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Summary

We describe a general method for finding a confidence region for a parameter vector that is 

compatible with the decisions of a two-stage closed test procedure in an adaptive experiment. The 

closed test procedure is characterized by the fact that rejection or nonrejection of a null hypothesis 

may depend on the decisions for other hypotheses and the compatible confidence region will, in 

general, have a complex, nonrectangular shape. We find the smallest cross-product of 

simultaneous confidence intervals containing the region and provide computational shortcuts for 

calculating the lower bounds on parameters corresponding to the rejected null hypotheses. We 

illustrate the method with an adaptive phase II/III clinical trial.
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1. Introduction

For experiments designed to make inference about a parameter vector θ = (θ1, … , θK), it is 

common to find confidence intervals for all of the individual θk such that the simultaneous 

coverage probability is at least 1 − α. Sometimes, though, an experimenter will only attempt 

to assert that an individual parameter exceeds a specific value, say θk > δk. If this cannot be 

achieved in such a way that the probability of making at least one incorrect rejection in a 

family of hypotheses Hk = {θk ⩽ δk} (k = 1, … , K) is no greater than α, the experimenter 

will not assert anything about θk. The latter method of inference is used in so-called closed 

test procedures (Marcus et al., 1976), and its advantage is often greater power.

For experiments conducted in a single stage, Hayter & Hsu (1994) showed how 

simultaneous 100(1 − α)% confidence intervals can be constructed to be compatible with 
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some commonly used closed test procedures, in the sense that a null hypothesis Hk is 

rejected at familywise level α if and only if the confidence interval for θk excludes all values 

for which Hk is true. Often, these intervals are scarcely more informative than the test 

decisions. For example, for one-sided problems where larger parameter values are more 

beneficial, no 100(1 − α)% lower confidence bound for any individual θk can exceed δk 

unless all hypotheses H1, … , HK can be rejected at familywise level α.

In this article we derive confidence intervals for adaptive experiments. Our motivating 

example is a seamless phase II/III clinical trial, although the method is not limited to this 

setting. Such trials consist of a first stage in which K experimental treatments, indexed by 

T1= {1, … , K}, are compared with a common control and, after an interim analysis, a 

second stage in which only a subset of treatments, indexed by T2 ⊆ T1, are compared with 

the control. The state-of-the-art methodology for this problem (Bauer & Kieser, 1999; Posch 

et al., 2005; Bretz et al., 2009) is a hybrid of the closure principle of Marcus et al. (1976) 

and a p-value combination which goes back to Fisher (1932). This methodology allows any 

subset of treatments to be chosen at interim, based on all trial data and external factors. 

Other adaptations, such as sample size re-estimation, are also possible. A serious concern, 

though, is that there is no established method for constructing confidence intervals. As 

emphasized in the International Conference on Harmonisation’s E9 guideline (ICH E9 

Expert Working Group, 1999, p. 1932), ‘Estimates of treatment effect should be 

accompanied by confidence intervals, whenever possible, and the way in which these will be 

calculated should be identified.’

Posch et al. (2005) proposed 100(1 − α)% simultaneous confidence intervals following such 

a trial. Unfortunately, their intervals are not guaranteed to be compatible with the closed test 

procedure. Here, we construct intervals that are compatible. As in the one-stage case, an 

inevitable shortcoming of these intervals is that they are not always substantially more 

informative than the original test decisions. We will show that this problem is mitigated to 

some extent by the adaptive nature of the experiment.

2. Fundamental Methodology

2·1. Closure principle

The closure principle of Marcus et al. (1976) is a general method for multiple hypothesis 

testing. A formal description is given in Finner & Strassburger (2002), and we adopt similar 

notation here. Let  be a family of probability measures defined on a 

common sample space (Ω, ), where Θ is a multi-dimensional parameter space. Suppose 

that we wish to test a family of null hypotheses , where Hi ⊂ Θ for each i 

in some index set . Let  denote a multiple test of , with each component 

ψi taking value 0 or 1 corresponding to nonrejection or rejection of Hi, respectively. It is 

often desirable to ensure that

(1)
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where  is the index set of true hypotheses under θ*. In other words, 

the probability of rejecting at least one true null hypothesis is bounded by α. This is known 

as strong control of the familywise error rate. The closure principle can be used to ensure 

(1). We are required to find, for each  such that  is nonempty, a local 

level-α test φI for the intersection hypothesis HI; that is, we require

(2)

where φI takes values in {0, 1} with the usual interpretation. If we define 

, then (1) holds. This can be very useful, as in many applications it 

is easy to find tests satisfying (2), whereas validating (1) directly is hard.

