distances between two random samples that are sep-

arated by a sampling interval of at least m.

We have implemented this approach in R, using both the

squared Path Difference and the squared Robinson–Foulds

distance as measures of topological distance. To do this, we

calculate the mean squared distance between pairs of trees at

the first 100 sampling intervals, as described above. We then

use the optim() function in R to estimate a best-fit model for

the sampling distance at which the asymptotic squared topo-

logical distance is reached. This model is based on the expo-

nential semivariogram (Chilès and Delfiner 2009), and takes

the form:

f ðkÞ ¼ D 1� e�
k
a

� �

where a is a parameter that controls the shape of the expo-

nential function, and k and D are as described above. If the

Effective Sample Size of Tree Topologies GBE

Genome Biol. Evol. 8(8):2319–2332. doi:10.1093/gbe/evw171 Advance Access publication July 19, 2016 2323

Deleted Text: -
Deleted Text: to
Deleted Text: -
Deleted Text: p
Deleted Text: o
Deleted Text: O
Deleted Text: t
Deleted Text: t
Deleted Text: p
Deleted Text: a
Deleted Text: F
Deleted Text: s
Deleted Text: a
Deleted Text: o
Deleted Text: O
Deleted Text: t
Deleted Text: t
Deleted Text: p
Deleted Text: a
Deleted Text: -
Deleted Text: -
Deleted Text: W


model suggests that an asymptote has not been reached

within the range of sampling distances available, we calculate

an upper bound on the ESS by assuming that D is the largest

mean squared topological distance sampled.

Simulated and Empirical Data sets for Testing the
Methods

We assess the methods we present here using simulated and

empirical data sets. We do not know of a way to simulate

phylogenetic MCMC data sets with a known ESS, so instead

we simulated a large collection of MCMC data sets in which

we expect the ESS to vary predictably (see below). We also

apply our methods to six empirical data sets from a recent

study of Malagasy herpetofauna (Scantlebury 2013a). We

chose these data sets because the posterior samples of phy-

logenetic trees were publically available on DataDryad

(Scantlebury 2013b), and because all of the analyses were

carried out with rigorous and identical methods. These in-

cluded: (i) running each analysis in BEAST v1.6.1

(Drummond and Rambaut 2007) for 20,000,000 generations,

sampling trees every 10,000 generations; (ii) assessing statio-

narity and convergence of continuous parameters using

TRACER (Rambaut et al. 2012); and (iii) assessing stationarity

and convergence of tree topologies using AWTY (Nylander

et al. 2008). In the original study, the author also repeated

each analysis four times. For simplicity, we use only a single

replicate of each analysis in this study.

Analysis 1: Comparing Jump Distance Plots, Topology
Traces, and ESS Estimates for 12 Simulated MCMC Data
sets

In this analysis, we simulated 12 posterior samples of trees

from unimodal and bimodal posterior distributions. We later

use a much larger set of simulations to compare the estimates

of the ESS in more detail. The simulations are designed to vary

the degree of mixing from very poor to almost perfect. We

expect the ESS to be low when mixing is poor, and increase to

approach the number of trees in the sample (1,000 in this

case) as mixing improves.

For the unimodal simulations, we created posterior samples

of 1,000 trees by picking a random starting tree of 50 taxa,

and generated subsequent samples by making a predeter-

mined number of SPR moves on the previous sample using

the rSPR function from the phangorn package (Schliep 2011).

This is roughly equivalent to performing a phylogenetic

MCMC without any sequence data. The larger the number

of SPR moves between samples the more efficient the mixing,

because the more independent sequential samples will be

from one another. We simulated the output of six MCMC

analyses with 1, 2, 5, 10, 20, and 50 SPR moves between

sequential samples.

For the bimodal simulations, we first simulated two dis-

tantly related sets of 10 trees of 50 taxa. To do this, we

seeded the first set with a random tree of 50 taxa, and then

applied 50 random SPR moves to this tree to create the first

tree of the second set. We simulated the subsequent nine

trees of each set by applying one random SPR move to the

starting tree of each set. Empirically, a posterior distribution of

this type may be encountered if two loci with different evo-

lutionary histories are concatenated into a single alignment.

For each simulated MCMC, we created posterior samples of

1,000 trees in which the first tree is randomly chosen from set

1, and subsequent trees are chosen from either set 1 or set 2.

