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Despite improved clinical outcomes, intrinsic or acquired resistance to

CDK4/6 inhibitor treatment has limited the success of this treatment in

HR+HER2� metastatic breast cancer patients. Biomarkers are urgently

needed, and longitudinal biomarker measurements may harbor more

dynamic predictive and prognostic information compared to single time

point measurements. The aim of this study was to explore the longitudinal

evolution of circulating tumor fractions within cell-free DNA assessed by

an untargeted sequencing approach during CDK4/6 therapy and to quan-

tify the potential association between longitudinal z-score measurements

and clinical outcome by using joint models. Forty-nine HR+HER2� meta-

static breast cancer patients were enrolled, and z-score levels were mea-

sured at baseline and during 132 follow-up visits (median number of

measurements per patient = 3, 25th–75th percentile: 3–5, range: 1–8). We

observed higher baseline z-score levels (estimated difference 0.57, 95% CI:

0.147–0.983, P-value = 0.008) and a constant increase of z-score levels over

follow-up time (overall P-value for difference in log z-score over

time = 0.024) in patients who developed progressive disease. Importantly,

the joint model revealed that elevated z-score trajectories were significantly

associated with higher progression risk (HR of log z-score at any time of

follow-up = 3.3, 95% CI, 1.44–7.55, P = 0.005). In contrast, single z-score

measurement at CDK4/6 inhibitor treatment start did not predict risk of

progression. In this prospective study, we demonstrate proof-of-concept

that longitudinal z-score trajectories rather than single time point measure-

ments may harbor important dynamic information on the development of

disease progression in HR+HER2� breast cancer patients undergoing

CDK4/6 inhibitor treatment.
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1. Introduction

With the introduction of cyclin-dependent kinase 4/6

(CDK4/6) inhibitors, the treatment of metastatic hor-

mone-receptor (HR)-positive, human epidermal growth

factor 2 (HER2)-negative (HR+HER2�) breast cancer

has made substantial progress and the combination of

endocrine therapy with CDK4/6 inhibitors now pre-

vails in the management of advanced HR-positive

breast cancer [1]. However, success has been limited

despite improved clinical outcomes, as ~ 20% of

patients will not respond to CDK4/6 inhibitors ini-

tially, and the majority of patients ultimately develop

treatment resistance over time with either de novo or

acquired resistance [2,3]. Therefore, a key challenge

remains in identifying prognostic and predictive

biomarkers in order to optimize treatment in clinical

practice and ultimately improve outcomes in this

patient group.

Liquid biopsy, in particular circulating tumor DNA

(ctDNA), is being used increasingly for disease moni-

toring and therapy selection in advanced cancer stages

[4,5]. Beyond mutational analysis, ctDNA provides

real-time monitoring of tumor burden, since it reflects

bulk DNA from different tumor locations [6,7]. We

have previously demonstrated the prognostic utility of

ctDNA levels detected with modified Fast Aneuploidy

Screening Test-Sequencing System (mFAST-SeqS) as a

very fast and cost-effective method to assess the

ctDNA fraction in plasma samples without prior

knowledge of the genetic landscape of the tumor [8].

Cancer is a dynamic process accompanied by cancer

evolution and acquired resistance to treatment [9], but

disease progression outcomes may also be influenced

by a variety of non-tumoral factors related to treat-

ment, intercurrent infections, comorbidity, and perfor-

mance status. Similarly, biomarker levels such as

tumor fractions and ctDNA levels may vary over time

in relation to these factors. Thus, it is conceivable that

a single biomarker measurement may only represent

one snapshot in time of a complex and dynamic dis-

ease, and that a string of biomarker measurements over

time (i.e., a longitudinal trajectory) may harbor more

prognostic and predictive information. With ctDNA as

a surrogate marker of disease burden, we expect that

tumor fractions measured in blood by mFAST-SeqS

change over time during cancer treatment and we

hypothesize that assessment of ctDNA trajectories may

have dynamic prognostic information on clinical out-

come beyond a single measurement in time.

In this context, so-called joint models that combine

longitudinal and time-to-event data have been

developed and used for examining this kind of

research question [10–12]. As such, the aim of this

study was to explore the longitudinal evolution of z-

scores using mFAST-SeqS during CDK4/6 therapy

using joint models and to quantify the potential associ-

ation between longitudinal z-score measurements and

clinical outcome. We also assessed the prognostic asso-

ciation between baseline z-scores at CDK4/6 treatment

start and clinical outcome.