2·2. Combination test

Fisher (1932) discussed combining independent p-values to test a single null hypothesis. For 

convenience and brevity, we will only consider two-stage designs. We define a p-value 

combination function Q: [0, 1]2 ↣ [0, 1] that is left-continuous and nondecreasing in both 

its arguments and is uniformly distributed provided that both arguments are themselves 

independent and uniformly distributed. An example is

(3)

where Φ denotes the standard normal distribution function.

Such a combination function lends itself to a two-stage adaptive closed test, ψ, for a family 

of null hypotheses, . An important application, discussed in Bretz et al. (2009), is a 

seamless phase II/III confirmatory clinical trial. We henceforth restrict attention to a 

parameter θ = (θ1, … , θK) taking values in parameter space  and a family of null 

hypotheses  where T1 = {1, … , K} and Hk = {θk ⩽ δk} (k ∈ T1) for some 

constants . The θk (k ∈ T1) might correspond to the mean effects of K 
different treatments, for example. By defining local tests φI (I ⊆ T1) via a combination 

function , it is possible to make data-dependent modifications to the trial design at an 

interim analysis (cf. Bauer & Kieser, 1999; Hommel, 2001; Brannath et al., 2002). For 

instance, attention can be focused on a subset T2 ⊆ T1 of the initial hypotheses of interest; 

changes can be made to sample sizes, allocation ratios, etc.

2·3. Two-stage closed test procedure

Assume that the full first-stage trial data are represented by a random vector  with 

distribution function G(x; θ). Prior to starting the trial, one must specify a combination 

function  and, for each I ⊆ T1, a first-stage test of  Hi with an associated p-value 
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function  that satisfies  for all . 

The second-stage design is unspecified.

At the interim analysis, the experimenter defines a second-stage design, d, by choosing a 

subset of the original hypotheses, indexed by T2 ⊆ T1, to continue studying in the second 

stage, along with second-stage sample sizes and, for each I ⊆ T1, a second-stage hypothesis 

test for HI. See below for a proposal for choosing second-stage tests for HI where I ⊈ T2. 

We assume that the design d is allowed to depend on the unblinded first-stage data x without 

prespecifying an adaptation rule. Let Y denote the data collected at the second stage, taking 

values in , and let  (I ⊆ T1) denote the p-value functions of the second-stage 

tests. Because the tests used in the second stage depend on the first-stage data x and the 

chosen design d, the p-value functions will in general depend on both.

Let Fx,d(y; θ) denote the distribution function of the second-stage data, given the chosen 

design d and interim data x. We assume that for all x, d and I ⊆ T1, the second-stage p-

values  satisfy  for all u ∈ [0, 1]. The distribution 

Fx,d is assumed to be known, i.e., not merely specified up to a null set, for all x and d, a 

condition that can be formalized by assuming an appropriate regression model (Brannath et 

al., 2012). See § 3·2 for a numerical example.

At the final analysis, for each I ⊆ T1, the test decision is φI = 1 if and only if 

. As shown in Brannath et al. (2012), this combination test for HI controls 

the Type I error rate at level α.

We assume that only data for the hypotheses indexed by T2 are collected in the second stage 

and propose setting  for I ⊈ T2, where we drop the indices x and d for simplicity 

and set  by convention. Such second-stage p-values have the required distribution 

under HI∩T2 and hence also under HI.

We emphasize that while Type I error control is guaranteed even if the second-stage design 

is initially open-ended, in the design of actual clinical trials it is crucial to perform detailed 

planning based on likely first-stage outcomes. The added flexibility is necessary because it is 

impossible to foresee all eventualities in extremely complex areas such as clinical drug 

development.

3. Confidence regions

3·1. Partitioning the parameter space

A standard approach to deriving a 100(1 − α)% confidence set for θ is to perform a level-α 

test of each elementary hypothesis {θ = θ*} (θ* ∈ Θ) and include all θ* corresponding to 

nonrejected hypotheses (see, e.g., Lehmann, 1986, p. 90). To ensure compatibility with 

closed testing, the key idea (Stefansson et al., 1988; Hayter & Hsu, 1994; Finner & 

Strassburger, 2002) is to partition the parameter space into disjoint regions
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and apply different tests in each of the disjoint ΘI. If, for each I ⊆ T1, we let {φI (θ*): θ* ∈ 

Θ} denote a family of tests with

(4)

where φI (θ*) takes values in {0, 1} with the usual interpretation, we can apply the following 

general result from Hsu (1996, p. 234).