The degree of mixing is controlled by a single parameter, M,

which defines the probability that the current tree is chosen

from the same set as the previous tree. When M = 0.5 mixing

is perfect because each generation has an equal probability of

sampling a tree from either of the two sets. As M decreases

from 0.5 towards zero mixing gets progressively worse, be-

cause the MCMC becomes more likely to take the sequential

samples from the same set of trees. When M is exactly zero

mixing is indistinguishable from perfect, because the MCMC

will exclusively sample trees at random from set 1, and provide

no evidence in the posterior sample of trees that set 2 exists.

We simulated the output of six MCMC analyses of 50 taxa

with value of M of 0.01, 0.1, 0.2, 0.3, 0.4, and 0.5. We thus

expect the ESS to increase monotonically as M increases.

For each of the 12 simulations, we produced a topology

trace and an jump distance plot, and calculated the approxi-

mate-ESS and the pseudo-ESS with 100 replicates as described

above, using Path Differences as our measure of topological

distance.

Analysis 2: Comparing Jump Distance Plots, Topology
Traces, and ESS Estimates for Six Empirical Data sets

For each of the six empirical data sets, we produced a topol-

ogy trace and a jump distance plot, and calculated the approx-

imate-ESS and the pseudo-ESS with 100 replicates as

described above, using Path Differences as our measure of

topological distance.

Analysis 3: Assessing the Performance of the Pseudo-ESS
and the Approximate-ESS Across a Wide Range of
Simulated MCMC Data sets

For this analysis, we simulated unimodal and bimodal poste-

rior distributions of trees as in analysis 1, but across a much

wider range of parameter values, and using two different to-

pological distance metrics: the Path Difference (as above) and

the Robinson–Foulds distance.

For the unimodal simulations, we simulated 600 posterior

samples of 1,000 trees as in analysis 1, comprising one

simulation at each of 600 combinations of parameter

values: 5, 20, and 100 taxa combined with 1–200 SPR

moves between samples. For the bimodal simulations, we

simulated 101 posterior samples of 1,000 trees as in analysis
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1, comprising one simulation at each value of M from 0 to 0.5

in increments of 0.005.

For each simulation, we calculated the approximate-ESS

and the pseudo-ESS as described above. We repeated the

calculations using both the Path Difference and the

Robinson–Foulds distance as measures of topological distance.

For clarity, we report only the median pseudo-ESS calculated

from the 100 replicates.

Results

Analysis 1: Comparing Jump Distance Plots, Topology
Traces, and ESS Estimates for Six Simulated Well-behaved
MCMC Data sets

As expected, the jump distance plots show positive slopes

when mixing is poor (fig. 1A and C, top panel). These plots

also show that in most cases, the topological distance be-

tween pairs of trees increases to a stable asymptote. The sam-

pling interval at which this asymptote is reached decreases as

mixing improves (i.e., as you move from the top to the bottom

panels in fig. 1A and C), approaching a value of 1 when

mixing is very efficient (bottom panels of fig. 1A and C).

The topology traces reveal useful details of the analysis.

For example, topology traces from the unimodal simulations

(fig. 1D) clearly show that the similarity of sequential samples

decreases as mixing improves (i.e., as you move from the top

to the bottom panel of fig. 1D). The topology traces from the

bimodal simulations reveal the frequency with which the

MCMC moves between the two different sets of trees.

Within each set of simulations, the six topology traces reveal

that the six analyses had converged to sample from similar

regions of tree space, revealed by similar values of the topo-

logical distances on the Y-axis in the six sub-panels of fig. 1B

and D, respectively.

The topology traces reveal a visual shortcoming of the ap-

proach: in the top panel of figure 1B, the trace starts from zero

and rises quickly until it approaches a topological distance of

~250. A standard interpretation of this trace for a continuous

parameter would be to interpret the first 100 samples as sam-

pling different parameter values than subsequent samples.

However, in this case, the effect is an artefact: it results

from the choosing the first tree of the simulated MCMC as

the focal tree form which all other tree distances in figure 1B

were calculated. This might be avoided by using a randomly

generated tree that was not sampled from the MCMC as a

focal tree, or another tree such as a Neighbor-Joining or

Maximum Likelihood tree.

