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Network integration of multi-tumour omics data
suggests novel targeting strategies
Ítalo Faria do Valle1,2, Giulia Menichetti3, Giorgia Simonetti 4, Samantha Bruno4, Isabella Zironi 1,

Danielle Fernandes Durso4,5, José C.M. Mombach 6, Giovanni Martinelli4,7, Gastone Castellani1 &

Daniel Remondini 1

We characterize different tumour types in search for multi-tumour drug targets, in particular

aiming for drug repurposing and novel drug combinations. Starting from 11 tumour types from

The Cancer Genome Atlas, we obtain three clusters based on transcriptomic correlation

profiles. A network-based analysis, integrating gene expression profiles and protein inter-

actions of cancer-related genes, allows us to define three cluster-specific signatures, with

genes belonging to NF-κB signaling, chromosomal instability, ubiquitin-proteasome system,

DNA metabolism, and apoptosis biological processes. These signatures have been char-

acterized by different approaches based on mutational, pharmacological and clinical evi-

dences, demonstrating the validity of our selection. Moreover, we define new

pharmacological strategies validated by in vitro experiments that show inhibition of cell

growth in two tumour cell lines, with significant synergistic effect. Our study thus provides a

list of genes and pathways that could possibly be used, singularly or in combination, for the

design of novel treatment strategies.
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H igh-throughput molecular profiling has changed the
approach to study cancer. For decades, anatomical loca-
lization and histological features have guided the identi-

fication of cancer subtypes, but the genomic profiling of tumour
samples has revealed differences and similarities that go beyond
the histopathological classification. The diversity in genomic
alteration patterns often stratifies tumours from the same organ
or tissue, while tumours in different tissues may present similar
patterns1–3. For example, mutational profiling of regulatory
proteins shows tissue specificity, while histone modifiers can be
mutated similarly across several cancer types4. Hoadley et al.2

suggests that lung squamous, head and neck, and a subset of
bladder cancers form a unique cancer category typified by specific
alterations, while copy number, protein expression, somatic
mutations and activated pathways divide bladder cancer into
different subtypes. The analysis of cancer transcriptomes revealed
that the same tumour may originate from several cell types, and
different biological processes may lead to malignant transfor-
mation4. Moreover, similar pathways may be activated in differ-
ent cancers, like ovarian, endometrial and basal-like breast
carcinomas5,6. Notwithstanding the enormous increase of
knowledge on tumour processes, a practical application of this
knowledge to new treatment strategies has not advanced with the
same pace. For example, common genetic alterations can predict
similar responses to pharmacological therapies across multiple
cancer cell lines7–9, thus common molecular and functional
profiles could enable the repurposing of therapies from one
cancer to another.

Several methods have been proposed and applied for the
analysis of omics data in cancer10. Generally, they refer to: (a)
reconstruction of regulatory networks from expression data;11 (b)
identification of network modules by clustering or network dif-
fusion techniques (usually starting from an a priori selection of
seed genes as somatic mutations and differentially expressed
genes);12–15 and (c) evaluation of cancer alterations at the
pathway-level comparing many samples16,17. However, the search
for new drug targeting and repurposing strategies requires dif-
ferent network approaches able to evaluate a broad list of genes
and identify their individual impact in the underlying regulatory
networks of several tumour types at the same time.

For this aim, we propose a study of gene networks based on
expression profiling and interactome topology, in combination
with cancer-specific functional annotation.

Starting from whole-genome transcriptional profiling extracted
from The Cancer Genome Atlas (TCGA) data portal, we selected
a curated subset of 760 cancer-related genes described both in the
Ontocancro database18, and in the BioPlex protein–protein
interaction—PPI-network19,20. We defined three tumour clusters
starting from the gene–gene correlation matrices of each tumour
(see Methods). Then we performed a topological analysis of the
corresponding networks based on node centrality, obtaining
specific signatures for multi-tumour drug targeting and survival
prognosis. The validation of our signatures through literature
interrogation, clinical information and by in vitro testing, makes
us confident that this study can help both clinical and research
communities, providing novel targets for multi-drug approaches
and for repurposing of existing drugs.

