organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-Benzylsulfanyl-9H-purine

Ismat Fatima, Munawar Ali Munawar,* Misbahul Ain Khan, Sohail Nadeem and Rana Amiad

Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan Correspondence e-mail: munawaralimunawar@yahoo.com

Received 26 October 2009; accepted 28 October 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.088; data-to-parameter ratio = 18.7.

The phenyl ring of the title compound, $C_{12}H_{10}N_4S$, a purine derivative, is oriented at a dihedral angle of 76.65 (6)° with respect to the purine ring system. An intermolecular N- $H \cdots N$ hydrogen bonds stabilizes the crystal structure.

Related literature

For the biological activity of purine derivatives, see: Lepage et al. (1964); Mitsuva & Border (1986); Ragazzi et al. (1989).

Experimental

Crystal data

 $C_{12}H_{10}N_4S$ $M_r = 242.30$ Orthorhombic, P212121 a = 5.5717 (3) Å

b = 9.4733 (4) Å c = 22.4656 (14) Å $V = 1185.79 (11) \text{ Å}^3$ Z = 4

Mo $K\alpha$ radiation $\mu = 0.26 \text{ mm}^{-1}$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2007) $T_{\rm min}=0.930,\;T_{\rm max}=0.978$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.088$ S = 0.982941 reflections 157 parameters H atoms treated by a mixture of

independent and constrained refinement

7941 measured reflections 2941 independent reflections 2102 reflections with $I > 2\sigma(I)$

 $0.29 \times 0.12 \times 0.09 \text{ mm}$

T = 296 K

 $R_{\rm int} = 0.032$

 $\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1207 Friedel pairs

Flack parameter: -0.09 (8)

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3N\cdots N4^{i}$	0.894 (19)	1.892 (19)	2.773 (2)	167.9 (18)
Symmetry code: (i) -	$-x+2, y-\frac{1}{2}, -z$	$+\frac{1}{2}$		

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

IF acknowledges the Higher Education Commission, Pakistan for providing funding for this research.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5117).

References

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Lepage, G. A., Junga, J. G. & Bowman, B. (1964). Cancer Res. 24, 835-840.

- Mitsuya, H. & Border, S. (1986). Proc. Natl. Acad. Sci. USA, 83 1911-1915.
- Ragazzi, E., Froldi, G., Santi-Sonein, E., Borea, P. A. & Fassina, G. (1989). Pharmacol Res. 21,707-717.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2009). E65, o2994 [doi:10.1107/S1600536809045140]

6-Benzylsulfanyl-9H-purine

I. Fatima, M. A. Munawar, M. A. Khan, S. Nadeem and R. Amjad

Comment

The synthesis of purine derivatives has received considerable attention on account of their biological activity especially as antitumor (Lepage *et al.*, 1964), anti HTVL (Mitsuya & Border, 1986) and anti asthmatic (Ragazzi *et al.*, 1989) agents. During our search to find new synthetic antithyroid agents, certain purine derivatives were prepared. 6-(benzylthio)-7*H*-purine was synthesized during such an effort. The compound is now under study for possible antithyroid activity.

The phenyl ring is oriented at adihedral angle of $76.65(6)^{\circ}$ with respect to purine ring system. An intermolecular N–H…N hydrogen bonds stabilizes the crystal structure.

Experimental

To a solution of 6-mercaptopurine (0.171 g) 1 mmol in 2 N NaOH (10 ml), benzyl bromide 1 mmol (0.171 g) was added and stirred at room temperature for 30 minutes. The pH of the mixture was adjusted at 5 with glacial acetic acid and the precipitates were collected, washed with water and diethyl ether. The crystals suitable for X-ray diffraction were grown in dichloromethane by slow evaporation at room temperature.

Refinement

The H-atoms bonded to C were refined geometrically and treated as riding atoms with $C_{aromatic}$ —H = 0.93Å and $C_{methylene}$ —H = 0.97Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The N–H atom was refined at calculated position with N–H=0.894 (19) $U_{iso}(H) = 1.2U_{eq}$ (parent N-atom)

Figures

Fig. 1. The crystal structure diagram of the title compound duly labeled with 50% probability level of drawn thermal ellipsoids.