The pseudo-ESS and the approximate-ESS of tree topolo-

gies are highly comparable for the twelve simulated data sets

(figure 2). For both the unimodal and bimodal simulations, the

value of the two ESS estimates increases as mixing improves,

approaching a value equal to the length of the chain (i.e.,

1,000) as mixing becomes very efficient.

Analysis 2: Comparing Jump Distance Plots, Topology
Traces, and ESS Estimates for Six Empirical Data sets

Figure 3 reveals autocorrelation among tree topologies in all

six empirical data sets. In every case, the jump distance plot

shows that the mean Path Difference between pairs of trees

increases with the sampling interval. The amount of autocor-

relation appears to be negligible for at least three data sets

(Heterixalus, Paroedura, and Uroplatus), for all of which the

mean distance between pairs of trees quickly reaches an as-

ymptote (fig. 3A). The plots reveal significant autocorrelation

in the remaining three data sets—the jump distance plot

reaches an asymptote at sampling intervals larger than 10

for the Cophyline, Gephyromantis, and Phelsuma data sets

(fig. 3A). These patterns are reflected in the topology traces,

which show periods in each of these three analyses in which

the Path Difference (Y-axis) stays relatively constant for>100

generations, suggesting that the MCMC was sampling similar

tree topologies for extended periods (fig. 3B).

The approximate-ESS falls within the 95% confidence in-

tervals of the pseudo-ESS for all six empirical data sets (fig. 4).

Both the pseudo- and approximate-ESS values for the

Gephyromantis data set fall well below the widely used

cutoff of 200 (e.g., the approximate-ESS is 104), suggesting

that the samples from this MCMC may not be sufficient to

reliably estimate a posterior distribution of phylogenetic trees.

The ESS values for the Phelsuma data set are also very close to

the cutoff of 200 (e.g., approximate-ESS of 211) suggesting

that the posterior distribution of trees from this MCMC may

also benefit from further sampling.

Analysis 3: Assessing the Performance of the Pseudo-ESS
and the Approximate-ESS Across a Wide Range of
Simulated MCMC Data sets

The 600 simulations of unimodal posterior simulations (fig. 5)

reveal that all four estimates of the ESS we compared (both

the pseudo- and the approximate-ESS calculated with the

Path Difference and the Robinson–Foulds distance) behave

as expected across a wide range of parameter values. First,

all estimates approach an asymptote of the length of the sim-

ulated chains (1,000) as the number of SPR moves between

samples in the simulation increases. The pseudo-ESS (blue

dots, fig. 5) but not the approximate-ESS (pink dots, fig. 5)

occasionally gives an estimated value>1,000, an effect that is

more pronounced when using the Path Difference rather than

the Robinson–Foulds distance. Second, the rate of increase in

all estimates of the ESS is lower when there are more taxa in

the tree. For example, with a 5-taxon tree (fig. 5, left-hand

column) almost every ESS estimate is 1,000, i.e., the asymp-

tote is reached with just 1 SPR move between sequential sam-

ples in the simulated MCMC. With a 20 taxon tree (middle

column, fig. 5), the ESS increases rapidly until it reaches an

asymptote at around 50 SPR moves. And, with a 100 taxon

tree (right-hand column, fig. 5), the ESS increases more slowly
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until it reaches an asymptote at around 100–150 SPR moves

between sequential samples in the simulated MCMC.

Figure 6 reveals some differences in the four methods for

estimating an ESS of tree topologies. First, when the ESS is

estimated using the Path Difference (fig. 6A), the approxi-

mate-ESS gives a slightly smaller estimates than the pseudo-

ESS. This trend is reversed when the ESS is estimated using the

Robinson–Foulds distance (fig. 6B). Both the approximate-ESS

(fig. 6C) and the pseudo-ESS (fig. 6D) give larger estimates

when calculated with the Path Difference rather than the

Robinson–Foulds distance.

All four methods of estimating an ESS of tree topologies are

highly comparable for the simulations of bimodal posterior

samples of trees (fig. 7). As expected, all estimates of the

ESS increase as the degree of mixing increases (blue to

yellow colour change, fig. 7; note that when M = 0, all meth-

ods returned an ESS of 1,000 as expected, though this is not

visible from fig. 7 due to overplotting). The differences be-

tween the pseudo- and the approximate-ESS do not appear

to be biased (fig. 7A and B, respectively). There is a slight

tendency for ESS values estimated with Path Differences to

be larger than those calculated with Robinson–Foulds dis-

tances (fig. 7C and D), as with the unimodal simulations.