Results
Identification of multi-tumour gene signatures. We analyzed
transcriptomics data of 2378 samples from 11 tumour types (Sup-
plementary Table 1) considering 760 cancer-related genes with both
oncogenic and PPI annotation (Bioplex-Ontocancro network, see
Methods). The tumour datasets were clustered in three groups based
on their gene–gene correlation matrices (see Methods) containing,

respectively, 2, 6 and 3 cancer types: (1) Colon adenocarcinoma
(COAD) and Rectum Adenocarcinoma (READ); (2) Lung Adeno-
carcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC),
Glioblastoma Multiforme (GBM), Ovarian Serous Cystadenocarci-
noma (OV), Breast Invasive Carcinoma (BRCA), and Uterine
Corpus Endometrial Carcinoma (UCEC); and (3) Brain Lower
Grade Glioma (LGG), Kidney Renal Clear Cell Carcinoma (KIRC),
and Kidney Renal Papillary Cell Carcinoma (KIRP) (Fig. 1). We
superimposed the gene–gene correlation matrices (calculated with
the samples of all tumours inside each cluster) onto the BioPlex-
Ontocancro network: a network of genes resulting from the inter-
section of the BioPlex network (containing physical protein–protein
interactions measured via mass spectrometry) with the Ontocancro
database (with annotations for cancer-related genes and pathways,
see Methods). We obtained three weighted networks, each with
approximately 80% nodes and 60% edges of the original BioPlex-
Ontocancro network (Supplementary Note 1, Supplementary
Table 2, Supplementary Figures 1–4).

We hypothesized that the most central genes in each network
should play a fundamental role in the tumours represented in the
cluster, in accordance to similar approaches proposed in previous
works21,22.

We used Spectral Centrality (SC)23 as centrality measure,
which is related to the changes in network global diffusivity by
node perturbation through a Laplacian formalism. We applied SC
in the largest connected components and considered as cluster-
specific signatures the nodes with SC above the 90th percentile
(25, 27 and 24 genes for clusters 1, 2, 3 respectively, Table 1 and
Supplementary Data 6). As the BioPlex-Ontocancro network was
differentially filtered by each cluster-specific correlation matrix,
we compared the resulting signatures with the most central genes
in the network prior to the filtering by any correlation matrix, and
observed small overlaps between them (3/25, 13/27 and 4/24
common genes for clusters 1, 2, 3, respectively) showing how the
added information of gene expression profiling correlation
contributes in the creation of networks that are highly specific
for the tumours in each cluster (Supplementary Table 12). The
top-ranking nodes also differ significantly from those obtained
from other centrality measures such as degree and betweenness
centrality (see Supplementary Table 3) and even if some signature
genes overlap between clusters, their links are different (Fig. 2,
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Fig. 1 Tumour clustering. Tumour dendrogram according to the hierarchical
clustering of 760-gene z-scores filtered by CLR algorithm. Brain, lung,
intestine, uterus, and kidneys icons made by Kirill Kazacheck (https://
www.flaticon.com/authors/kirill-kazachek) and breast icon made by
Freepik (https://www.flaticon.com/authors/freepik)
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Supplementary Figures 5–6, Supplementary Note 3, Supplemen-
tary Figure 9), evidencing specific interaction patterns. We
observed an overlap (>50%) of our signatures with signatures
obtained with the same procedure when protein–protein inter-
actions from different experiments24,25 (i.e., yeast-two hybrid)
were added to the BioPlex-Ontocancro network, supporting the
robustness and biological relevance of the observed signatures
(Supplementary Note 4, Supplementary Tables 4–5).

The signatures contain genes related to three biological categories:
NF-κB signaling, ubiquitin-proteasome system and chromosomal
instability, the last category referring to genes involved in
kinetochore formation, microtubule dynamics and chromosome
segregation functions (Table 2 and Supplementary Data 2 for the list
of Gene Ontology enriched terms). The signatures have at least one
substrate recognition component of E3 ubiquitin ligase complexes:
BTRC in clusters 1 and 2; and FBXW11 in cluster 3. Cluster 1 has
genes involved in spindle checkpoint (BUB1, CDC20). The cluster
2 signature has many genes related to DNA repair (CETN2, FANCB,
H2AFX, ERCC1, ERCC4, PARP1, XPA) and DNA replication
(RPA2, MCM10). Moreover, it has three important genes in the
signaling path that activates the STAT3 transcription factor: SRC,
NFKB1 and IL6R. Indeed, the STAT3 gene expression levels are
significantly higher in cluster 2 (one-way ANOVA p-value: 5.58 ×
10–15) both in comparison with cluster 1 and cluster 3 (one-way
ANOVA Student’s t test p-values 1.08 × 10−9 and 1.14 × 10−8,
Supplementary Figure 10). The cluster 3 signature contains genes
involved in three different apoptotic mechanisms: induced by TNF-α
(TNFRSF1A and BAG4), induced by endoplasmatic reticulum stress
(CAPN1 and CAPN2) and caspase-independent apoptosis
(ENDOG).