Fig. 2. Unit cell diagram showing the intermolecular hydrogen bonding using dashed lines. The hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

6-Benzylsulfanyl-9H-purine

Crystal data

C₁₂H₁₀N₄S $M_r = 242.30$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 5.5717 (3) Å b = 9.4733 (4) Å c = 22.4656 (14) Å V = 1185.79 (11) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer	2941 independent reflections
Radiation source: fine-focus sealed tube	2102 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.032$
T = 296 K	$\theta_{\text{max}} = 28.3^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2007)	$h = -7 \rightarrow 6$
$T_{\min} = 0.930, \ T_{\max} = 0.978$	$k = -12 \rightarrow 12$
7941 measured reflections	$l = -28 \rightarrow 29$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.040$	$w = 1/[\sigma^2(F_0^2) + (0.0419P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.088$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 0.98	$\Delta \rho_{max} = 0.17 \text{ e} \text{ Å}^{-3}$
2941 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
157 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1207 Friedel pairs
~	

 $F_{000} = 504$

 $\theta = 2.3 - 24.8^{\circ}$

 $\mu = 0.26 \text{ mm}^{-1}$ T = 296 K

Needle, red

 $0.29 \times 0.12 \times 0.09 \text{ mm}$

 $D_{\rm x} = 1.357 \ {\rm Mg \ m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2230 reflections

Secondary atom site location: difference Fourier map Flack parameter: -0.09 (8)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.47086 (11)	0.20744 (5)	0.15044 (2)	0.05534 (18)
N1	0.3943 (4)	-0.07206 (16)	0.13660 (7)	0.0553 (5)
N2	0.6348 (4)	-0.25776 (16)	0.18001 (8)	0.0577 (5)
N3	0.9619 (4)	-0.16476 (15)	0.23955 (8)	0.0519 (5)
H3N	1.020 (4)	-0.2456 (19)	0.2541 (8)	0.062*
N4	0.8929 (3)	0.06585 (15)	0.22833 (7)	0.0488 (4)
C1	0.7639 (4)	-0.15403 (16)	0.20432 (9)	0.0454 (5)
C2	0.7219 (4)	-0.01004 (17)	0.19749 (8)	0.0432 (5)
C3	0.5298 (4)	0.02806 (17)	0.16181 (8)	0.0447 (5)
C4	0.4558 (4)	-0.2074 (2)	0.14777 (10)	0.0618 (6)
H4	0.3578	-0.2750	0.1302	0.074*
C5	1.0294 (4)	-0.03046 (17)	0.25248 (10)	0.0530 (5)
Н5	1.1608	-0.0090	0.2764	0.064*
C6	0.2345 (4)	0.2002 (2)	0.09542 (10)	0.0662 (6)
H6A	0.2763	0.1328	0.0646	0.079*
H6B	0.0862	0.1694	0.1140	0.079*
C7	0.2003 (4)	0.3442 (2)	0.06836 (9)	0.0500 (5)
C8	0.3547 (5)	0.3944 (2)	0.02616 (10)	0.0646 (6)
H8	0.4883	0.3409	0.0158	0.077*
C9	0.3174 (5)	0.5222 (2)	-0.00144 (11)	0.0741 (8)
Н9	0.4228	0.5532	-0.0307	0.089*
C10	0.1270 (6)	0.6027 (2)	0.01415 (12)	0.0708 (7)
H10	0.1011	0.6889	-0.0046	0.085*
C11	-0.0261 (5)	0.5576 (3)	0.05709 (12)	0.0780 (7)
H11	-0.1550	0.6139	0.0684	0.094*
C12	0.0092 (5)	0.4280 (3)	0.08406 (10)	0.0690 (6)
H12	-0.0976	0.3972	0.1131	0.083*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0640 (4)	0.0405 (3)	0.0616 (3)	-0.0021 (3)	-0.0128 (3)	0.0078 (2)

