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Abstract

Generation of customized DNA binding domains targeting unique sequences in complex genomes is crucial for many
biotechnological applications. The recently described DNA binding domain of the transcription activator-like effectors
(TALEs) from Xanthomonas consists of a series of repeats arranged in tandem, each repeat binding a nucleotide of the target
sequence. We present here a strategy for engineering of TALE proteins with novel DNA binding specificities based on the
17.5 repeat-containing AvrBs3 TALE as a scaffold. For each of the 17 full repeats, four module types were generated, each
with a distinct base preference. Using this set of 68 repeat modules, recognition domains for any 17 nucleotide DNA target
sequence of choice can be constructed by assembling selected modules in a defined linear order. Assembly is performed in
two successive one-pot cloning steps using the Golden Gate cloning method that allows seamless fusion of multiple DNA
fragments. Applying this strategy, we assembled designer TALEs with new target specificities and tested their function in
vivo.
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Introduction

The development of synthetic nucleases that cleave unique

genomic sequences in living cells provides powerful tools for

genome engineering, allowing targeted gene knockout and gene

replacement [1]. A key component of these artificial nucleases is

the DNA binding domain which directs the nuclease to its target

sequence. To date, the majority of customized DNA targeting

domains used for genome engineering that have been made are

based on engineered zinc-finger domains. However, the creation

of new DNA binding specificities has proven to be technically

challenging and time consuming. An alternative to zinc-finger

domains may be the recently described DNA binding domain

found in transcription activator-like effectors (TALEs) [2,3].

TALEs are virulence factors of plant pathogens from the genus

Xanthomonas that are translocated via a type III secretion system

inside the plant cell. The TALEs are then imported into the

nucleus, where they bind to specific DNA sequences and

transcriptionally activate gene expression [4,5]. DNA binding is

mediated by a central repetitive region, formed by up to 33

tandem repeats of a 33 to 35 amino acid motif, each repeat

corresponding to one DNA base pair of the target sequence. The

amino acid sequences of the repeats are nearly identical, beside

amino acid positions 12 and 13, the so-called repeat variable

diresidues (RVD). Repeats with different RVDs show different

DNA base pair preferences, and consecutive RVDs in a TALE

correspond directly to the DNA sequence in the binding side,

resulting in a simple one-repeat-to-one-base pair code [6,7].

Knowledge of this TALE recognition code has been used to

predict the DNA binding specificity of native TALEs and to create

designer TALEs (dTALEs) which transcriptionally activate user-

defined promoter sequences [8,9]. Furthermore, several groups

have combined dTALE DNA binding domains with the FokI

derived DNA-cleavage domain, resulting in potent tools for

genome engineering [10,11,12,13]. However, assembly of multiple

repeats with highly identical sequences by standard cloning

approaches is challenging and chemical synthesis of the entire

repeat region expensive.

We present here an approach to assemble genes encoding

TALE repeat domains based on the scaffold of AvrBs3, the first

described and well characterized TALE family member [14]. For

each of the 17 full repeats found in AvrBs3, four module types

were generated, each with preference to one of the four DNA base

pairs. With this set of 68 repeat modules, DNA recognition

domains for any 17 nucleotide target sequence of choice can be

assembled in two cloning steps. Both cloning steps use the Golden

Gate cloning method that allows directional and seamless

assembly of multiple DNA fragments [15,16]. As a proof of

principle, we created three dTALE proteins designed to target the

promoter of a reporter construct stably integrated in the Nicotiana

benthamiana genome, and show that all three dTALEs are able to

activate the reporter construct.

Results

dTALE assembly strategy
The dTALE assembly strategy described here uses the Golden

Gate cloning method, which is based on the ability of type IIS

enzymes to cleave outside of their recognition site. When type IIS

recognition sites are placed to the far 5’ and 3’ end of any DNA
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fragment in inverse orientation, they are removed in the cleavage

process, allowing two DNA fragments flanked by compatible

sequence overhangs, termed fusion sites, to be ligated seamlessly

(Fig. 1A). Since type IIS fusion sites can be designed to have

different sequences, directional assembly of multiple DNA

fragments is feasible [17]. Since the type IIS restriction sites used

for assembly are removed in the cloning process, restriction and

ligation can be performed together, allowing continuous rediges-

tion of unwanted ligation products and increasing formation of the

only stable ligation product, which is the desired construct [15].

Using this strategy, up to 9 DNA fragments can be assembled from

undigested input plasmids in a one-pot reaction with high

efficiency [16].