Table 1 Signature genes. List of signature genes for the
three tumour clusters

Cluster 1 Cluster 2 Cluster 3

Spectral centrality > 90th
percentile

ALOX5
BTRC
BUB1
CDC20
CENPC1
CHUK
CUL1
MIS12
MLF1IP
NDC80
NFKB1
NFKB2
NFKBIA
PMF1
PPP2CB
PPP2R5D
PSMB9
PSMC2
PSMF1
RAD21
REL
RELB
RPS27
SRC
STAG1

BTRC
CENPC1
CETN2
DSN1
ERCC1
ERCC4
FANCB
FYN
H2AFX
IL6R
MCM10
MIS12
MLF1IP
NEDD1
NFKB1
NFKBIA
NUP43
PARP1
PLK1
PSMB3
PSMC3
RPA2
SRC
TNFRSF10B
TUBGCP5
TUBGCP6
XPA

AKT2
ALOX5
BAG4
CAPN1
CAPN2
CDC16
CDC27
CDT1
ENDOG
FBXW11
FNTA
GMNN
KIF2B
KIF2C
LSP1
NEDD1
PRKACG
PSMC3
PSMD9
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TNFRSF1A
TUBGCP5
UBB
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Fig. 2 Network context of cluster 2 signature genes. Network composed by the first neighbours of cluster 2 signature genes in the BioPlex-Ontocanco
network. Node sizes are proportional to their degree in the network and edge thickness is proportional to the normalized (CLR) co-expression between
genes
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Then, we searched for possible relationships between the
signature genes and genes commonly mutated across patients
(Supplementary Note 4, Supplementary Tables 4–5). We
observed that some signature genes also present somatic
mutations (REL and RAD21 in cluster 1, ERCC4 and XPA in
cluster 2, and AKT2 in cluster 3) or that mutated genes are direct
neighbours of the signature genes in the network (Fig. 2,
Supplementary Figures 2–6). A permutation test over the
signature labels reveals a significant proximity of signature genes
to mutated genes for cluster 1 and cluster 2 (random permutation
test p-value= 8.76 × 10−4 and p-value= 6.9 × 10−3 respectively,
Supplementary Figure 11). For the particular case of cluster 3,
only one mutated gene is present in the signature neighbourhood
and it is successfully selected as a signature gene (Fig. 2). These
outcomes highlight the strict relationship between signature genes
and key processes in tumour development (in analogy with the
network-based approach of Novarino et al.26).

Since the signature genes are the most central nodes in the
three tumour cluster networks, we hypothesized that they might
be suitable drug targets. For this purpose, we collected the drugs
that target genes in the signatures (Supplementary Data 4) and we
evaluated in the ClinicalTrials repository if these drugs were
under ongoing clinical trials for cancer treatment. We observed
that 11 genes from the cluster signatures are being tested: four
and three genes, from cluster 1 and 2, respectively; three genes
from both cluster 1 and 2; and one gene from both cluster 1 and 3
(Table 3, Supplementary Data 5). Interestingly, by considering all
drugs that target genes in the BioPlex-Ontocancro network, we
observed a significant overrepresentation of drugs that target
genes in cluster 2 gene signature (Supplementary Note 8,
Supplementary Table 9).

Gene signatures differentiate survival outcome. We then asked
whether the expression levels of the signature genes could predict
patient survival in each cluster, independently of the tumour type.
For cluster 1 and 3, survival information was available only for 17
and 32 patients, respectively, which resulted in non-significantly
different survival curves, possibly due to the low power of the test
(Supplementary Note 9, Supplementary Figures 14–15). For
cluster 2, we retrieved the clinical information for 1884 patients:
the survival curves showed that the 27-gene signature sig-
nificantly separated the patients in two groups according to good
or bad survival outcome (Log-rank test p-value= 7.26 × 10−18,
Fig. 3a). We tested the significance of this separation against
randomly generated signatures of the same size. Since one of the
main factors affecting signature performance was the imbalance
of samples from the same tumour in the two groups, we intro-
duced a measure of sample imbalance to be considered together
with the p-value (see Supplementary Figure 16). Our results show
that our gene signature is quite balanced, and that it outperforms
random signatures with similar extent of sample imbalance
(Supplementary Figure 16). Although confounding factors may
affect the performance, a multivariate analysis that considered
patient age and tumour type as covariates, confirmed that the

separation of samples due to the gene signature played the major
role in the observed difference of survival outcomes (Supple-
mentary Data 1). When we further stratified the analysis at a
single tumour level (considering its stage or grade when available)
the separation resulted significant only for a set of tumours, with
differences possibly due also to the different number of samples
in each stage or grade considered (see Supplementary Data 1).