Figures 5–7 reveal one limitation of the approximate-ESS of

tree topologies: it is somewhat granular when the ESS is close

to the number of posterior samples (1,000 in this case). This is

shown most clearly in figure 5, where the approximate-ESS

(pink dots) does not increase smoothly with the number of

SPR moves. This occurs because the calculation of the approx-

imate-ESS relies on calculating the sampling interval between

A

B

FIG. 2.—The approximate- and pseudo-ESS are very similar for twelve simulated posterior samples of trees. The data sets are the same as presented in

figure 1. Both the approximate-ESS (pink dots) and the pseudo-ESS (blue dots, lines are 95% confidence intervals) rise to equal the number of trees in the

chain (1,000) as mixing improves. Improved mixing is determined by the number of SPR moves between trees increasing (A) or by the probability of switching

between sets of trees increasing (B). The agreement between the two estimates is striking.
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trees at which the asymptote in the jump distance plot is

reached (fig. 1A). This creates granularity because the sam-

pling interval is an integer. For example, when mixing is very

good this sampling interval will be 1 and the ESS will equal the

number of samples taken from the chain. As mixing becomes

worse the sampling interval will remain at 1 until the mixing is

poor enough that the estimated sampling interval is 2, this

change precipitates the jumps in the approximate-ESS that

can be seen clearly in the right-hand column of figure 5.

Our formulation of the approximate-ESS does not allow us

to use non-integer sampling intervals in the calculation, so

this shortcoming would be difficult to rectify in the current

framework. However, we do not expect this limitation to be of

practical importance, because the aim is to diagnose cases

where the ESS is low (e.g.,<200) and the number of posterior

samples is usually far higher than this (e.g., at least ~1,000).

A B

FIG. 3.—Jump distance plots and topology traces for six empirical posterior samples of trees. Each data set contains 1,000 phylogenetic trees generated

by Bayesian MCMC analyses of DNA sequence alignments from Malagasy herpetofauna (Scantlebury 2013a). The figure shows that some data sets (e.g.,

Gephyromantis) show substantial autocorrelation in the posterior sample of trees, whereas others (e.g., Paroedura) show very little autocorrelation.

FIG. 4.—The approximate- and pseudo-ESS are very similar for six empirical posterior samples of trees. Each data set contains 1,000 phylogenetic trees

generated by Bayesian MCMC analyses of DNA sequence alignments from Malagasy herpetofauna (Scantlebury 2013a). Within each data set, the

approximate-ESS (pink dots) and the pseudo-ESS (blue dots, lines are 95% confidence intervals) agree closely, but there is substantial variation between

data sets despite the fact that the MCMC parameters were identical in each case.
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Discussion

We present four new methods for assessing the adequacy of

tree topologies sampled from Bayesian MCMC analyses: to-

pology traces, jump distance plots, the pseudo-ESS, and the

approximate-ESS. We demonstrate and test the methods with

simulated and empirical data sets. Here, we compare and

discuss the methods, and provide practical guidelines for

their application to empirical data.

Topology traces and jump distance plots provide conve-

nient and complementary methods for visually assessing pos-

terior samples of tree topologies. The ideal posterior sample of

tree topologies has good mixing and consequently little or no

autocorrelation. This produces a relatively flat jump distance

plot and a topology trace without any visible long-term trends,

as in the lowest panels of figures 1A–D, which were generated

from simulations with very good mixing. Poor mixing creates

autocorrelation, reflected by rising jump distance plots and

topology traces which show sustained sampling from similar

trees, as in the top panels of figures 1A–D. Topology traces

also allow quick visual assessment of convergence. If all of the

topology traces from replicate analyses have similar values on

the Y-axis, this suggests (but does not quite guarantee, see

above) that all of the analyses were sampling trees from the

same region of tree space (fig. 1B).