2. Materials and methods

2.1. Study design and patients

In this prospective, pilot proof-of-concept, observa-

tional study, we included all 49 patients with advanced

or metastatic HR+HER2� breast cancer with measur-

able disease that were scheduled for treatment with

CDK4/6 inhibitors (Palbociclib: n = 36, Ribociclib:

n = 8, Abemaciclib: n = 5) and antihormonal therapy

at the Division of Oncology, Medical University of

Graz between February 2017 and March 2020. The

study was approved by the ethics committee of the

Medical University of Graz (ethical approval number

21–227 ex 09/10), and written informed consent was

obtained from all patients. This research was carried

out according to the principles of the Declaration of

Helsinki and complied with reporting recommenda-

tions for tumor marker prognostic studies (REMARK)

criteria [13] (Table S1). Baseline data on patient demo-

graphics, tumor characteristics, treatment data, and

clinical outcome were retrieved from the in-house elec-

tronic healthcare database and from paper charts.

Information on survival status was collected from the

central registry of the Austrian Social Security Provi-

ders Association. Blood samples were obtained before

start of CDK4/6 treatment (baseline sample) and at

follow-up visits, consistent with routine standard clini-

cal care adapted from clinical studies performed with

CDK 4/6 inhibitors, every 2–3 months or as indicated

by the treating physician until disease progression or

death. Patients underwent periodic imaging and treat-

ment response assessment according to standard

response evaluation criteria in solid tumors 1.1. Due

to the exploratory nature of the current study and the

difficulty of power estimation for joint modeling, no

formal sample size calculation was performed.

Our primary interest was to investigate the associa-

tion between the longitudinal trajectories of z-score

levels and the clinical outcome as represented by pro-

gression-free survival (PFS). The PFS was defined as
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the time from first blood draw (before treatment start)

until disease progression, censoring alive, or death,

whichever occurred first. Overall survival (OS) was a

secondary endpoint and was defined as the time from

first blood draw until censoring alive or death-from-

any-cause.

2.2. Plasma isolation and mFAST-SeqS

Isolation of plasma DNA was performed as previously

described [14]. Briefly, whole blood (9–18 mL) was col-

lected in PAXgene Blood ccfDNA Tubes (Qiagen, Hil-

den, Germany). Plasma was isolated from blood

samples by centrifugation at 200 g for 10 min followed

by 1600 g for 10 min with brake and acceleration

powers set to slow. The supernatant was then removed

and centrifuged again at 1600 g for an additional

10 min. Plasma was then stored in 2 mL tubes at

�80 °C. Plasma DNA was isolated from 2 mL plasma

using the QIAamp Circulating Nucleic Acid Kit (Qia-

gen) according to the manufacturer’s recommendations

or using the QIASymphony PAXgene Blood ccfDNA

Kit (Qiagen). Qubit dsDNA HS Assay Kit (Life Tech-

nologies, Vienna, Austria) was used for quantification

of plasma DNA.

LINE1-amplicon libraries for mFAST-SeqS were

prepared as previously described [15]. Briefly, 0.5–
2 ng of plasma DNA was amplified with Phusion

Hot Start II Polymerase in eight PCR cycles using

target-specific L1 primers. The 10 µL of the purified

(AMPure Beads, Beckman Coulter, Brea, CA, USA)

PCR products was used for the second PCR in which

Illumina-specific adaptors and indices were added. L1

amplicon libraries were pooled equimolarly and

sequenced on an Illumina MiSeq or NextSeq, gener-

ating 150 bp single reads or 76 bp paired-end reads

aiming for at least 80 000 reads per sample. Sequence

reads were aligned to the hg19 genome, and reads

with a mapping quality > 15 were counted per chro-

mosome arm using an in-house script. Normalized

read counts, that is, read counts per chromosome

arm scaled by total number of reads, were compared

to a control population (n = 35) using z-score statis-

tics by subtracting the mean and dividing by the

standard deviation. This assessment of over- and

under-representation of LINE1-sequences provides a

proxy for the presence of gains or losses of chromo-

somal material on a chromosome-arm level. The

short arms of acrocentric chromosomes were omitted

from the analysis. Finally, all chromosome-arm-speci-

fic z-scores were squared and summed up, resulting

in a genome-wide z-score, which acts as a surrogate

for tumor fraction [16].

2.3. Statistical analyses

All statistical analyses were performed with Stata

16.1 (Stata Corp., Houston, TX, USA). Continuous

variables were reported as medians [25th–75th per-

centile] and count data as absolute frequencies (%).