Experimental validation of cluster 2 signature. We tried to
translate our results into novel therapeutic strategies by applying,
for a subset of tumours in cluster 2 (which contained the largest
and most heterogeneous set of tumours), a set of drugs on targets
taken from the signature or from related biological categories. We
selected three drugs: BI6727, for targeting the cluster 2 signature
gene PLK1; Bortezomib, for targeting proteasome and NF-κB
pathway; and the PF-00477736 drug, to target the CHK1/2 genes,
which play a role in DNA damage response but are not in the
signature. The choice was based on signature gene list (considered
as equally relevant, since many factors could affect exact SC node
ranking), drug availability and required experimental settings, in
order to avoid potential culture biases (e.g. the need of adding
specific compounds to the medium or co-culturing with other
cells to test some drugs). We tested these drugs, alone or
in combination, on T98G glioblastoma cell line (modelling a
clinically very aggressive tumour) and MCF-7 breast adeno-
carcinoma cell line (modelling a very common tumour type, see
Methods for details on the experiments). Both cell lines resulted
highly sensitive to Bortezomib, with an IC50 of 200 nM for MCF-
7 and 0.6 nM for T98G (Fig. 4). BI6727 treatment reduced via-
bility in a concentration-dependent manner in both models, with
the glioblastoma model showing increased responsiveness (IC50
of 69.2 nM versus 1.8 μM for MCF-7). Moreover, both cell lines
showed low response to PF-00477736, with IC50 of 26.9 μM for
MCF-7 and 15.1 μM for T98G. We then asked whether these

Table 2 Common biological categories in gene signatures

NF-κB signaling Chromosomal instability Ubiquitin-proteasome system

Cluster 1 BTRC, CUL1, SRC, NFKBIA, NFKB1, NFKB2, REL,
RELB, CHUK

CDC20, BUB1, MLFPIP, CENPC1, MIS12, PMF1, NDC80,
RAD21, STAG1

BTRC, CUL1, PSMB9, PSMC2,
PSMF1

Cluster 2 BTRC, SRC, NFKBIA, TNFRS10B, IL6R MIS12, DSN1, MLFPIP, CENPC1, PLK1, NEDD1, TUBGCP5,
TUBGCP6

BTRC, PSMB3, PSMC3

Cluster 3 FBXW11, AKT2, TNFR1A CDC16, CDC27, NEDD1, TUBGCP5, KIF2B, KIF2C FBXW11, PSMC3, PSMD9

All signatures have genes that can be grouped into the following categories: NF-κB signaling, chromosomal instability and ubiquitin-proteasome system

Table 3 Clinical trials

Inhibition target Number of clinical
trials

Cluster signature

ALOX5 18 1, 3
CHUK 9 1
FYN 97 2
IL6R 2 2
NFKB1 40 1, 2
NKFB2 8 1
NKFBIA 8 1, 2
PARP1 106 2
PPP2CB 5 1
PSMB9 25 1
SRC 135 1, 2

List of signature genes that are also being tested in ongoing clinical trials (according to AACT
database)
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drugs might synergize in the selected models. Although the
combinations of PF-00477736 with either BI6727 or Bortezomib
did not show any additive or synergistic effect in both cell lines,
we observed a cooperation effect between BI6727 and Bortezomib
(Fig. 5a, b). Indeed, we observed that cell viability was sig-
nificantly lower compared with single agent treatments in MCF-7
cells (Fig. 5a, two-sided Student’s t test p-value < 0.05), showing a
general additive effect (Supplementary Data 7). We observed low
Combination Index values (<1) for both cell lines, indicating
synergistic effect for all concentrations tested in MCF-7, and for
selected concentrations in TG98 (Fig. 5, Supplementary Data 7).

Moreover, we integrated our experimental validation results
with a wider set of experimental outcomes available from the
Genomics of Drug Sensitivity in Cancer (GDSC) project27, which
reports the drug screening experiments for 224,510 drug-cell line
pairs (265 drugs, 1074 cell lines) (Supplementary Note 10). We
observed that the IC50 values obtained in our experimental
validation are lower that the majority of those reported in the
GDSC project, being in the 1st, 6th, 10th, and 24th percentiles of
the IC50 distribution for all drug-cell lines pairs (Supplementary
Figure 17) and in the 1st, 9th, 7th, and 22nd percentiles of the
IC50 distribution of all drugs specifically tested on MCF-7 and
T98G cell lines (Supplementary Figure 18).