We chose the native TALE AvrBs3 as a scaffold for customized

assembly of dTALE constructs. The central DNA binding domain

of AvrBs3 is formed by 17.5 tandemly arranged 34 amino acid

repeats, with the last half repeat showing similarity to only the first

20 amino acids of a full repeat. In addition to the 17.5 repeats,

AvrBs3 contains an N-terminally adjacent repeat 0 that is thought

to be specific for a thymidine (as Xanthomonas TALE binding sites

always have thymidines at the position corresponding to repeat 0

[6,7]) (Fig. 1B). To reduce the risk of recombination events

between the 17.5 highly homologous repeat sequences, we codon-

optimized avrBs3 applying the Nicotiana tabacum codon usage. From

this modified DNA sequence, we selected 18 fusion sites that

artificially define the ends of the 17 repeat modules that will be

used for assembly (Fig. 1D and Supporting Information S1).

For each of the 17 repeat modules, we designed four variants with

different RVDs, each with a different DNA base pair preference.

We used the most abundant RVDs found in native TAL effectors

(NI for A, HD for C, NN for G and NG for T) (Fig. 1C) [6,7].

However, only the RVD types NI, HD, and NG show a high

specificity for their target nucleotide, whereas the RVD NN targets

G and A. The designed repeat modules were then constructed

from two overlapping oligonucleotides (see methods section). Each

resulting module is flanked by two fusion sites and two external

BsaI recognition site sequences, as illustrated in figure 1A. The

complete set contains 68 sequenced TALE repeat modules

(Fig. 1D).

Although 9 DNA fragments can be efficiently assembled in a

single Golden Gate cloning reaction, cloning efficiency is

significantly reduced for assembly of 17 repeat modules in a

single cloning reaction (0 to 3 colonies out of 12). Therefore, we

split the assembly in two successive steps. In the first cloning step,

blocks of 5 or 6 repeats are assembled in three preassembly

vectors, one for repeat module positions 1–6, one for positions 7–

12 and one for positions 13–17 (pL1-TA1 to 3). The preassembly

vectors confer ampicillin resistance (ApR) and encode a lacZa
fragment for blue/white selection. On both sides of the lacZa
fragment two different type IIS recognition sequences - BsaI and

BpiI - are positioned in inverse orientation relative to each other,

but creating the identical fusion site (Fig. 1A). After preassembly

of the 3 repeat blocks using BsaI, the intermediate blocks are

released via BpiI and cloned into the final assembly vector (pL2-

TA). pL2-TA confers kanamycin (KmR) resistance to counter-

select against the plasmid backbones of the preassembly vectors

(ApR), and allows plasmid replication in E.coli and Agrobacterium.

The vector pL2-TA also contains all elements of the final dTALE

expression construct, except the repeat modules (Fig. 1D). In

particular, it contains a promoter and terminator required for

expression in plant cells, as well as the N- and C-terminal

domains of AvrBs3, including the unmodified repeats 0 and 17.5

flanking the two BpiI sites used for insertion of the lacking repeat

blocks.

Assembly of dTALEs and their functional testing
To test functionality of the assembled dTALEs, we used

transgenic N. benthamiana plants containing a stably integrated GFP

reporter construct (Fig. 2A). This construct consists of a tobacco

mosaic virus-based viral vector under control of the alcA promoter

from Aspergillus nidulans [18,19]. Since the alcR transcriptional

activator that is required for activation of the alcA promoter is not

present in the transgenic plants, the alcA promoter can be

considered here as a minimal promoter. Three sequences were

chosen from the promoter, all starting with a thymidine as defined

by the specificity of repeat 0. The target sequence chosen for

dTALE-1 is overlapping with the alcR binding site in the alcA

promoter (bp -143 to -127), while the target sequences for dTALE-

2 and dTALE-3 consist of bp -61 to -45 and bp -69 to -53

respectively (target site positions numbered relative to the viral

vector transcription start, Fig. 2A). dTALE-4 was constructed as a

negative control and targets a randomly selected sequence not

found in the promoter region.

For construction of the 4 dTALE constructs, 12 parallel BsaI-

based Golden Gate cloning reactions were set up with selected

modules and the respective preassembly vectors pL1-TA1 to 3.

For each reaction, plasmid DNA from two colonies was purified

and sequenced, and all plasmids were found to contain the correct

sequence. Preassembled repeat blocks were assembled to the final

constructs dTALE-1 to 4 using a second BpiI-based Golden Gate

cloning reaction (Fig. 2B). Eleven out of 12 colonies analyzed

contain a correct construct. After sequence verification, the

constructs dTALE-1 to 4 were transformed into A. tumefaciens

and inoculated into leaves of transgenic N. benthamiana plants

containing the GFP reporter construct. All three dTALEs with

DNA binding domains designed to target sequences in the alcA

promoter induced GFP expression in infiltrated leaf areas, with

expression from dTALE-1 being the weakest. In contrast, dTALE-

4 did not induce any GFP expression from the reporter construct

(Fig. 2C).