In all analyses, we used log-transformed z-scores to

account for its skewed distribution. In addition, z-

score levels were dichotomized into a binary variable

(< 3 and ≥ 3) as previously published by our group

[8]. Median follow-up time was estimated with the

reverse Kaplan–Meier estimator [17]. The distribution

of baseline variables between patients with high or

low z-score levels at baseline (binary z-score variable)

was assessed with rank-sum tests (continuous vari-

ables) and chi-squared, or with Fisher’s exact tests

(categorical variables). The association between z-

score levels at baseline and clinical outcomes was

evaluated with Kaplan–Meier estimators, log-rank

tests, and Cox proportional hazards regression. The

proportional hazards assumption was tested using

Schoenfeld tests. The longitudinal change in z-score

over time was analyzed with a linear mixed model,

using a quadratic growth model for follow-up time

and a random intercept at the patient level and a

random slope for linear follow-up time. Joint models

for longitudinal and time-to-event data were used for

quantifying the relationship between z-score trajecto-

ries and clinical outcomes [18]. The joint model was

specified as follows: (a) A quadratic mixed growth

model with random intercept at patient level and ran-

dom slope for linear follow-up time for the longitudi-

nal component, (b) a Weibull model for the time-to-

event component, (c) a current association specifica-

tion of the association parameter a and an unstruc-

tured variance–covariance matrix. Patient-specific

outcome predictions according to z-score trajectories

were obtained using the Stata routine stjmcsurv [18]

based on the dynamic prediction approach of Rizo-

poulos [19]. In a sensitivity analysis, investigating the

association between a change in z-score as a binary

time-dependent variable, we performed landmark

analyses and time-dependent Cox regression as previ-

ously described [20].

3. Results

3.1. Baseline characteristics of study population

Forty-nine HR+/HER2� breast cancer patients with a

median age of 65.4 years [25th–75th percentile: 57.1–
71.1] were included in this study. Main baseline
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characteristics are listed in Table 1. Most patients

were female (n = 46, 94%) and had predominately

invasive ductal tumors (n = 31, 63%), followed by

invasive lobular tumors (n = 13, 27%). Our study

cohort included 18 (37%) patients with de novo meta-

static disease, two patients had locally advanced

tumors (4%), and 29 patients (59%) had recurrent

metastatic disease. Bone (n = 27, 55%) was the most

frequent metastatic site, followed by lung (n = 17,

35%), then lymph nodes (n = 15, 31%), and liver

(n = 8, 16%). One patient had brain metastases (2%).

Twenty-three patients (49%) had multiple metastatic

sites at treatment start. The majority of patients

(n = 46, 94%) received CDK4/6 treatment during the

1st or 2nd line of therapy. Patients were followed up

for a median interval of 24.4 months [25th–75th per-

centile: 9.4–34.9]. During this follow-up period, 24

(49%) patients progressed [median PFS: 15.7 months,

95% confidence interval (CI): 11.1–27.5], and 19

(39%) patients died (median OS: 27.8 months, 95%

CI: 17.7-not reached, Fig. S1).

Patients who developed progressive disease and/or

died during follow-up were more likely to have higher

grade tumors, liver metastases, CDK4/6 treatment in

2nd or later lines, and chemotherapy prior to CDK4/6

treatment (Table 1). Higher baseline continuous

mFAST-SeqS log z-scores (median log z-score: 1.14 vs

0.60, rank-sum P = 0.038), but not an elevated base-

line z-score, as defined by an established cutoff at ≥ 3,

were associated with the occurrence of a PFS event.

Other covariables were similarly distributed between

patients who developed progressive disease/death or

who remained event-free during follow-up.

3.2. Elevated baseline mFAST-SeqS z-score does

not predict clinical outcome

At baseline before start of CDK4/6 treatment, the

median mFAST-SeqS z-score was 2.26 [25th–75th per-

centile: 1.55–6.02]. There were 19 patients (38.8%)

with mFAST-SeqS z-score levels ≥ 3, and these

patients were more likely to have grade 3 tumors, liver

metastasis, and chemotherapy prior to CDK4/6 treat-

ment. All other variables were not associated with ele-

vated mFAST-SeqS z-score levels (Table 2).

In univariable Cox regression analysis, neither base-

line continuous log z-scores nor baseline elevated z-

score as a binary variable were associated with PFS or

OS (Fig. 1 and Table 3). Univariable predictors of

worse PFS and/or OS included liver metastasis, multi-

ple metastasis, CDK4/6 treatment in 2nd or later lines,

and chemotherapy prior to CDK4/6 treatment

(Table 3).