LEMMA 1. A level-100(1 − α)% confidence set for θ is

(5)

Our aim is to find families of tests such that C is compatible with the two-stage closed test 

procedure. This requires us to augment our specification of  with a 

family of p-values  where, under {θ = θ*}, the distribution of 

and  meet conditions as outlined for  and  in § 2·3. Additionally, if we treat 

the data as fixed and view each family as a function , then unless 

 is constant in all arguments  such that i ∉ I ∩ Tj, and is left-

continuous and nondecreasing in all arguments  such that i ∈ I ∩ Tj, with 

for any θ* such that  for all i ∈ I ∩ Tj. Furthermore, we assume that

(6)

PROPOSITION 1. Inserted into (5), the following families of hypothesis tests give rise to a 
100(1 − α)% confidence set for θ, denoted by C, that is compatible with the two-stage closed 
test procedure, i.e., ψk = 1 if and only if Hk ∩ C = ∅: for ∅ ≠ I ⊆ T1 and θ* ∈ Θ,

(7)

and {φ∅(θ*): θ* ∈ Θ } is any family of tests satisfying (4).

Proof. See the Appendix.
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There will be no unique collection of families of p-values satisfying the aforementioned 

distributional and monotonicity constraints. Rather, the families must be specified in a two-

stage procedure in an analogous way to the p-values in § 2·3. As will become clear from the 

example below, for many commonly encountered scenarios and when I ∩ Tj ≠ ∅, the choice 

of  will be obvious from the choice of . As a simple example, 

suppose that  is the p-value from a one-sided z-test of the null hypothesis {θk ⩽ δk} 

using the stage-j data only. Then the natural choice for  is the one-sided p-value 

from a standard z-test of  using the same stage-j data.

While for I ∩ Tj ≠ ∅ there will often be a natural choice for , it is unclear how 

φ∅(θ*) and  should be chosen. A reasonable suggestion is given below.

COROLLARY 1. Define  for j = 1,2. The following is a 100(1 − α)% 

confidence region for θ that is compatible with the two-stage closed test procedure:

(8)

The properties of a region defined by (8) are best illustrated by a specific example.

3·2. Example

Posch et al. (2005) considered a clinical trial where three active treatments, indexed by T1 = 

{A, B, C}, are compared with a placebo using a two-stage adaptive design. The individual 

null hypotheses of interest are Hk = {θk ⩽ 0} (k ∈ T1), where θk = πk − π0 denotes the 

difference between the success probabilities of treatment k and placebo. Denote the observed 

success rate of treatment k in stage j by , where treatment 0 

corresponds to a placebo.

At the design stage, the inverse normal combination function (3) is specified and n1 = 140 

first-stage patients are recruited to each treatment arm. Approximately, the 

 are multivariate normal with 

 and positive correlations. 

Based on this assumption, Simes (1986) tests are used for each intersection hypothesis; that 

is,  for k ∈ T1 and, for |I|>1, 

, where R(k, I) denotes the rank of  among . 

The natural way of augmenting these p-values is to define 

 for k ∈ T1 and 

MAGIRR et al. Page 6

Biometrika. Author manuscript; available in PMC 2016 March 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 for |I| > 1, where R(k, I, θ*) denotes the rank of 

 among .

Suppose that the unblinded first-stage results are ,  and 

. The experimenter decides that treatments A and C are not to be considered in 

the second stage owing to lack of efficacy and safety concerns, respectively. A further n2 = 

140 patients are recruited to both treatment B and placebo. A family of p-values with 

 is chosen, where .

Now suppose that the second-stage results are  and . The p-values 

from the elementary hypotheses are , ,  and 

. Therefore ,  and . As 

, HB can be rejected at familywise level 0·025. Both 

HA and HC fail to be rejected, as  for k = A,C. A compatible 97·5% 

confidence region for θ is given by

(9)

where  is defined as  for all θ* ∈ Θ.