Discussion

We have shown here that constructs for dTALE proteins

containing a 19 base DNA binding domain (consisting of 17

engineered full repeats, repeat 0 and the half repeat 17.5) can be

easily assembled by two successive one-pot Golden Gate cloning

reactions. We have prepared a set of 68 repeat modules that allows

construction of DNA binding domains for any 17 base user-

defined target sequence. The native half repeat 17.5 of AvrBs3,

which contains a RVD specific for thymidine, was included in the

C-terminal fragment of the final assembly vector. It would

however be possible to also make half repeat modules with

different RVD types to improve the binding of dTALE proteins

for target sequences that do not have a T at this position. Such

repeats could be assembled together with repeats 13 to 17 in a new

preassembly vector replacing pL1-TA3. A new compatible final

assembly vector lacking the half repeat should also be made.

In case 17 repeats are not sufficient to provide specific binding,

dTALE proteins with additional repeats could easily be construct-

ed. In order to expand the TALE modular cloning system to more

than 17 repeats, new unique fusion sites have to be defined for

each additional repeat, and one or more new preassembly vectors

specific for the added fusion sites have to be constructed. A further

option to increase dTALE specificity is the replacement of the NN

RVD, which has an equal preference to A and G, by the highly G-

specific NK RVD [9,12].

The Golden Gate cloning method provides a perfect fit for

dTALE protein engineering because it allows directional and
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seamless assembly of multiple DNA fragments. In addition, this

cloning method is sequence-independent and allows assembly of

repeats with identical or highly homologous sequences, since only

the 4 base pair fusion sites at the end of the repeats have to be

unique. Selection of fusion sites with unique sequence at the ends

of successive repeats can be easily accomplished by either

changing the codon usage of the ends of the repeats, or by

shifting the fusion sites a few nucleotides at the ends of the various

repeats. Since a complementary shift can be selected at the

beginning of each following repeat (as shown in the result section/

supporting information), seamless assembly of direct repeats can

then be easily achieved.

Other alternative methods for seamless assembly of multiple

DNA fragments include SLIC [20], SOEing [21] and ssDNA

oligonucleotide assembly [22]. These methods are however limited

by the homology present among the repeats since they either involve

PCR steps [21] or require annealing of single-stranded DNA

fragments [20,22], both of which run the risk of deleting some of the

repeats by recombination during amplification and/or cloning.

Codon optimization may nevertheless be used to minimize the risk

of loss of repeats during cloning. A recently published protocol

combines the use of type IIS enzymes and PCR amplification of

codon-optimized repeats, and was shown to allow assembly of

dTALEs containing 12.5 repeats [23]. This protocol is however

Figure 2. Design and functional test of customized TAL effectors. (A) Structure of the reporter construct present in transgenic N.
benthamiana plants. The reporter construct contains a TMV-based viral vector construct under control of the alcA promoter. The vector contains the
RNA-dependent RNA polymerase (RdRp) and a GFP gene, but lacks the viral movement and coat protein genes. Viral vector-mediated GFP expression
is obtained only in cells where the alcA promoter has been activated. Sequences selected for engineering of dTALE-1 to dTALE-3 are indicated by a
black line. The transcription start site of the TMV-based vector is marked by an arrow. (B) Schematic representation of dTALE-1 to 4 constructs. (C)
Agrobacterium tumefaciens strains containing dTALE-1 to dTALE-4 constructs were inoculated into leaves of transgenic plants. An empty
Agrobacterium strain was also inoculated as a negative control (neg). GFP expression was analyzed 5 days after inoculation under UV light. dTALE-1, 2
and 3, which target sequences in the alcA promoter, induced GFP expression. In contrast, dTALE-4, which targets a randomly selected sequence (not
present in the promoter), did not induce any GFP expression.
doi:10.1371/journal.pone.0019722.g002

