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Over the past decade, there has been growing interest in the Notch signalling pathway within the breast cancer field. This interest
stemmed initially from the observation thatNotch signalling is aberrantly activated in breast cancer and its effects on various cellular
processes including proliferation, apoptosis, and cancer stem cell activity. However more recently, elevated Notch signalling has
been correlated with therapy resistance in oestrogen receptor-positive breast cancer. As a result, inhibiting Notch signalling with
therapeutic agents is being explored as a promising treatment option for breast cancer patients.

1. The Notch Signalling Pathway

TheNotch signalling pathway is evolutionarily conserved and
is found in organisms as diverse as hydra and humans. In
mammals, there are four Notch receptors (Notch1 to Notch4)
and five DSL ligands (Jagged1, Jagged2, Delta-like1 (Dll1),
Dll3, and Dll4) [1]. As the DSL ligands are transmembrane
proteins, Notch signalling is initiated by the interaction of
DSL ligands and Notch receptors on adjacent cells. Their
interaction leads to a proteolytic cleavage of the Notch
protein at the S2 cleavage site mediated by ADAM10 and
ADAM17. Following this cleavage, the remaining part of
the Notch protein undergoes another proteolytic cleavage
mediated by the 𝛾-secretase enzyme complex. The latter
cleavage releases the Notch intracellular domain (NICD),
which translocates to the nucleus. Within the nucleus, NICD
forms a complex with the DNA binding protein RBPj
and a member of the Mastermind-like (MAML) family
transcriptional coactivators (Figure 1). This complex of pro-
teins then activates the transcription of Notch target genes,
including members of Hes and Hey family of transcription.
Other target genes include several genes that are directly
associated with tumourigenesis such as cyclinD1 and Slug
[2, 3]. Notch signalling activity is also regulated through
posttranslational modification. For example, Notch receptors

are glycosylated through the sequential action of peptide-
O-fucosyltransferase (POFUT1) [4] and the Fringe GlcNAc
transferases [5]; this modification alters the affinity of Notch
for Delta and Serrate/Jagged ligands. Notch proteins are also
subject to phosphorylation by glycogen synthase kinase 3𝛽
(GSK3𝛽) [6] and ubiquitination by the E3 ubiquitin ligase
FBXW7 [7]. These latter modifications alter the stability of
NICD and thereby control the duration of signalling.

2. Notch Signalling Is Aberrantly
Activated in Breast Cancer

Breast cancer is one of the leading causes of death seen in
the world despite the fact that there are ongoing efforts to
improve detection and treatment. Breast cancer is a hetero-
geneous disease and currently is split into three subtypes
clinically based on immunohistochemical analysis: ER𝛼 +ve
(oestrogen receptor 𝛼-positive), HER2 +ve (human epider-
mal growth factor receptor 2-positive), and triple negative
(cancers that lack expression of ER𝛼, progesterone receptor
(PR), and HER2). Currently, targeted therapies are available
for ER𝛼 and Her2 +ve tumours. In addition to traditional
subtype analysis, breast cancer can also be subtyped based
on gene expression profiles. Perou and colleagues reported
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Figure 1: Basics of Notch signalling pathway. Notch signalling activation occurs via an interaction between DSL ligand and Notch receptor
on adjacent cells.This interaction leads to force being applied to the extracellular domain of Notch, as DSL ligand undergoes endocytosis into
the signalling cell, leading to a conformational change within the negative regulatory region (NRR). This conformational change exposes a
cleavage site (S2) for the ADAM10 and ADAM17 proteases.The extracellularly truncated Notch protein then undergoes cleavage at site 3 (S3),
mediated by 𝛾-secretase, which releases the Notch intracellular domain (NICD). Finally, NICD translocates into the nucleus and interacts
with the DNA binding protein RBPj and the transcriptional coactivators MAML and p300 to initiate transcription of downstream targets
including the Hes and Hey family of genes.

the presence of luminal-like, normal-like, basal-like, and
Her2-enriched subtypes [8]. They also split the luminal-like
subtype into luminal A and luminal B subtypes. Although
not perfectly aligned, the luminal-like, Her2-enriched, and
basal-like subtypes correlate with ER𝛼 +ve, HER2 +ve, and
triple negative breast cancer subtypes identified by immuno-
histochemistry. More recently a sixth molecular subtype has
been recognised, the claudin-low subtype [9]. Alternative
molecular subtypes that link to copy number aberration data
have also been proposed [10].