supplementary materials

N1	0.0659 (12)	0.0470 (9)	0.0530 (11)	-0.0109 (9)	-0.0074 (9)	0.0019 (8)
N2	0.0708 (12)	0.0373 (8)	0.0650 (12)	-0.0098 (9)	-0.0048 (11)	-0.0040 (8)
N3	0.0602 (12)	0.0309 (7)	0.0647 (11)	0.0005 (8)	-0.0058 (10)	0.0064 (7)
N4	0.0571 (11)	0.0330 (7)	0.0562 (11)	-0.0034 (8)	-0.0085 (9)	0.0020 (7)
C1	0.0582 (14)	0.0303 (9)	0.0478 (11)	-0.0028 (9)	0.0053 (10)	0.0011 (8)
C2	0.0525 (13)	0.0308 (9)	0.0464 (11)	-0.0040 (9)	0.0029 (9)	0.0022 (8)
C3	0.0526 (12)	0.0386 (9)	0.0431 (11)	-0.0025 (9)	0.0044 (10)	0.0049 (8)
C4	0.0758 (16)	0.0467 (11)	0.0627 (13)	-0.0193 (12)	-0.0046 (14)	-0.0087 (11)
C5	0.0587 (14)	0.0378 (9)	0.0625 (13)	-0.0042 (10)	-0.0083 (12)	0.0024 (9)
C6	0.0704 (15)	0.0566 (12)	0.0715 (15)	-0.0128 (12)	-0.0217 (12)	0.0201 (11)
C7	0.0496 (13)	0.0480 (11)	0.0525 (13)	-0.0036 (10)	-0.0095 (10)	0.0048 (10)
C8	0.0681 (16)	0.0550 (12)	0.0705 (15)	0.0111 (11)	0.0186 (13)	0.0048 (12)
C9	0.094 (2)	0.0577 (13)	0.0710 (17)	-0.0028 (15)	0.0181 (15)	0.0168 (12)
C10	0.0819 (19)	0.0491 (12)	0.0814 (18)	0.0038 (13)	-0.0133 (16)	0.0103 (13)
C11	0.0651 (17)	0.0740 (15)	0.0948 (19)	0.0241 (15)	0.0010 (17)	-0.0048 (14)
C12	0.0568 (15)	0.0833 (15)	0.0668 (15)	-0.0018 (15)	0.0091 (13)	0.0148 (12)

Geometric parameters (Å, °)