3.3. Longitudinal evolution of mFAST-SeqS z-

score trajectories during CDK4/6 therapy in

patients with and without PFS event

To investigate the longitudinal evolution of mFAST-

SeqS z-scores under CDK4/6 therapy, we analyzed 181

z-score measurements from 49 patients from baseline

until the development of a PFS event or censoring

alive without such an event (median number of mea-

surements per patient = 3, 25th–75th percentile: 3–5,
range: 1–8). Profiles of observed log z-score measure-

ments for patients with and without a PFS event are

presented in Fig. S2.

First, we used a mixed model with a quadratic

growth of mFAST-SeqS z-scores, a random intercept

at the patient level, and a random slope for linear fol-

low-up time. According to this model, average baseline

mFAST-SeqS z-scores were higher in patients who

progressed than patients who did not progress (esti-

mated difference 0.60, 95% CI: 0.132–1.068, P-

value = 0.012), and z-score trajectories differed over

time between patients with and without PFS event (P-

value for interaction with quadratic follow-up

time = 0.053, overall P-value for difference in log z-

score over time = 0.110). Specifically, in patients with-

out a PFS event, the average longitudinal mFAST-

SeqS z-score levels remained relatively stable over time

(Fig. 2). In contrast, in patients with a PFS event,

average longitudinal mFAST-SeqS z-score levels

decreased early on and then subsequently steeply

increased. However, since this analysis does not

account for potentially informative censoring and the

missingness process, we next applied a joint model to

account for this bias. In fact, when we used coeffi-

cients from the longitudinal component of the joint

model, this pattern changed and became weaker, but

differences remained statistically significant (Fig. 2).

According to this joint model, patients who developed

progressive disease had higher baseline z-score levels

(estimated difference 0.57, 95% CI: 0.147–0.983, P-

value = 0.008) and showed a slow but constant

increase over follow-up time, while patients without a

PFS event had lower baseline z-score levels and

remained constantly low over follow-up time (overall

P-value for difference in log z-score over

time = 0.024).

3.4. mFAST-SeqS z-score trajectories during

CDK4/6 therapy are associated with clinical

outcome

We then applied the joint model to study longitudinal

z-score trajectories and time to PFS event. In
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univariable joint modeling, patients with an elevated z-

score over time experienced a higher risk of a PFS

event [HR of log z-score at any time of follow-up (i.e.,

the association parameter a = 3.3, 95% CI, 1.44–7.55,
P = 0.005; Table 4)]. This finding is also consistent

with Fig. 2. In multivariable analysis, adjusting the

association parameter a for liver metastases, the asso-

ciation between an elevated z-score over time and a

higher PFS risk was observed similarly in patients with

(adjusted HR per one unit increase in log z-

score = 3.6, P = 0.001) and without liver metastasis

(adjusted HR per one unit increase in log z-

score = 2.9, P = 0.019, P for interaction = 0.576).

In sensitivity analysis, neither time-dependent Cox

regression (time-dependent HR = 2.1, 95% CI 0.82–
5.21, P = 0.123) nor a landmark analysis (with land-

mark set at 6 months after initiation of CDK4/6 treat-

ment, Fig. S3, Mantel–Byar test P = 0.117) indicated

Table 1. Baseline characteristics of total study population (N = 49). Distribution overall and by PFS event status. Data are medians [25th–

75th percentile] for continuous data and absolute frequencies (%) for count data. P-values were derived using Wilcoxon’s rank-sum, chi-

squared, or Fisher’s exact tests. P-values ≤ 0.05 are reported in bold.

Total No PFS event PFS event

P-valueN = 49 N = 25 N = 24

Age at inclusion (years) 65.4 (57.1–71.1) 65.9 (57.1–71.8) 64.5 (55.7–69.7) 0.873

Female gender 46 (93.9%) 23 (92.0%) 23 (95.8%) 1.000

Histological type

IDC 31 (63.3%) 18 (72.0%) 13 (54.2%) 0.514

ILC 13 (26.5%) 5 (20.0%) 8 (33.3%)

Other or not reported 5 (10.2%) 2 (8.0%) 3 (12.5%)

Histological gradea

Grade 1 4 (14.3%) 4 (30.8%) 0 (0.0%) 0.022

Grade 2 14 (50.0%) 7 (53.8%) 7 (46.7%)