The region (9) will have a complicated three-dimensional shape. However, in terms of 

making inference on θB, its crucial features can be seen by taking two cross-sections, as 

displayed in Fig. 1. As  is nondecreasing in  for all I ⊆ T1, we know that for any γ 

∈ (-∞, 0), the cross-section at  is contained in the cross-section at . Similarly, for 

any γ ∈ (0, ∞), the cross-section at  is contained in the limit of the cross-section of the 

region as . One can see immediately from Fig. 1 that for any ϵ > 0, the 97·5% 

confidence region fails to exclude all parameter vectors θ* such that . In other words, 

the lower confidence bound on θB provides no more information than the decision of the 

closed test procedure.

For confidence intervals that are compatible with single-stage closed test procedures (Hayter 

& Hsu, 1994; Strassburger & Bretz, 2008; Guilbaud, 2008), a necessary condition for 

obtaining informative lower confidence bounds for parameters corresponding to the rejected 

null hypotheses is that ψk =1 for all k ∈ T1. In the adaptive setting, this is no longer a 

necessary condition. For example, repeating the above test procedure at level α=0·05, the 

compatible 95% confidence region analogous to (9) is also summarized in Fig. 1. Here it 

appears, and indeed can be verified by considering all values of , that there does exist 

some ϵ > 0 such that the confidence region excludes all parameter vectors θ* for which 
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. We will show that for the two-stage adaptive setting, a necessary condition for 

informative lower confidence bounds on parameters corresponding to the rejected null 

hypotheses is that ψk =1 for all k ∈ T2. However, as can be seen from Fig. 1, this condition is 

not sufficient.

3·3. A two-stage, single-step confidence region

Posch et al. (2005) proposed the following 100(1 − α)% confidence region:

(10)

They note that the resulting confidence intervals are not compatible with the closed test 

procedure described in § 2·3 (Posch et al., 2005, p. 3702). Nevertheless, the region (10) can 

be used to generate an alternative multiple test. More generally, any 1 − α confidence set C 
generates a multiple test for a family of hypotheses , whereby  is rejected if and 

only if Hk ∩ C = ∅. This guarantees strong control of the familywise error rate (1). The 

multiple test generated by (10) can be thought of as single-step in the sense that rejection or 

nonrejection of a null hypothesis does not take into account the decision for any other 

hypothesis. If Hk is rejected, informative lower bounds will be available for θk regardless of 

the test decisions for all other hypotheses.

4. Computation of confidence intervals

4·1. Least-favourable parameter configurations

In the above example, marginal inference on θB was achieved by considering least-

favourable parameter configurations for θk, k ∈ T1 \ {B}. This idea can be generalized to 

find 100(1 − α)% simultaneous confidence intervals containing (8) or (10).

DEFINITION 1. For j = 1, 2, k ∈ T1 and I ⊆ Tj, the locally least-favourable jth-stage p-value 

function for Hk in ΘI, , is defined for I ≠ ∅ as , where ξ =(ξ1, 

… , ξK) with ξi =δi for i ≠ k and ξk = ϑ. Additionally, for j = 1, 2,

(11)

PROPOSITION 2. The smallest Cartesian product of intervals, ×k∈T1(lk, ∞), that contains the 
confidence region (8) has lk = minI⊆T1 lk,I, where for k ∈ I,

(12)

and for k ∉ I,
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(13)

Furthermore, these intervals are compatible with the two-stage closed test procedure, i.e., ψk 

= 1 if and only if Hk ∩ ×k∈T1(lk, ∞)=∅.

Proof. See the Appendix.

In general, to find each interval requires one-dimensional root finding for each I ⊆ T1, a 

calculation that is O(2K). However, substantial shortcuts are available for reducing the 

computational burden.

4·2. Efficient computation of confidence bounds

There are two possible scenarios at the end of the closed test procedure: either ψk = 1 for all 

k ∈ T2, or at least one Hk (k ∈ T2) fails to be rejected. In the latter case, there exists some I 
⊆ T1 with I ∩ T2 ≠ ∅ such that for any k ∈ T2,

and therefore lk ⩽ lk,I ⩽ δk. Due to the compatibility of the intervals with the closed test 

procedure, if ψk = 1, then lk = δk; if ψk = 0, then lk < δk.

If ψk =1 for all k ∈ T2, then lk ⩾ δk for all k ∈ T2. Additionally, we can use the fact that for 

all k ∈ T2 and I ⊆ T1 with I ∩ T2 ≠ ∅, we know from (12) and (13) that lk,I = ∞; so, when 

finding lk =minI⊆T1 lk,I in Proposition 2, the minimum can be taken over a much smaller 

number of lk,I. The following algorithm finds the lower bounds for all parameters 

corresponding to the rejected hypotheses.