Cell line sensitivity to drugs targeting signature genes. We also
asked whether signature genes in each cluster could predict a
better response of cell lines to the related drugs when compared
with all drugs tested in GDSC. We identified 56, 218, and 49 cell
lines associated to the tumour types grouped in cluster 1, 2, and
3, respectively (according to TCGA classification, Supplemen-
tary Data 8). We identified 7, 15, and 7 drugs targeting genes
belonging to signature 1, 2, and 3, respectively. We observed
that most of the cell lines in each cluster (51/53, 103/218, and
47/49, respectively) were more sensitive to drugs targeting sig-
nature genes as compared with all other drugs (according to
IC50 values, Supplementary Figures 19–21). Specifically, we
found that 4, 18, and 10 cell lines in clusters 1, 2, and 3,
respectively, showed significant differences (two-sided Student’s
t test p-value < 0.05, Fig. 6), all of them displaying lower IC50
value when treated with drugs targeting signature genes.
Remarkably, no significant differences with the opposite trend
(higher IC50 values) were found. The trend remained unaltered
when the IC50 values were compared between drugs targeting
signature genes versus drugs targeting non-signature genes that
belonged to the BioPlex-Ontocancro network: 50/53, 63/218,
and 40/49 cell lines presented lower IC50 values and for 2, 6,
and 4 cell lines in clusters 1, 2, and 3, respectively, the difference
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was statistically significant (two-sided Student’s t test p-value <
0.05, Supplementary Figure 22).

Discussion
We studied the expression profiles of 11 tumours by considering a
selected set of genes annotated in the Ontocancro database and
BioPlex PPI network. This knowledge-based selection reduced the
dimensionality of the data to a highly curated list of cancer-related
genes, involved in pathways that are hallmarks of cancer as cell
cycle, inflammation, and apoptosis28. This approach also ensured
that all studied genes had protein–protein interaction annotations,
which are crucial to the understanding of how the signaling
transduction propagates in the cell29. We clustered tumours by
their gene–gene correlation matrices, to evaluate the functional
relationships between genes and their impact on transcriptome
organization. Many tumours from the same organ grouped
together, in agreement with previous studies showing that tissue-
of-origin features provide the dominant signals in the identifica-
tion of cancer subtypes2,30. However, the clustering also grouped
tumours originating from different tissues, according to simila-
rities in genomic alterations, as in the case of BRCA, OV, LUSC,
and UCEC, which share common characteristics as presence of
TP53 mutations and multiple recurrent chromosomal gains and

losses3. In particular, BRCA and UCEC grouped into a well-
defined subcluster, which may reflect their better prognosis when
compared to other ten tumour types2. Interestingly, the tumors
LGG, KIRC and KIRP clustered in the same group, suggesting that
these tumours might activate the same pathways and oncogenic
processes. Although Hoadley et al.2 did not evaluate the tumours
LGG and KIRP, the authors observed that glioblastoma GBM and
kidney cancer KIRC clustered in the same group when using gene
expression and copy number alteration profiles.

We integrated different types of biological information by a
network approach, that allowed us to identify functional modules
and to rank genes as network elements21,22,31,32. We created a
network for each cluster (starting from a common template of
protein interactions and superimposing cluster-specific expres-
sion correlation profiles) and obtained specific gene signatures
based on node ranking by centrality measures. Gene Ontology
enrichment analysis resulted in pathways mainly associated to
NF-κB signaling, chromosomal instability and ubiquitin-
proteasome system. NF-κB signaling regulates genes that
participate in cell proliferation, innate and adaptive immune
responses, inflammation, cell migration, and apoptosis regulation
processes. The aberrant activity of NF-κB may act as survival
factor for transformed cells which would otherwise become
senescent or apoptotic33. Chromosomal instability category
involves kinetochore formation, microtubule dynamics and
chromosome segregation functions. The dysfunction in these
genes may cause cell inability to faithfully segregate chromo-
somes, generating genomic alterations as DNA mutation, chro-
mosomal translocation, and gene amplification. The mutant
genotypes may confer beneficial phenotypic traits to cancer cells,
such as sustained proliferative signaling and resistance to cell
death28. Two genes classified into this category have already been
related to clinical practice: the prognostic marker KIF2C;34,35 and
the BUB1 gene, whose expression correlates with poor clinical
diagnosis36,37. The ubiquitin-proteasome system is the major
degradation machinery that controls the abundance of critical
regulatory proteins. Perturbation of the regulatory proteins
turnover disturbs the intricate balance of signaling pathways and
the cellular homoeostasis, contributing to the multi-step process
of malignant transformation38. Proteasome inhibitors have
become valuable tools in the treatment of certain types of cancer,
mainly because malignant cells show greater sensitivity to the
cytotoxic effects of proteasome inhibition than non-cancer cells39.