Grade 3 10 (35.7%) 2 (15.4%) 8 (53.3%)

ECOG status at inclusion

0 34 (69.4%) 20 (80.0%) 14 (58.3%) 0.084

1 14 (28.6%) 4 (16.0%) 10 (41.7%)

2 1 (2.0%) 1 (4.0%) 0 (0.0%)

Time from initial diagnosis to inclusion (months) 66.1 (1.2–133.3) 93.5 (1.0–168.2) 51.6 (14.8–108.5) 0.576

Time from initial diagnosis to metastatic disease (months) 68.1 (0.0–137.3) 98.4 (0.0–156.3) 64.3 (0.0–93.7) 0.316

Time from metastatic disease to inclusion (months) 1.0 (0.5–2.1) 0.9 (0.5–1.6) 1.2 (0.5–14.5) 0.523

De novo metastatic disease 18 (36.7%) 10 (40.0%) 8 (33.3%) 0.628

Number of metastatic sitesb

One 24 (51.1%) 13 (54.2%) 11 (47.8%) 0.664

Multiple 23 (48.9%) 11 (45.8%) 12 (52.2%)

Bone 27 (55.1%) 13 (52.0%) 14 (58.3%) 0.656

Lung 17 (34.7%) 11 (44.0%) 6 (25.0%) 0.162

Lymph nodes 15 (30.6%) 10 (40.0%) 5 (20.8%) 0.146

Liver 8 (16.3%) 1 (4.0%) 7 (29.2%) 0.023

Pleura 8 (16.3%) 2 (8.0%) 6 (25.0%) 0.138

Other 5 (10.2%) 1 (4.0%) 4 (16.7%) 0.189

CDK4/6 treatment line

1st line 39 (79.6%) 23 (92.0%) 16 (66.7%) 0.056

2nd line 7 (14.3%) 2 (8.0%) 5 (20.8%)

3rd or 5th line 3 (6.1%) 0 (0.0%) 3 (12.5%)

(Neo)-adjuvant chemotherapy 19 (38.8%) 9 (36.0%) 10 (41.7%) 0.684

(Neo)-adjuvant endocrine therapy 28 (57.1%) 12 (48.0%) 16 (66.7%) 0.187

Chemotherapy in the metastatic setting 4 (8.2%) 0 (0.0%) 4 (16.7%) 0.050

Endocrine therapy in the metastatic setting 9 (18.4%) 2 (8.0%) 7 (29.2%) 0.074

Continuous log z-score at baseline 0.8 (0.4–1.8) 0.6 (0.3–1.2) 1.1 (0.6–2.0) 0.038

Binary z-score at baseline

z-score < 3 30 (61.2%) 18 (72.0%) 12 (50.0%) 0.114

z-score ≥ 3 19 (38.8%) 7 (28.0%) 12 (50.0%)

a

Data on histological grade were missing in 20 patients.
b

Two patients with locally advanced disease were excluded.
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that a single change in z-score level (from < 3 to ≥ 3)

in a subsequent blood sample during follow-up was a

statistically significant predictor of an increased risk of

developing a PFS event.

Finally, personalized risk predictions of developing

a PFS event conditional on individual patients’

mFAST-SeqS z-score trajectories could be obtained

with the joint model. Figure 3 illustrates this concept

with two examples. Patient 23 had constantly low z-

score levels over follow-up time, and his predicted risk

of a PFS event 6 months after his last study visit was

below 30%. Three months after his last z-score mea-

surement, the patient still showed no disease progres-

sion. Patient 33 had a high z-score level at baseline,

then a z-score level decrease early on after initiation of

CDK4/6 treatment, followed by a subsequent signifi-

cant increase further on during treatment. His pre-

dicted 6-month risk was above 75%. The patient

developed progressive ascites 2 months after his last

study visit.

4. Discussion

In this prospective study, we observed proof-of-con-

cept that longitudinal ctDNA z-score trajectories har-

bor important dynamic information on the

development of disease progression in HR+HER2�

breast cancer patients undergoing CDK4/6 inhibitor

treatment. By applying a so-called joint model, we

quantified changes of z-score levels over time and esti-

mated the relationship of these changes with the risk

of developing progressive disease and/or death. We

observed a constant increase of z-score levels before

development of disease progression, while z-score tra-

jectories remained constantly low over time in patients

who remained event-free. Moreover, the joint model

revealed that elevated z-score trajectories were signifi-

cantly associated with higher progression risk. In con-

trast, single z-score measurement at CDK4/6 inhibitor

treatment initiation did not predict PFS risk. This

shows that a longitudinal string of z-score levels rather

than a single measurement in time is required to

obtain statistically significant predictions of outcome

risk in this population.