Step 1. Perform the closed test procedure. If ψk′ = 0 for some k′ ∈ T2, then lk = δk for ψk =1 

and lk < δk for ψk =0. If ψk =1 for all k ∈ T2, go to Step 2.

Step 2. Find . If T1 \ T2 = ∅, then pM =0.

Step 3. For k ∈ T2,

The cost of computing the intervals for θk (k ∈ T2) in Step 3 is linear in the number of 

parameters. Step 1 is O(2|T1|), but a shortcut of O(|T1|2) is given in Brannath & Bretz (2010). 

Step 2 is O(2|T1\T2|), but a shortcut of size |T1 \ T2| is available, provided there exists an 

ordering i1, … , ik of T1 \ T2 such that for each u ∈ {1, … , k},  for all J ⊆ L ⊆ {iu, 

… , ik} with iu ∈ J. This is because we only have to check  for u =1, … , k. Many 

common multiple test procedures, such as those based on Dunnett (1955) tests or weighted 

MAGIRR et al. Page 9

Biometrika. Author manuscript; available in PMC 2016 March 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Bonferroni tests, satisfy this condition, with the ordering i1, … , ik following the ordering of 

the univariate test statistics or the weighted elementary p-values (Brannath & Bretz, 2010).

4·3. Lower bounds for parameters corresponding to retained hypotheses

Consider k ∈ T2 such that ψk = 0. We know that lk < δk, and therefore we need only consider 

lk,I such that k ∈ I. However, since in general lk,I < ∞, finding the minimum such lower 

bound will still have a computational cost that is exponential in the number of parameters.

For k ∈ I ⊆ T1 \ T2, we have  and know from (11) and (6) that this is 

equal to 1. Many commonly used combination functions, including (3), have the property 

that v = 1 implies . In this case, lk = −∞ for all k ∈ T1 \ T2.

4·4. Lower bounds for the two-stage single-step procedure

Posch et al. (2005) showed that the region (10) is contained in a rectangle, , 

where

(14)

The computation of each interval requires only a one-dimensional search for a root, and 

overall computation will be linear in the number of parameters.

4·5. Example continued

Recall from § 3·2 that T2 = {B} and ψB = 1. Proceeding to Step 2 of the above algorithm, pM 

=0·419. In this case we need just one iteration in Step 3, because

and therefore the 97·5% confidence interval for θB is (0, ∞), consistent with Fig. 1. This 

example emphasizes that there is a price to pay for the additional power of the closed test as 

opposed to the single-step procedure of § 3·3 with, by (14),

While this agrees with the assertion θB > 0 in this specific case, it is invalid to claim it as a 

97·5% lower confidence bound if the closed test procedure of § 2·3 had been planned. One 

can see that for any α > 0·036, the 100(1 − α)% confidence interval for treatment B that is 

compatible with the closed test procedure has a positive lower bound. For example, the 95% 

lower confidence bound is lB = 0·0112, consistent with Fig. 1. Again, if the region (10) had 

been specified pre-trial, the 95% lower confidence bound (14) would have been 

.
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5. Confidence bounds for closed tests based on the conditional error rate

Consider again the two-stage closed test procedure of § 2·3. As an alternative to combination 

tests, Koenig et al. (2008) used the conditional error approach (Proschan & Hunsberger, 

1995) to derive local tests φI (I ⊆ T1). The only difference is that instead of prespecifying a 

combination function Q and first-stage p-value , one must prespecify a measurable 

conditional error function  such that

and, at the final analysis, φI =1 if and only if .

To produce a compatible 100(1 − α)% confidence region for θ, each AI (I ⊆ T1) must be 

augmented with a family of conditional error functions {AI(θ*) : θ* ∈ Θ} such that 

 and, for fixed , AI(θ*) is constant in all arguments 

with i ∉ I and is left-continuous and nonincreasing in all arguments  with i ∈ I. 

Furthermore, AI (θ*)= AI for all θ* ∈ Θ such that  for i ∈ I. The second-stage p-values 

 must be augmented with a family  as described in § 3·1.

