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ABSTRACT Campylobacter spp. are commensal organisms in avian species and are
one of the leading causes of bacterial foodborne human diarrheal disease world-
wide. We report the draft genome sequences of Campylobacter volucris, C. lari, and
C. jejuni strains isolated from California gull (Larus californicus) excreta collected from
a California beach.

Campylobacter species are Gram-negative spiral rods, non-spore-forming chemoor-
ganotrophs, and members of the Epsilonproteobacteria class, which grow under

microaerobic conditions (1). Several Campylobacter species are recognized as a leading
cause of bacterial foodborne infection diseases worldwide and are common inhabitants
of the intestine of many wild and domestic avian species (2–4). A previous study
documented the presence of a diverse and abundant population of campylobacters in
the excreta of California gulls (Larus californicus) from California beaches (5). Although
the risk from water impacted by California gulls is low for the community, advances in
genomic analysis of potentially human infectious Campylobacter spp. in gull excreta
may provide additional information for estimating the risks posed by nonsewage fecal
sources (6).

Four strains (CaG_5A, CaG_58BB, CaG_63A, and CaG_70BB) were isolated from gull
excreta collected in the summer of 2012 from Hobie Beach (Oxnard, CA, USA) following
Waldenström et al. (7). The four colonies were transferred to individual Bolton enrich-
ment agar plates (without antibiotics) and incubated at 42°C under microaerophilic
conditions (10% CO2, 5% O2, and 85% N2) for 24 h. All colonies were isolated separately,
and their genomic DNA was extracted from a single colony using the MasterPure DNA
extraction kit (Epicentre, Madison, WI) and purified with the DNA Clean & Concentrator
kit (Zymo Research, Irvine, CA) following the manufacturer’s instructions. Genomic
libraries were prepared using the TruSeq library kit followed by rapid mode sequencing
(2 � 100 bp) on the HiSeq 2000 platform (Illumina, Inc., San Diego, CA).

A total of 39,770,374 reads were generated. Prior to assembly, the libraries were
cleaned of adapters and phiX artifacts, error corrected, normalized (�100�), and
filtered to a minimum length of 80 nucleotides using the software package BBMap
v38.22 (with the following settings: ktrim�r k�23 mink�11 hdist�1 tbo tpe maxns�0
trimq�10 qtrim�r maq�12 minlength�100 ecco�t eccc�t ecct�t target�100) (8). A
reference-assisted de novo assembly approach was used to assemble the processed
reads using Unicycler v0.4.7 (9). Average nucleotide identity (ANI), an index of similarity
between two genomes (10), was calculated using FastANI v1.1 (11). The in silico
multilocus sequence type (MLST) based on seven alleles (aspA, glnA, gltA, glyA, pgm, tkt,
and uncA) was obtained using mlst v2.16.1 (12, 13), genes were assessed for antibiotic
resistance with ResFinder v3.1 (14), and chromosomal point mutations were deter-
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mined with PointFinder v3.1 (15). Default parameters were used for all software unless
otherwise specified. The genome quality and statistics were estimated with BBMap and
annotated with Prokka v1.13.1 (16) (Table 1).

ANI calculations revealed an average genome similarity of 98.38% between strains
CaG_5A and CaG_70BB, which were both distantly related to CaG_58BB and CaG_63A
with 79.00% and 81.36% similarity, respectively. Taxonomic affiliation analysis based on
the ANI between genomes (17) shows that both CaG_5A and CaG_70BB were closely
related to Campylobacter volucris LMG 24379 with 98.16% similarity, CaG_58BB to C. lari
CCUG 22395 with 93.51% similarity, and CaG_63A to C. jejuni subsp. jejuni MTVDSCj20
with 98.10% similarity. Only strain CaG_63A was assigned to a sequence type (ST2654),
which was previously detected in recreational beaches and environmental waters in
France (18). Genome analysis using the Web tool PointFinder (15) confirmed the
absence of known chromosomal point mutations or genes associated with antimicro-
bial resistance except for blaOXA-466 in strain CaG_63A, potentially conferring resistance
to �-lactams.

Data availability. This whole-genome shotgun project has been deposited in
DDBJ/ENA/GenBank under the accession numbers listed in Table 1. The raw sequence
reads have been submitted to the NCBI SRA under the accession numbers SRR8715499,
SRR8715500, SRR8715501, and SRR8715502. The versions described in this paper are
the first versions.
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