Cancer is a dynamic disease, and the levels of a bio-

marker that reflect the underlying dynamic disease

process are likely to change over time. By applying

joint modeling, it is possible to use all longitudinally

collected measurements during follow-up time and to

study how biomarker change through time during

treatment, accounting for potential informative censor-

ing and measurement errors [19]. Recent advances in

joint modeling and the availability of adequate soft-

ware packages helped to promote the application of

this method in the field of cancer studies [10–12,21–
24]. Our data demonstrate how this model can be

applied to investigate the relationship between a longi-

tudinal biomarker, that is, the z-score as a surrogate

for tumor fraction, and clinical outcome in cancer

patients. As shown in Fig. 2, a mixed model of our

data revealed higher baseline levels of z-scores and a

steep increase of biomarker levels over time in patients

Table 2. Baseline characteristics by elevated mFAST-SeqS z-score.

Data are medians [25th–75th percentile] for continuous data and

absolute frequencies (%) for count data. P-values were derived

using Wilcoxon’s rank-sum, chi-squared, or Fisher’s exact tests. P-

values ≤ 0.05 are reported in bold.

z-score < 3 z-score ≥ 3 P-

valueN = 30 N = 19

Age at inclusion

(years)

66.8 (51.8–74.6) 65.3 (58.2–69.1) 0.984

Female gender 27 (90.0%) 19 (100.0%) 0.267

Histological type

IDC 17 (56.7%) 14 (73.7%) 0.502

ILC 9 (30.0%) 4 (21.1%)

Other or not

reported

4 (13.3%) 1 (5.3%)

Histological gradea

Grade 1 3 (16.7%) 1 (10.0%) 0.020

Grade 2 12 (66.7%) 2 (20.0%)

Grade 3 3 (16.7%) 7 (70.0%)

ECOG status at inclusion

0 23 (76.7%) 11 (57.9%) 0.246

1 7 (23.3%) 7 (36.8%)

2 0 (0.0%) 1 (5.3%)

De novo metastatic

disease

11 (36.7%) 7 (36.8%) 0.990

Number of metastatic sites

One 13 (46.4%) 11 (57.9%) 0.440

Multiple 15 (53.6%) 8 (42.1%)

Bone 15 (50.0%) 12 (63.2%) 0.367

Lung 12 (40.0%) 5 (26.3%) 0.327

Lymph nodes 10 (33.3%) 5 (26.3%) 0.604

Liver 2 (6.7%) 6 (31.6%) 0.043

Pleura 6 (20.0%) 2 (10.5%) 0.458

Other 4 (13.3%) 1 (5.3%) 0.636

CDK4/6 treatment line 1.0 (1.0–1.0) 1.0 (1.0–2.0) 0.306

(Neo)-adjuvant

chemotherapy

12 (40.0%) 7 (36.8%) 0.825

(Neo)-adjuvant

endocrine therapy

16 (53.3%) 12 (63.2%) 0.498

Chemotherapy in the

metastatic setting

0 (0.0%) 4 (21.1%) 0.018

Endocrine therapy in

the metastatic

setting

5 (16.7%) 4 (21.1%) 0.720

a

Data on histological grade were missing in 20 patients.
b

Two patients with locally advanced disease were excluded.
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who progressed. However, applying a joint model to

the same data and using the coefficients from the lon-

gitudinal component, the pattern of the trajectories

changed. This is because the joint model accounts for

informative censoring and thus reveals the true

biomarker trajectories in patients with and without

progressive disease. Finally, the joint model can also

use the trajectories for providing dynamic time-up-

dated predictions for the individual patient. We could

demonstrate this prediction by using z-score

Fig. 1. PFS (left panel) and OS (right

panel) by elevated z-score levels (cutoff

≥ 3) at baseline before start of CDK4/6

treatment (N = 49). Curves were

estimated with Kaplan–Meier estimators.

Significance was assessed by log-rank

test.

Table 3. Univariable baseline predictors of clinical outcome. HR, hazard ratio; Ref., reference group; NE, not estimable because no event

occurred in male patients. P-values ≤ 0.05 are reported in bold.

Variable

PFS OS

HR
95% CI

P-value HR
95% CI

P-value

Female gender 2.151 0.289 16.037 0.455 NE NE NE NE

Histological type IDC Ref. Ref. Ref. Ref. Ref. Ref.