Over the past decade, aberrant activation of Notch sig-
nalling in breast cancer has been reported by many different
groups. In invasive breast cancer, the elevated expression of
Notch signalling pathway components has been reported,
including Jagged1-2, Dll1, Dll3, and Dll4, Notch receptors,
and Hes and Hey target genes [11]. For example, elevated
expression of Jagged1 and Notch1 has been linked to poor
prognosis in breast cancer patients [12–14]. Likewise, Numb,
a negative regulator of Notch signalling, has been found to
be lost in 50% of breast cancer through ubiquitination and
proteasomal degradation [15].The accumulation ofNICDhas
also been reported [16].

There are various examples of elevated Notch signalling
being associated with a particular subtype of breast cancer
and response to targeted therapy. For example, Notch sig-
nalling has been shown to be activated in ER𝛼 +ve breast
cancer in response to treatment [17, 18]. Elevated Notch1
expression is also found in HER2 +ve [19] and triple nega-
tive/basal breast tumours [13]. In contrast, elevated Notch2 is
associated with highly differentiated and poorly proliferative

breast cancers [20]. In fact, Notch signalling activation has
even been observed in preinvasive breast lesions, including
usual ductal hyperplasia (UDH) and ductal carcinoma in situ
(DCIS) [11, 19, 21]. Lastly, a very recent study has identified
a series of activating mutations within the PEST domain
of Notch1, Notch2, and Notch3 [22]. These mutations were
enriched in triple negative breast cancers.

The tumour promoting activity of Notch is evident
from transgenic mouse model studies. For example, Notch4
intracellular domain when expressed under the control of
the whey acidic promoter (WAP) or Notch1, Notch3, or
Notch4 intracellular domains under the control of the mouse
mammary tumour virus (MMTV) promoter all cause tumour
formation in mice [23–26]. Also, conditional deletion of
Lunatic Fringe in the mammary gland leads to elevated
Jagged1-induced Notch signalling and formation of basal-like
mammary tumours [27].

3. Notch Signalling Regulates Many Cellular
Properties of Breast Cancer

Notch signalling is known to regulate many cellular pro-
cesses including proliferation [17, 28], apoptosis [16, 29],
angiogenesis [30, 31], hypoxia [32], cancer stem cell activity
[21, 33, 34], epithelial-to-mesenchymal transition (EMT) [3],
and metastasis [35]. Notch signalling promotes proliferation
in breast cancer cell lines by upregulating cyclinA, cyclinB, and
cyclinD1 expression [2, 17, 36]. Notch protects breast epithelial
cells from apoptosis by activating Akt [16, 29, 37]. It is
thought that activation of Akt by Notch in this context occurs
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through downregulation of PTEN expression or secretion of
an autocrine signalling protein [29, 36]. Jagged1, expressed
in tumour cells, has been shown to activate Notch signalling
in neighbouring endothelial cells to promote angiogenesis
[30]. Notch signalling can also regulate angiogenesis by
limiting the number of tip cells formed and by promoting
the arterial cell fate [31]. Notch signalling also regulates the
self-renewal of breast cancer stem cells [21, 34]. In this role,
Notch4 appears to be particularly important, as knockdown
of Notch4 has amuchmore significant effect on breast cancer
stem cell numbers than Notch1 knockdown [34]. Notch
activity induces EMT by means of RBPj binding to promoter
sequences upstreamof the Slug gene [3]. Lastly, Notch activity
has been shown to induce metastasis of breast cancer cells
to the bone [35]. In this elegant study, the breast cancer cell
line MDA-MB-231 was forced to express the Notch ligand
Jagged1, and this was found to significantly increase bone
metastasis [35]. Altogether, it is very clear that activation of
Notch plays a key role in breast cancer.Therefore it represents
a very attractive therapeutic target.

4. Endocrine Therapy and Targeting
Notch in Breast Cancer

Current breast cancer treatments include general chemother-
apeutic drugs such as epirubicin, doxorubicin, paclitaxel, and
docetaxel, each aiming at blocking the proliferation of breast
cancer cells. On the other hand, targeted therapies aim to
disrupt the function of a protein or pathway known to drive
tumour growth. Three out of four breast cancers express the
oestrogen receptor (ER) alpha, and most of these depend
on oestrogen for growth [38]. Consequently, targeting the
function of ER is one of the most effective approaches to treat
breast cancer [39]. Therapies against ER𝛼 +ve breast cancer
include antioestrogens and aromatase inhibitors (AIs) [40].
Tamoxifen, which antagonises the action of ER by competing
for the ligand-binding domain of the receptor, is the prevalent
endocrine therapy of choice [41]. Other antioestrogens, such
as pure antioestrogens or AIs, are considered to be a good
choice when tamoxifen treatment fails [42]. AIs are also used
in postmenopausal women without ovarian function and act
by blocking the synthesis of oestrogen from androgens in the
peripheral tissues [43]. Pure antioestrogens, like fulvestrant,
block dimerization of the receptor and lead to ubiquitination
and proteasome-mediated degradation of the receptor [44].