In addition to common features, cluster 2 signature has several
genes related to DNA repair (CETN2, FANCB, H2AFX, ERCC1,
ERCC4, PARP1, XPA) and DNA replication (RPA2, MCM10).
Interestingly, the tumours in this cluster usually present high
rates (50–90%) of samples with mutated TP53, which is an
important sensor for the cell DNA damage response2,4,40. The
cluster 2 signature also presents the SRC, NFKB, and IL6R genes,
which participate in the activation of STAT3, a transcription
factor that is necessary for cell transformation41. We observed
that STAT3 gene expression is higher in the tumours of cluster 2
when compared with the tumours of clusters 1 and 3 (one-way
ANOVA p-value: 5.58 × 10−15, see Supplementary Figure 10).
The cluster 3 signature has genes involved in three apoptotic
mechanisms, which are induced by TNF-α (TNFRSF1A and
BAG4), or endoplasmatic reticulum stress (CAPN1 and CAPN2)
and caspase-independent apoptosis (ENDOG). As the regulation
of cell death serves as a natural barrier to cancer development,
these processes may reflect different strategies that these tumours
use in response to various cellular stresses. We remark that dif-
ferent experimental approaches for protein–protein interaction
(e.g. yeast two-hybrid and affinity-purification followed by mass
spectrometry) usually present low overlap, mainly due to assay
complementarity, and differences in sensitivity and search
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space42. Consequently, the found gene signatures might be
dependent on the protein network used in this study, despite the
fact that we observed a >50% overlap in all tumour clusters when
protein–protein interactions obtained from different experi-
mental approaches were included in the BioPlex-Ontocancro
network to generate different signatures (Supplementary Table 4).

Since the transcriptional disturbances observed in cancer can
sometimes be explained by underlying somatic mutations43,44 we
retrieved TCGA mutational data, and focused on cancer-related
mutations reported in the Catalogue of Somatic Mutations in Cancer
(COSMIC) database. Many signature genes resulted also somatically
mutated, or first neighbours to mutated genes (Fig. 2; Supplementary
Figures 5–6, Supplementary Figures 11–13, and Supplementary
Table 8), showing their strict relationship and the functional rele-
vance of the biologically processes they are involved in.

In addition, several genes in the signatures or in their direct
network neighbourhood are already under clinical investigation
in a variety of tumour conditions (as annotated in Clinicaltrials.
org database). For example, the AKT pathway has been described
as a potential drug intervention in clear cell renal carcinoma:45

AKT2 gene belongs to the signature of cluster 3 (comprising LGG,
KIRC, and KIRP), it is somatically mutated in the tumours of
cluster 3 and it has been annotated as drug-target according to
the DrugBank database.

We asked whether gene signatures could predict survival out-
comes in each cluster, thus independently on the single tumour
type. Our results show that in cluster 2 (the only one with enough
available samples) the 27-gene signature defined two groups of
patients with significantly different Kaplan–Meier survival curves,

also in comparison with randomly generated signatures (log-rank
test p-value: 7.26 × 10−18, see Supplementary Figure 16). How-
ever, we remark that the clinical meaning of this separation
requires further investigation, considering the high correlation of
gene expression profiles in tumours46,47 and since differences
exist at the level of single tumour due to their stage or grade (see
Fig. 3, Supplementary Table 11, Supplementary Data 1). We
tested three existing drugs (two targeting elements of cluster
2 signature, and one involved in a related biological process, but
not directly belonging to the signature) on two tumour types of
the cluster, a very aggressive one (GBM, T98G cell line) and a
common one (breast cancer, MCF-7 model). PF-00477736 drug
(a CHK1/2 inhibitor, not in the signature)48 had poor effect on
both cell lines. On the contrary, they resulted highly sensitive to
the combination of BI6727 (an inhibitor of the signature gene
PLK149) and Bortezomib (proteasome activity inhibitor50). A
number of tumour models is sensitive to proteasome and PLK1
inhibitors. Indeed, genes belonging to the ubiquitin-proteasome
system can be found in all clusters and PLK1 expression is higher
in cluster 2 tumours compared to the others. However, many cell
lines have been reported throughout literature to be insensitive to
these drugs51–56. Moreover, we observed a significant synergic
action of Bortezomib and PLK1 inhibitors at several dosages on
both cell lines, not found when BI6727 was considered in com-
bination with the other two signature-related drugs.