Histological type ILD 1.404 0.579 3.405 0.453 1.031 0.377 2.820 0.952

Histological type Other 0.728 0.203 2.606 0.626 0.537 0.117 2.462 0.424

ECOG status (1 or 2 vs 0) 1.794 0.783 4.111 0.167 1.335 0.522 3.419 0.547

Histological grade (Grade 3 vs 1/2)a 2.486 0.899 6.877 0.079 2.767 0.873 8.771 0.084

De novo metastatic disease 0.948 0.401 2.236 0.902 0.945 0.357 2.501 0.909

Number of metastatic sitesb 1.494 1.003 2.226 0.048 1.648 1.076 2.523 0.022

Bone 1.752 0.765 4.010 0.184 1.490 0.593 3.742 0.396

Lung 0.690 0.272 1.751 0.435 0.947 0.335 2.676 0.917

Lymph nodes 0.615 0.229 1.652 0.335 0.816 0.268 2.480 0.720

Liver 3.375 1.356 8.400 0.009 2.800 1.061 7.390 0.038

Pleura 1.834 0.713 4.716 0.208 2.171 0.812 5.808 0.123

CDK4/6 treatment line 1.869 1.254 2.786 0.002 1.800 1.100 2.944 0.019

(Neo)-adjuvant chemotherapy 1.482 0.651 3.376 0.349 0.937 0.367 2.392 0.891

(Neo)-adjuvant endocrine therapy 1.191 0.507 2.795 0.688 0.916 0.357 2.350 0.855

Chemotherapy in the metastatic setting 14.615 3.788 56.390 < 0.001 24.354 5.301 111.884 < 0.001

Endocrine therapy in the metastatic setting 2.403 0.988 5.845 0.053 1.114 0.367 3.382 0.848

Continuous z-score at baseline 1.295 0.924 1.815 0.134 1.436 0.973 2.119 0.068

a

Data on histological grade were missing in 20 patients.
b

Two patients with locally advanced disease were excluded.
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trajectories of individual patients to estimate their

future risk of disease progression (Fig. 3).

Modified Fast Aneuploidy Screening Test-SeqS is a

fast and cost-effective untargeted approach, based on

selective amplification of LINE1-sequences across the

genome, and allows detection of somatic copy num-

ber alterations (SCNAs) at a chromosome-arm level

[15]. In our previous study, we showed that quantita-

tive changes of z-scores within samples from the same

patient showed a strong correlation with tumor frac-

tions, suggesting that z-scores present a robust mea-

sure for the longitudinal assessment of changing

levels of ctDNA in individual patients. Several studies

have shown similar results demonstrating that fluctua-

tions of mutant allele fractions in plasma over time

may show a relation to tumor response [6,25,26]. Our

data also support the concept of ctDNA as a surro-

gate marker of disease burden, and that changes in

ctDNA burden during treatment offer a potential for

guiding clinical management of cancer patients. How-

ever, none of the published studies so far have ana-

lyzed the association of longitudinal biomarker

measurements and time-to-event. In contrast to our

previous study [8], we could not confirm the prognos-

tic value of a single elevated baseline z-score level in

this patient cohort. Additionally, time-dependent

analyses did not suggest that a single change to an

elevated z-score level harbors enough prognostic

information to predict PFS. Possible reasons for the

discrepancy with our previous study include a more

homogeneous patient cohort (HR+/HER2�, starting

CDK treatment) and the fact that the majority of

patients were at earlier stages of treatment in the pre-

sent study compared to a more heterogeneous group

of patients regarding biological subtype and number

of treatment lines in the previous study. Although

this inconsistency could be simply related to limited

power due to our small sample size, this finding

nonetheless illustrates how a longitudinal trajectory

of biomarker measurements harbors meaningfully

more prognostic information than a single measure-

ment in time. Moreover, our joint model analysis

implies that z-score levels can be used at any time of

follow-up to predict risk of disease progression. This

prognostic association also prevailed after multivari-

able adjustment for liver metastasis. Our data may

suggest that CDK4/6 inhibitors can also be effective

in patients with elevated z-score levels as a surrogate

for high tumor burden and that efficacy might be

monitored frequently at low costs during treatment.

This method might also prove helpful in future stud-

ies when addressing the question whether CDK4/6

inhibitors or chemotherapy are a better treatment

choice in selected high-risk patients.