Unfortunately, ER-positive tumours frequently develop
resistance to endocrine treatments and relapse. Although
downregulation of ER expression can contribute to endocrine
resistance, loss of the receptor during the acquisition of
resistance is not commonly observed. Several recent studies
have suggested that ER mutations, such as a tyrosine to
asparagine substitution at residue 537 (Y537N), may occur
during endocrine treatment [45, 46]. These mutations acti-
vate ER and as a consequence lead to a loss of endocrine ther-
apy responsiveness. The overexpression of different growth
factor receptors and the activation of their downstream
signalling pathways are also involved in the acquisition of
endocrine resistance. Tumours resistant to tamoxifen are
often associated with high expression and enhanced activity

of tyrosine kinase receptors EGFR and HER2 [47]. These
receptors activate kinases, such as ERK1/2, PI3K, and AKT,
which promote phosphorylation and ligand independent
activation of ER [38].

Over the past few years, there is accumulating evidence
to suggest that cells with stem cell properties are the main
driving force of tumourigenesis. Al-Hajj and colleagues were
the first to show that a subpopulation of breast cancer cells,
defined by a CD44+/ESA+/CD24lo cell surface phenotype,
was capable of recapitulating the original tumour phenotype
when transplanted into nonobese diabetic/severe combined
immunodeficient (NOD/SCID)mice [48]. Since then, several
groups have shown that breast tumours behave like an
aberrant version of normal tissue and organise themselves
into a cellular hierarchy with a cancer stem-like cell (CSC)
at its apex. Indeed, expression of aldehyde dehydrogenase
(ALDH), a stem/progenitor cell marker, has also been used to
enrich for tumour-initiating CSCs [49]. The concept of CSCs
has significant clinical implications, because these cells are
believed to be responsible for tumour initiation and growth
and are often resistant to chemo- and radiotherapy. In breast
cancer, CD44+/ESA+/CD24lo cells are relatively insensitive
to conventional chemotherapy and to radiation [50, 51].

Regarding endocrine therapy, there is accumulating evi-
dence to suggest that an increase in breast CSCs occurs
following endocrine therapy for ER𝛼 +ve tumours [52].
For example, Creighton and colleagues saw enrichment of
cells with breast CSC features in tumour tissue derived
from patients following therapy with an aromatase inhibitor
(letrozole) [53]. Four other studies showed enrichment for
CSC populations in ER𝛼 +ve breast cancer cell lines after
tamoxifen treatment or oestrogen deprivation [18, 54–56].
The potential involvement of CSCs in breast cancer makes it
imperative to further characterize these cells in order to find
cellular signalling pathways that can be targeted to eradicate
breast CSCs and, therefore, provide long-term disease-free
survival.

One strong candidate pathway in this regard is the Notch
pathway [21]. Pharmacologic and genetic inhibition of the
Notch signalling can reduce breast CSC activity in vitro and
tumour formation in vivo. Notch4 plays a particular key role
in controlling breast CSCs [34]. In addition, it has also been
reported that overexpression of specific Notch receptors is
associated with treatment resistance in human breast cancer
[57]. Likewise, it was shown that the use of antioestrogens
can activate Notch signalling in breast cancer cells [17]. More
recently Notch pathway was found to be hyperactivated in
endocrine resistant breast cancer cells, and its inhibition
blocked growth of these cells [58, 59]. Moreover, we recently
demonstrated that increased JAG1-NOTCH4 signalling in
human breast tumours is an important driver of cancer stem
cells [56].

Besides Notch signalling, other CSC pathways are aber-
rantly activated in endocrine resistant cells. For example,Wnt
and Hedgehog signalling pathways are active in CSCs and
this has already been shown to promote tamoxifen resistance
[55, 60]. Together these results suggest that inhibiting CSC
signalling pathways will help to overcome endocrine therapy
resistance and recurrence in ER𝛼 +ve breast cancer.
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5. Conclusion

It is widely recognized that increased Notch signalling is one
of the main drivers of cellular malignancies in breast cancer.
Moreover, Notch pathway activation is commonly seen in
response to targeted therapies. Therefore, combining current
treatment options with a blockade of Notch signalling might
be a feasible approach to consider. With this being said,
individual Notch receptors are likely to regulate mammary
epithelial and breast cancer cells in unique ways; hence it
is vital to delineate the functional role for individual Notch
receptors in mediating resistance to therapy in breast cancer.
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