S1—C3	1.7495 (17)	C6—C7	1.506 (3)
S1—C6	1.808 (2)	С6—Н6А	0.9700
N1—C3	1.338 (2)	С6—Н6В	0.9700
N1—C4	1.350 (3)	С7—С8	1.366 (3)
N2—C4	1.322 (3)	C7—C12	1.374 (3)
N2—C1	1.334 (2)	C8—C9	1.376 (3)
N3—C5	1.358 (2)	С8—Н8	0.9300
N3—C1	1.362 (3)	C9—C10	1.352 (4)
N3—H3N	0.894 (19)	С9—Н9	0.9300
N4—C5	1.306 (2)	C10—C11	1.357 (4)
N4—C2	1.380 (2)	C10—H10	0.9300
C1—C2	1.392 (2)	C11—C12	1.383 (3)
C2—C3	1.385 (3)	C11—H11	0.9300
C4—H4	0.9300	C12—H12	0.9300
С5—Н5	0.9300		
C3—S1—C6	101.51 (10)	С7—С6—Н6А	109.8
C3—S1—C6 C3—N1—C4	101.51 (10) 116.80 (18)	С7—С6—Н6А S1—С6—Н6А	109.8 109.8
C3—S1—C6 C3—N1—C4 C4—N2—C1	101.51 (10) 116.80 (18) 111.39 (16)	С7—С6—Н6А S1—С6—Н6А C7—С6—Н6В	109.8 109.8 109.8
C3—S1—C6 C3—N1—C4 C4—N2—C1 C5—N3—C1	101.51 (10) 116.80 (18) 111.39 (16) 106.18 (16)	C7—C6—H6A S1—C6—H6A C7—C6—H6B S1—C6—H6B	109.8 109.8 109.8 109.8
C3—S1—C6 C3—N1—C4 C4—N2—C1 C5—N3—C1 C5—N3—H3N	101.51 (10) 116.80 (18) 111.39 (16) 106.18 (16) 128.6 (13)	C7—C6—H6A S1—C6—H6A C7—C6—H6B S1—C6—H6B H6A—C6—H6B	109.8 109.8 109.8 109.8 109.8
C3—S1—C6 C3—N1—C4 C4—N2—C1 C5—N3—C1 C5—N3—H3N C1—N3—H3N	101.51 (10) 116.80 (18) 111.39 (16) 106.18 (16) 128.6 (13) 124.8 (14)	C7—C6—H6A S1—C6—H6A C7—C6—H6B S1—C6—H6B H6A—C6—H6B C8—C7—C12	109.8 109.8 109.8 109.8 108.2 117.73 (19)
C3—S1—C6 C3—N1—C4 C4—N2—C1 C5—N3—C1 C5—N3—H3N C1—N3—H3N C5—N4—C2	101.51 (10) 116.80 (18) 111.39 (16) 106.18 (16) 128.6 (13) 124.8 (14) 104.28 (15)	C7—C6—H6A S1—C6—H6A C7—C6—H6B S1—C6—H6B H6A—C6—H6B C8—C7—C12 C8—C7—C6	109.8 109.8 109.8 109.8 108.2 117.73 (19) 121.1 (2)
C3—S1—C6 C3—N1—C4 C4—N2—C1 C5—N3—C1 C5—N3—H3N C1—N3—H3N C5—N4—C2 N2—C1—N3	101.51 (10) 116.80 (18) 111.39 (16) 106.18 (16) 128.6 (13) 124.8 (14) 104.28 (15) 128.28 (17)	C7—C6—H6A S1—C6—H6A C7—C6—H6B S1—C6—H6B H6A—C6—H6B C8—C7—C12 C8—C7—C6 C12—C7—C6	109.8 109.8 109.8 109.8 108.2 117.73 (19) 121.1 (2) 121.2 (2)
C3—S1—C6 C3—N1—C4 C4—N2—C1 C5—N3—C1 C5—N3—H3N C1—N3—H3N C5—N4—C2 N2—C1—N3 N2—C1—C2	101.51 (10) 116.80 (18) 111.39 (16) 106.18 (16) 128.6 (13) 124.8 (14) 104.28 (15) 128.28 (17) 125.9 (2)	C7—C6—H6A S1—C6—H6B S1—C6—H6B H6A—C6—H6B C8—C7—C12 C8—C7—C6 C12—C7—C6 C7—C8—C9	109.8 109.8 109.8 108.2 117.73 (19) 121.1 (2) 121.2 (2) 121.6 (2)
C3—S1—C6 C3—N1—C4 C4—N2—C1 C5—N3—C1 C5—N3—H3N C1—N3—H3N C5—N4—C2 N2—C1—N3 N2—C1—C2 N3—C1—C2	101.51 (10) 116.80 (18) 111.39 (16) 106.18 (16) 128.6 (13) 124.8 (14) 104.28 (15) 128.28 (17) 125.9 (2) 105.86 (16)	C7—C6—H6A S1—C6—H6B S1—C6—H6B H6A—C6—H6B C8—C7—C12 C8—C7—C6 C12—C7—C6 C7—C8—C9 C7—C8—H8	109.8 109.8 109.8 109.8 108.2 117.73 (19) 121.1 (2) 121.2 (2) 121.6 (2) 119.2
C3—S1—C6 C3—N1—C4 C4—N2—C1 C5—N3—C1 C5—N3—H3N C1—N3—H3N C5—N4—C2 N2—C1—N3 N2—C1—C2 N3—C1—C2 N4—C2—C3	101.51 (10) 116.80 (18) 111.39 (16) 106.18 (16) 128.6 (13) 124.8 (14) 104.28 (15) 128.28 (17) 125.9 (2) 105.86 (16) 133.49 (16)	C7—C6—H6A S1—C6—H6B S1—C6—H6B H6A—C6—H6B C8—C7—C12 C8—C7—C6 C12—C7—C6 C7—C8—C9 C7—C8—H8 C9—C8—H8	109.8 109.8 109.8 108.2 117.73 (19) 121.1 (2) 121.2 (2) 121.6 (2) 119.2
C3—S1—C6 C3—N1—C4 C4—N2—C1 C5—N3—C1 C5—N3—H3N C1—N3—H3N C5—N4—C2 N2—C1—N3 N2—C1—C2 N3—C1—C2 N4—C2—C3 N4—C2—C1	101.51 (10) 116.80 (18) 111.39 (16) 106.18 (16) 128.6 (13) 124.8 (14) 104.28 (15) 128.28 (17) 125.9 (2) 105.86 (16) 133.49 (16) 109.82 (18)	C7—C6—H6A S1—C6—H6B S1—C6—H6B H6A—C6—H6B C8—C7—C12 C8—C7—C6 C12—C7—C6 C7—C8—C9 C7—C8—H8 C9—C8—H8 C10—C9—C8	109.8 109.8 109.8 108.2 117.73 (19) 121.1 (2) 121.2 (2) 121.6 (2) 119.2 119.2 119.9 (2)
$\begin{array}{c} C3 & - S1 & - C6 \\ C3 & - N1 & - C4 \\ C4 & - N2 & - C1 \\ C5 & - N3 & - C1 \\ C5 & - N3 & - H3N \\ C1 & - N3 & - H3N \\ C5 & - N4 & - C2 \\ N2 & - C1 & - N3 \\ N2 & - C1 & - C2 \\ N3 & - C1 & - C2 \\ N4 & - C2 & - C3 \\ N4 & - C2 & - C1 \\ C3 & - C2 & - C1 \end{array}$	101.51 (10) 116.80 (18) 111.39 (16) 106.18 (16) 128.6 (13) 124.8 (14) 104.28 (15) 128.28 (17) 125.9 (2) 105.86 (16) 133.49 (16) 109.82 (18) 116.67 (18)	C7—C6—H6A S1—C6—H6B S1—C6—H6B H6A—C6—H6B C8—C7—C12 C8—C7—C6 C12—C7—C6 C7—C8—C9 C7—C8—H8 C9—C8—H8 C10—C9—C8 C10—C9—H9	109.8 109.8 109.8 108.2 117.73 (19) 121.1 (2) 121.2 (2) 121.6 (2) 119.2 119.2 119.9 (2) 120.1
$\begin{array}{c} C3 & - S1 & - C6 \\ C3 & - N1 & - C4 \\ C4 & - N2 & - C1 \\ C5 & - N3 & - C1 \\ C5 & - N3 & - H3N \\ C1 & - N3 & - H3N \\ C5 & - N4 & - C2 \\ N2 & - C1 & - N3 \\ N2 & - C1 & - C2 \\ N3 & - C1 & - C2 \\ N4 & - C2 & - C3 \\ N4 & - C2 & - C1 \\ C3 & - C2 & - C1 \\ N1 & - C3 & - C2 \end{array}$	101.51 (10) 116.80 (18) 111.39 (16) 106.18 (16) 128.6 (13) 124.8 (14) 104.28 (15) 128.28 (17) 125.9 (2) 105.86 (16) 133.49 (16) 109.82 (18) 116.67 (18) 119.75 (16)	C7—C6—H6A S1—C6—H6B C7—C6—H6B S1—C6—H6B H6A—C6—H6B C8—C7—C12 C8—C7—C6 C12—C7—C6 C7—C8—C9 C7—C8—H8 C9—C8—H8 C10—C9—C8 C10—C9—H9 C8—C9—H9	109.8 109.8 109.8 108.2 117.73 (19) 121.1 (2) 121.2 (2) 121.6 (2) 119.2 119.2 119.9 (2) 120.1