Fig. 2. Predicted average longi-

tudinal mFAST-SeqS z-score trajec-

tories by PFS event status according to

the mixed model (left panel) and the

longitudinal component of the joint model

(right panel). In the mixed model,

missingness due to informative censoring

results in over-fitting of the model. In

contrast, the joint model can

simultaneously model the observed data

and the missingness process, allowing for

informative censoring to be corrected.

Statistical analyses were performed by

linear mixed regression (left panel) and

joint model (right panel) and included 181

z-score measurements form 49 patients.

Table 4. Association of longitudinal log z-score trajectories and

time to PFS event using a univariable joint model with current

value association structure. Wald-test P-value.

Trajectory variable

Association

parameter a 95% CI

P-

value

log z-score (per 1 unit

increase)

3.3 1.44–

7.55

0.005
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Not all patients with progressive disease had ele-

vated z-score levels over follow-up time, a fact that

highlights a limitation of this technique. One reason is

that the z-score underestimates the tumor fraction in

blood, when SCNAs are limited to few chromosomes

[8]. Another reason might be that in some cases, there

was a long time interval between the last z-score mea-

surement and the PFS event, and as such, an increase

of log z-score levels might have been missed. So ideally

in future studies, the time interval should be kept as

brief as possible to accurately investigate whether an

increase truly contributes to a patient’s risk. Another

limitation of this study includes the small sample size,

and therefore, this study needs validation in a larger

data set.

5. Conclusion

In conclusion, this proof-of-concept study is the first

to demonstrate that longitudinal assessment of tumor

fractions using untargeted mFAST-SeqS as a surrogate

may harbor important prognostic information on dis-

ease progression in HR+/HER2� breast cancer patients

undergoing CDK4/6 treatment. Our data support the

concept that longitudinally measured biomarkers such

as ctDNA fractions rather than single time point mea-

surements should be explored in future studies as a

simple noninvasive biomarker for monitoring disease

progression and treatment benefit in metastatic breast

cancer patients.
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Fig. 3. Personalized 6-month risk predictions of progression or death for two patients according to their individual mFAST-SeqS z-score

trajectory. Predictions were obtained from the joint model, which included the current value association structure. Blue dash-dotted line: last

study visit. PFS, PFS. Patient 23 had constantly low z-score levels over follow-up time, and his predicted risk of a PFS event 6 months after

his last study visit was below 30%. Patient 33 had a high z-score level at baseline, then a z-score level decrease early on after initiation of

CDK4/6 treatment, followed by a subsequent significant increase further on during treatment. His predicted 6-month risk was above 75%.
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of the article.
Fig. S1. Progression-free and OS experience of the

total study cohort (N = 49). Curves were estimated

with Kaplan-Meier estimators.

Fig. S2. Line plot of log z-score trajectories in patients

(N = 49) who did not (left panel) and did (right panel)

develop a PFS event during CDK4/6 treatment. Each

dashed line represents the log z-score trajectory of a

single patient.

Fig. S3. Landmark analysis of predicted PFS accord-

ing to patients (N = 49) who did or did not change to

an elevated z-score after 6 months of follow-up (land-

mark time). Significance was tested by Mantel–Byar
test.

Table S1. REMARK checklist.

2400 Molecular Oncology 15 (2021) 2390–2400 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Longitudinal biomarker and progression risk N. Dandachi et al.


	Outline placeholder
	mol212870-aff-0001
	mol212870-aff-0002
	mol212870-aff-0003
	mol212870-aff-0004
	mol212870-aff-0005
	mol212870-tbl-0001
	mol212870-tbl-0002
	mol212870-fig-0001
	mol212870-tbl-0003
	mol212870-fig-0002
	mol212870-tbl-0004
	mol212870-fig-0003
	mol212870-bib-0001
	mol212870-bib-0002
	mol212870-bib-0003
	mol212870-bib-0004
	mol212870-bib-0005
	mol212870-bib-0006
	mol212870-bib-0007
	mol212870-bib-0008
	mol212870-bib-0009
	mol212870-bib-0010
	mol212870-bib-0011
	mol212870-bib-0012
	mol212870-bib-0013
	mol212870-bib-0014
	mol212870-bib-0015
	mol212870-bib-0016
	mol212870-bib-0017
	mol212870-bib-0018
	mol212870-bib-0019
	mol212870-bib-0020
	mol212870-bib-0021
	mol212870-bib-0022
	mol212870-bib-0023
	mol212870-bib-0024
	mol212870-bib-0025
	mol212870-bib-0026