Finally, we performed in silico experiments on a broader range
of cell lines and drugs by exploiting the drug screening data of the
GDSC project. We observed that our signature genes predict high
sensitivity to the related targeted agents on most cell lines in
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GDSC database that could be associated to our tumour clusters.
Taken together, these findings suggest novel potential therapeutic
strategies to be further explored in preclinical models.

These observations indicate that our study succeeded in: (1)
clustering tumours highlighting common functional mechanisms
related to their transcriptional profile, and (2) selecting genes with a
relevant functional role in the studied tumours, thus amenable of
drug targeting. The combination of these results may thus provide
the rationale for choosing novel drug targets and drug combina-
tions, or for repurposing existing drugs towards tumours of the
same cluster. As a possible future direction, once obtained an
enlarged list of novel and repurposed drugs, the specific tran-
scriptional and mutational profile of single patients, prioritized onto
our signatures, might suggest specific combinations of drugs for a
more targeted and personalized therapeutic approach.

Methods
Gene expression datasets. The gene expression datasets used in this study were
retrieved from The Cancer Genome Atlas (TCGA, https://gdc-portal.nci.nih.gov)
Data Portal, and included Agilent expression arrays of 2378 samples from 11
tumour types, with a different number of samples each (from 16 to 595, Supple-
mentary Table 1). We selected for our analysis the genes from the BioPlex
protein–protein interaction network19,20 (n= 10,961) that were also present in the
Ontocancro database http://ontocancro.inf.ufsm.br/, specific for tumour-related
biological processes (n= 1104), resulting in a list of 760 cancer-associated genes
related to specific biological functions (such as cell cycle control, DNA damage
response, and inflammation).

Tumour clustering. For each tumour dataset, we calculated a correlation matrix
containing pairwise Pearson rij coefficients between the previously selected 760
genes across all samples available for the tumour. In order to eliminate non-
significant correlations and indirect influences, the absolute correlation values (|rij|)
were adjusted with the Context Likelihood of Relatedness (CLR) algorithm57,58

(implemented in the R/Bioconductor package ‘minet’59) obtaining zij positive and
negative scores. We considered only positive values (zij > 0), but the obtained
clusters resulted fairly robust when different threshold values were applied (Sup-
plementary Note 2, Supplementary Figures 7–8). The filtered z-score matrices were
clustered using hierarchical clustering analysis (with Ward linkage) based on the
element-wise Euclidean distance between each pair of tumour matrices A and B,
calculated as follows:

d A;Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

X

n

j¼1

aij � bij
� �2

v

u

u

t ð1Þ

where aij is the z-score between the genes i and j in Tumour A and bij the z-score
between the same genes in Tumour B. The clusters were defined using a dynamic
branch cutting algorithm implemented in the R package dynamicTreeCut60

(parameters: minClusterSize= 2, cutHeight= 590 and method= ‘Hybrid’).

Multi-tumour gene signatures. A network approach was applied to find gene
signatures that characterized the clusters of tumours. First, we created a template
network (BioPlex-Ontocancro PPI) by selecting the genes present in the BioPlex
protein–protein interaction network that were also annotated in the Ontocancro
database. In the initial list of 760 genes used for tumour clustering, only 591 were
connected to each other (169 isolated nodes) thus considered for network analysis.
Then, for each cluster the gene–gene correlation coefficients rij were computed, con-
sidering all the samples of all tumours in the cluster, and their absolute values |rij| were
adjusted with the CLR algorithm, producing the zij scores57,58. Each score matrix was
superimposed to the BioPlex-Ontocancro network, producing three weighted networks
(one for each cluster) in which genes were linked only if having correlated expression
profiles (zij > 0, specific to each cluster) and a physical interaction at protein level
(given by Bioplex-Ontocancro network, common to all clusters). We remark that the
three cluster-related networks can differ for their weight values or for missing links
(due to negative z-scores set to zero). The networks were analyzed and visualized by
Networkx Python package, Matlab and Cytoscape.