Müller & Schäfer (2004) propose defining AI = supθ*∈HI Eθ*(ϕI | X), where ϕI is a pre-

planned fixed sample level-α test for HI. In many situations the natural choice for AI(θ*) 

will be obvious from AI. For example, if ϕI is the decision function for a Dunnett (1955) test 

of HI = ⋂k∈I{θk ⩽ δk}, then it is natural to choose AI (θ*) = Eθ*(ϕI,θ* | X) where ϕI,θ* is the 

decision function for a Dunnett test of  which can be derived via a 

corresponding translation of the test statistics.

Using the arguments of Propositions 1 and 2, it can be shown that, analogously to (8), a 

compatible 100(1 − α)% confidence region for θ is

where  and A∅(θ*) are set equal to  and AT1(θ*) respectively. Also, the 

largest compatible 100(1 − α)% confidence lower bounds are lk =minI⊆T1 lk,I, where for k ∈ 

I,

and for k ∉ I,  with Ak,I(ϑ) defined analogously 

to  in Definition 1.
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6. Concluding remarks

The lower confidence bounds (12)–(13) provide more information about the location of θ 

than the decisions of the closed test procedure of § 2·3. The utility of this additional 

information will depend strongly on the context. In practice, the primary concern will often 

be to find lower bounds for the components of θ corresponding to the rejected null 

hypotheses. As this can be achieved using an algorithm that is O(K2), application to large-

scale simultaneous inference problems is, in principle, feasible. However, these lower 

bounds will only be informative if all hypotheses considered in the second stage of testing 

are rejected, and even this may be insufficient. In practice, therefore, the lower bounds (12)–

(13) are only likely to be useful in relatively small-scale problems. Furthermore, in situations 

where informative lower confidence bounds are deemed to be more important than the 

possibility of rejecting as many individual null hypotheses as possible, it would be sensible 

to use the intervals (14) instead of applying the closed test procedure. For large-scale 

simultaneous inference problems, an approach based on controlling the false coverage-

statement rate (Benjamini & Yekutieli, 2005) may be more appropriate than aiming for a 

high simultaneous coverage probability.

Extensions to more than two stages and to allow early rejection of hypotheses are 

straightforward with an appropriate combination function in place of (3). An open question 

is how best to choose φ∅(θ*) and . The tests we use in region (8) are a natural 

choice but may not be the most powerful.
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Appendix

Proof of Proposition 1. With the assumptions in § 3·1, all tests of the form (7) satisfy 

condition (4), and therefore C is a 100(1 − α)% confidence set for θ. By the monotonicity 

conditions imposed on the p-values, we have  for all θ* ∈ ΘI (j = 1,2; I ≠ ∅; 

I ⊆ T1), so that ΘI ∩ C = ∅ if and only if . Therefore, ψ =1 if and only if 

minI⊆T1,k∈I  if and only if ⋃I⊆T1,k∈I ΘI ∩ C = ∅. Since ⋃I⊆T1,k∈I ΘI = 

Hk, we have compatibility.

Proof of Proposition 2. First, note the key property that  for all θ* ∈ ΘI 

with .

To show that C1⊆×k∈T1 (lk, ∞), consider any θ* ∈ Θ \ ×k∈T1 (lk, ∞). We must have θ* ⊆ ΘI 

for some I ⊆ T1 and  for some k ∈ T1. If k ∈ I, then , and (12) implies 
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that . The same inequality follows 

from  and (13) if k ∉ I. Therefore, θ* ∉ C1 and C1 ⊆ ×k∈T1 (lk, ∞).

To show that no smaller interval (lk + ϵ, ∞) is possible for any ϵ > 0, we must find some θ* 

∈ C1 with . Consider a subset I ⊆ T1 such that lk = lk,I and therefore 

 for all ϑ > lk. If k ∈ I or, equivalently, lk < δk, take any 

. If k ∉ I or, equivalently, lk ⩾ δk, take any . Now 

consider a parameter vector , where ,  for k ≠ i ∈ I, and 

 for i ∉ I ∪ {k}. All such parameter vectors ξI,k are contained in ΘI, and

Thus there exists some such ξI,k ∈ C1 and hence C1 is not contained in this smaller product 

of intervals.

Finally, Hk ∩×k∈T1 (lk, ∞) = ∅ if and only if lk,I ⩾ δk for I ⊆ T1. if and only if , 

 for I ⊆ T1 and k ∈ I, if and only if ψk = 1.
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Fig. 1. 
Cross-sections of confidence regions of the form (9) for making inference on the second-

stage parameter of interest, θB, in the example of § 3·2: (a) two cross-sections of the 97·5% 

confidence region; (b) two cross-sections of the 95% confidence region.
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