Surprisingly, we detected autocorrelation in all of the em-

pirical studies we analysed here (fig. 3A). This is despite these

MCMCs having been run for 20,000,000 generations, with

samples collected at large intervals of 10,000 generations—

parameters that would usually be considered more than ade-

quate for a Bayesian phylogenetic analysis. This is more nota-

ble because the number of taxa in these analyses was

relatively small (from 9 to 61), and the trees were inferred

with simple models of molecular evolution (a single GTR + G

model applied to each data set). These conditions should be

optimal for minimising autocorrelation among tree topologies

in a Bayesian phylogenetic analysis: fewer taxa means that

there are exponentially fewer possible trees; and simpler

models means that the MCMC can spend proportionally

more time proposing changes to the phylogeny. This suggests

that autocorrelation among tree topologies in Bayesian phy-

logenetic analyses may be the rule rather than the exception. It

highlights the importance of assessing tree topologies sam-

pled from Bayesian MCMC analyses, particularly as new soft-

ware and new data sets lead to larger and more complex

analyses (Faircloth et al. 2012; Lemmon et al. 2012;

Ronquist et al. 2012; Aberer et al. 2014; Bouckaert et al.

2014).

The pseudo- and approximate-ESS provide convenient

ways to quantify the adequacy of posterior samples of tree

topologies derived from Bayesian MCMC analyses. Both mea-

sures estimate of the number of independent samples of tree

topologies represented by the output of a phylogenetic

MCMC analysis, and provide similar estimates over a wide

range of simulated and empirical data sets (figs. 2 and 4–7).

The lowest ESS estimate for tree topologies that we detected

in an empirical data set here was 104 (Gephyromantis, figs. 3

and 4). This is well below what might be considered sufficient

FIG. 5.—Approximate- and pseudo-ESS calculated with different distance metrics for 600 posterior samples of trees. Each data set contains 1,000 trees,

generated by iteratively applying a fixed number of SPR moves to a random starting tree. The number of taxa in the tree is shown in the different columns,

and the results of calculating ESS estimates with different distance metrics is shown in the different rows. Each plot shows the approximate-ESS (pink dots)

and the median pseudo-ESS (blue dots) with a given number of SPR moves between trees in the MCMC. Both estimates agree closely, and both depend on

the number of taxa in the tree, the distance metric used, and the number of SPR moves between trees in the MCMC.
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to derive an accurate estimate of the posterior distribution of

trees. In this case, the low ESS is unlikely to have affected the

conclusions of the original study (Scantlebury 2013a), because

the author ran four independent analyses and combined the

results, likely increasing the total approximate-ESS to ~400.

Nevertheless, these low values highlight the important impact

that autocorrelation might have on the accuracy of phyloge-

nies estimated from Bayesian MCMC analyses.

The pseudo- and approximate-ESS can produce systemat-

ically different estimates of the ESS on the same data (fig. 6a

and b), and we prefer the approximate-ESS over the pseudo-

ESS for a number of reasons. First the approximate-ESS is

mathematically derived with an approach analogous to the

calculation of the ESS for continuous parameters. This

makes its assumptions explicit, and provides a solid basis for

further development. Second the approximate-ESS does not

require the arbitrary selection of a focal tree. We know of no

basis on which to prefer a single focal tree for calculating the

pseudo-ESS, and our analyses show that the value of the

pseudo-ESS can vary substantially depending on which focal

tree is chosen. For example, in one empirical data set

(Phelsuma, fig. 4), when the pseudo-ESS was recalculated

A B

C D

FIG. 6.—Comparison of the approximate- and pseudo-ESS calculated with different distance metrics for 600 posterior samples of trees. This figure

shows a different view of the data from the 600 simulations presented in figure 5. Each dot represents a single simulated data set, and the axes of each sub-

plot show two different estimates of the ESS for that data set. A and B compare the approximate-ESS (X-axis) to the pseudo-ESS (Y-axis) when calculated

with the Path Difference and Robinson–Foulds distance, respectively. C and D compare the use of the Path Difference (X-axis) to the Robinson–Foulds

distance (Y-axis) when used to calculate with the approximate-ESS and the pseudo-ESS, respectively. The dotted line in each plot represents a 1:1 relationship

on which the points would lie if the two estimates agreed precisely.