Figure 1. General overview of the two-step cloning strategy for dTALEs assembly. (A) Golden Gate cloning principle applied for assembly
of dTALEs. Plasmids encoding selected repeat modules (an example with only two modules, R1 and R2, is shown here due to space limitation) are
mixed in one tube together with BsaI, T4 DNA ligase and the destination vector (containing a lacZa fragment for blue-white selection). Assembly of
R1 and R2 using BsaI and ligase gives rise to a plasmid lacking the initial BsaI sites, but containing a block of assembled repeats flanked by two BpiI
sites. The two BpiI sites allow release of the assembled repeats as one block for the second step of cloning. fs, fusion site. (B) Structure of AvrBs3.
AvrBs3 contains a central region with 17 direct repeats (light grey boxes) flanked by a thymidine-specific repeat (repeat 0) and a half repeat (repeat
17.5, both flanking repeats shown as dark grey boxes). Two nuclear localization sequences (NLS, black bars) and a transcription activation domain
(AD) are located in the C-terminal region. One representative 34 aa repeat is shown, with the RVD of the NI type highlighted in grey. (C) RVD types
and their specificities. (D) Set of 68 repeat modules, with 4 modules with different specificities for each of the 17 repeat positions. Repeat modules are
flanked by two BsaI sites with fusion sites selected from the codon-optimized sequence of AvrBs3 (see Supporting Information S1). Sets of five
(for repeats 13–17) or six (for repeats 1–6 and 7–12) selected repeat modules are preassembled via BsaI into preassembly vectors (pL1-TA1 to 3).
Preassembled repeat blocks are then combined in the final destination vector (pL2-TA) using a second BpiI-based Golden Gate cloning reaction.
Construction of dTALE-1 is shown as an example.
doi:10.1371/journal.pone.0019722.g001
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more laborious, as it requires two rounds of PCR amplification and

several purification steps and, since PCR is involved, some of the

final constructs may be expected to contain mutations derived either

from polymerase amplification or from the primers.

In conclusion, the cloning system described here provides a

simple and economical way of assembling constructs encoding

dTALE proteins for genome engineering and other biotechnolog-

ical applications.

Methods

Molecular biology reagents
Restriction enzymes used in this study were purchased from

New England Biolabs (Ipswitch, MA) and Fermentas (Burlington,

Canada). T4 DNA ligase was purchased from Promega (Fitch-

burg, WI). Plasmid DNA preparations were made by using the

NucleoSpin Plasmid Quick Pure kit (Macherey-Nagel, Düren,

Germany) following the manufacturer protocol. Plasmid DNA

concentration was measured using a Nano DropH Spectropho-

tometer ND-2000 (Peqlab, Erlangen, Germany). DNA sequences

for the AvrBs3 N- and C-termini were codon-optimized using the

Nicotiana tabacum codon usage (GENEius software from MWG

Eurofins, Ebersberg, Germany) and were synthesized by this

company. Both synthesized fragments do not contain any BpiI or

BsaI restriction sites. Sequences of the codon-optimized avrBs3

gene and of the 68 repeat modules, as well as primer sequences

necessary for construction of the destination plasmids are listed in

Supporting Information S1.

Vector construction
The repeat modules were made by annealing two partially

overlapping primers and filling the single-stranded extensions

using KOD polymerase (Merck, Darmstadt, Germany). The

double-stranded products were digested with XhoI and cloned in

the SalI site of a pUC19-derived vector conferring spectinomycin

resistance and lacking BpiI and BsaI sites. For construction of the

preassembly vectors pL1-TA1 to 3, a lacZa fragment was amplified

using primers ecvprac1/11, ecvprac18/19 and ecvprac23/24

(sequences given in Supporting Information S1). The PCR

products were cloned via DraIII in a pUC19-derived plasmid

conferring ampicillin resistance. The final destination plasmid

pL2-TA was assembled with the modular cloning system described

in [24]. The 35S promoter module, the synthesized AvrBs3 N- and

C-termini, a lacZa module and an ocs terminator were assembled

via a BsaI-based Golden Gate cloning reaction in pL1F-1. The

complete cassette was then transferred to the vector pL2-1

conferring kanamycin resistance using BpiI.

Standard Golden Gate assembly reaction protocol
One-step one-pot restriction/ligations were set up using

approximately 30 fmol (,100 ng for a 5 kb plasmid) of each

plasmid in a mix containing Promega ligation buffer, 10 U of the

selected restriction enzyme (BsaI or BpiI) and 10 U T4 DNA

ligase, in a final reaction volume of 20 ml. The reactions were

incubated for 2 hours at 37uC, 5 minutes at 50uC and 5 minutes at

80uC. The mix was then added to 100 ml chemical competent

DH10b cells, incubated for 30 min on ice and transformed by heat

shock. Two clones were analyzed by restriction analysis and,

optionally, sequencing.

Supporting Information

Supporting Information S1 Sequence of the codon-optimized

avrBs3 gene and of the primers required for synthesis of the TALE

repeats and of the preassembly vectors. (A) Sequence of the codon-

optimized avrBs3 gene. The sequences selected as fusion sites for

assembly of dTALEs are shown in bold and underlined. (B) Primer

sequences required for TALE repeat construction. (C) Primer

sequences for construction of preassembly vectors pL1-TA1-3.

(DOC)
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