C2—C3—S1	118.85 (14)	С9—С10—Н10	120.0
N2—C4—N1	129.52 (19)	C11—C10—H10	120.0
N2—C4—H4	115.2	C10-C11-C12	120.1 (2)
N1—C4—H4	115.2	C10-C11-H11	120.0
N4—C5—N3	113.9 (2)	C12—C11—H11	120.0
N4—C5—H5	123.1	C7—C12—C11	120.7 (2)
N3—C5—H5	123.1	C7—C12—H12	119.7
C7—C6—S1	109.51 (15)	C11—C12—H12	119.7
C4—N2—C1—N3	-179.25 (19)	C6—S1—C3—C2	173.43 (16)
C4—N2—C1—C2	-0.2 (3)	C1—N2—C4—N1	1.0 (3)
C5—N3—C1—N2	179.4 (2)	C3—N1—C4—N2	-0.8 (3)
C5—N3—C1—C2	0.2 (2)	C2—N4—C5—N3	0.4 (2)
C5—N4—C2—C3	-178.5 (2)	C1—N3—C5—N4	-0.4 (2)
C5—N4—C2—C1	-0.2 (2)	C3—S1—C6—C7	-165.98 (17)
N2-C1-C2-N4	-179.20 (19)	S1—C6—C7—C8	77.9 (2)
N3—C1—C2—N4	0.0 (2)	S1—C6—C7—C12	-103.9 (2)
N2—C1—C2—C3	-0.6 (3)	C12—C7—C8—C9	-2.2 (4)
N3—C1—C2—C3	178.62 (17)	C6—C7—C8—C9	176.1 (2)
C4—N1—C3—C2	-0.2 (3)	C7—C8—C9—C10	1.6 (4)
C4—N1—C3—S1	179.49 (15)	C8—C9—C10—C11	0.3 (4)
N4—C2—C3—N1	179.0 (2)	C9-C10-C11-C12	-1.4 (4)
C1—C2—C3—N1	0.8 (3)	C8—C7—C12—C11	1.0 (4)
N4—C2—C3—S1	-0.7 (3)	C6—C7—C12—C11	-177.3 (2)
C1—C2—C3—S1	-178.90 (15)	C10-C11-C12-C7	0.8 (4)
C6—S1—C3—N1	-6.23 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N3—H3N···N4 ⁱ	0.894 (19)	1.892 (19)	2.773 (2)	167.9 (18)
Symmetry codes: (i) $-x+2$, $y-1/2$, $-z+1/2$.				

Fig. 1

Fig. 2