Effective Sample Size of Tree Topologies GBE

Genome Biol. Evol. 8(8):2319–2332. doi:10.1093/gbe/evw171 Advance Access publication July 19, 2016 2329

Deleted Text: F
Deleted Text: F


with 100 randomly selected focal trees, the lowest estimate

was more than an order of magnitude smaller than the largest

estimate (fig. 4 shows the 95% confidence intervals). The

utility of an estimate that can have such drastic uncertainty

is questionable when a rigorously derived point estimate (i.e.,

the approximate-ESS) exists. Despite our preference for the

approximate-ESS, the similarity, in most cases, of the two

ESS estimates derived here is notable.

Our results demonstrate that different topological distance

measures can produce substantially different ESS estimates

(fig. 5C and D). The Path Difference tends to give larger

estimates of the ESS than the Robinson–Foulds distance for

a given data set (fig. 5C and D) in almost all of the conditions

we simulated. We suspect that the reason for this discrepancy

is that the Path Difference is more discriminating than the

Robinson–Foulds distance: the Robinson–Foulds distance has

a relatively small number of unique values for a given collec-

tion of pairs of trees, whereas the Path Difference has a much

larger number of unique values (Steel and Penny 1993). This is

particularly severe when the trees being compared are highly

dissimilar, because the Robinson–Foulds metric also has a rel-

atively small maximum value (Steel and Penny 1993). The

A B

C D

FIG. 7.—Comparison of the approximate- and pseudo-ESS calculated with different distance metrics for 101 posterior samples of trees. Each data set

contains 1,000 trees, generated by sampling from two distantly related sets of trees, where there is a probability M (shown in the colour legend of each plot)

of switching between sets at each generation. A and B compare the approximate-ESS (X-axis) to the pseudo-ESS (Y-axis) when calculated with the Path

Difference and Robinson–Foulds distance, respectively. C and D compare the use of the Path Difference (X-axis) to the Robinson–Foulds distance (Y-axis)

when used to calculate with the approximate-ESS and the pseudo-ESS, respectively. The dotted line in each plot represents a 1:1 relationship on which the

points would lie if the two estimates agreed precisely.
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more often unique pairs of trees have the same difference for

a given metric, the more that metric is likely to overestimate

the autocorrelation between samples, and thus underestimate

the ESS. We should therefore prefer estimates of the topolog-

ical ESS calculated with distance metrics that are the most

discriminating, i.e., those that tend to assign unique values

to the differences between unique pairs of tree topologies.

We suggest that the most convenient way to use the meth-

ods we propose here is to examine the topology trace and the

approximate-ESS of tree topologies for each phylogenetic

MCMC. The topology trace allows for rapid visual assessment

of the posterior sample of trees, and provides a way to quickly

assess whether the chain is well mixed. If the chain is well

mixed, it is appropriate to use the approximate-ESS to quantify

the adequacy of the posterior sample. To this end, both of

these methods can be invoked via a single command in the

RWTY software [https://github.com/danlwarren/RWTY; the

makeplot.topology() command].

It is interesting to consider extensions to the methods we

propose here. First, although we provide two methods to esti-

mate an ESS for tree topologies, a comprehensive solution to

the problem of calculating the ESS remains open. Second, it

may be possible to calculate or estimate an ESS of subsets of

taxa that make up the tree. This could be achieved by extracting

these subsets from each tree in the posterior sample, and ap-

plying the methods we describe above, or by breaking down

the Path Difference into the contributions of each separate pair

of taxa. This could facilitate identification of parts of the topol-

ogy that have been problematic in an analysis. Third, by tracking

an estimate of the ESS of tree topologies and other parameters

during an MCMC, it may be possible to tune proposal moves so

that the MCMC proposes moves to parameters in inverse pro-

portion to their current ESS. This could help improve the effi-

ciency of phylogenetic MCMC analyses by focussing the most

effort on the parameters with the smallest ESS values.

The methods we propose join a growing collection of

approaches for visually and quantitatively assessing phyloge-

netic tree topologies sampled from Bayesian MCMC analyses

(Hillis et al. 2005; Nylander et al. 2008; Bouckaert 2010;

Ronquist et al. 2012; Bouckaert et al. 2014; Whidden and

Matsen 2015). They give us a new tools for comparing the

merits of different topological proposal methods, calculating

the appropriate balance between proposing moves on the tree

topology versus other parameters, and determining how many

MCMC samples are adequate to achieve biologically meaning-

ful estimates of phylogenetic trees in a Bayesian framework.
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