For the networks of clusters 1 and 3, we selected the giant components (245 and
244 nodes, respectively), and for cluster 2 we selected the two largest components,
since they had similar size much larger than the other components (149 and 118
nodes) and since together resulted in a number of nodes comparable to the giant
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component of cluster 1 and 3 (Supplementary Data 3). After this selection, we
retrieved a gene signature for each cluster composed by the most central genes
(network nodes), which were defined as those having the Spectral Centrality23

topological measure (SC) above the 90th percentile (see Table 1, Supplementary
Figures 2–6, Supplementary Data 6 with genes sorted by SC). SC calculates the
effect of node removal on the network diffusivity based on the spectral properties
of the Laplacian graph, and it has already been applied successfully to biological
data such as the Immune System mediator network. Different results were obtained
by considering Betweenness Centrality or weighted degree (Strength W) as
centrality measures, as shown in Supplementary Table 3. The robustness of our
signatures was tested by considering a random subsampling (50% of the initial
number of patients in each cluster) for 100 times, and then counting the number of
occurrences of original signature genes into the signatures obtained by applying the
analysis pipeline onto the patient subsampling (see Supplementary Table 6).

Validation of the multi-tumour gene signatures. We evaluated the relevance of
the genes in the signatures by several approaches.

First, we verified the proximity with the somatic mutational data extracted from
the TCGA data portal for the considered tumours. To avoid cancer unrelated
mutations, we considered only mutations that were reported also in the COSMIC
database61. We checked whether the signature genes had been reported as
somatically mutated or if they occurred in the neighbourhood of mutated genes in
the networks. To quantify the proximity of gene signatures to mutated genes we
located the nearest mutation (in terms of shortest paths on the network) for each
signature gene, resulting in a collection of minimum distance values for each
cluster, and we compared these distances with random gene signatures of the same
size (Supplementary Figure 11–13, Supplementary Table 8).

Secondly, we retrieved from the DrugBank http://www.drugbank.ca/ and Drug
Gene Interaction (DGIdb)62 databases which genes in the signatures were also
mapped as drug targets. Third, we checked in the Aggregate Analysis of Clinical
Trials (AACT) database (https://www.ctti-clinicaltrials.org/aact-database) for the
existence of ongoing clinical trials evaluating the inhibition of signature genes.
Fourth, the prognostic potential of each gene signature was evaluated by
considering the clinical data (days to death) available in the TCGA data portal. The
patients having clinical information were clustered according to the expression
levels of the gene signatures by a k-means algorithm (Python package ‘scikit’)
considering two patient groups: good versus bad survival outcome. Survivals curves
were calculated for both groups: we applied the Kaplan–Meier method with
censored data and evaluated their significance with the log-rank test (Python
package “lifelines”). We observed that the effect of the gene signature on dividing
patients remained prevailing even when considering confounding factors such age
and tumour type, and some differences emerged only when considering tumour
stage or grade (see Supplementary Table 11, Supplementary Data 1). Moreover, we
compared our signature with randomly generated signatures, by using two indices:
P-value and ST, a parameter indicating the imbalance of tumour samples inside
both patient groups (details and results in Supplementary Figure 16). Fifth, we
tested the effect of drugs inhibiting genes in our signatures or strictly related to
them. The glioblastoma T98G and the breast adenocarcinoma MCF-7 cell lines
were obtained from ATCC® ([lgcstandards-atcc.org]) and Leibnitz Institut DSMZ
(dsmz.de), respectively. Cells were cultured at a density of 105 cells/ml in RPMI
medium plus 10% FBS (plus 5% Sodium orthovanadate for T98G) for 72 h with
increasing concentrations of the following drugs: Bortezomib, BI6727, PF-
00477736 (Selleckchem), alone or in combination. The dose range was chosen
based on insights from the literature on the same cell lines or related cellular
models49,50,63–70. One hour and thirty minutes before the end of treatment, WST-1
reagent was added to the cell medium and cell viability was measured according to
manufacturer’s instruction (Roche). The cell response to different drug dosages was
tested in three independent experiments by duplicates of each experimental
condition. The dose-effect response and the IC50 of each drug were calculated
using GraphPad Prism 6 (GraphPad Software) with a 95% confidence interval. To
determine synergy, combination indexes were obtained with the CompuSyn
software (ComboSyn Inc.): combination index values <1, =1, and >1 indicate
synergism, additive effect and antagonism, respectively (Supplementary Data 7).

Finally, we also validated the signature genes as potential drug targets by using
drug screening data from the Genomics of Drug Sensitivity in Cancer (GDSC)
project (http://www.cancerrxgene.org/). The drug–gene interactions were retrieved
both from GDSC project and DGIdb, considering only drugs with known
mechanistic actions and approved by the FDA. We associated cell lines in the
GDSC project to our cluster according to TCGA tumour classification
(Supplementary Figure 17–22, Supplementary Data 8).

Code availability. The code for the calculation of the Spectral Centrality (SC)
measure is available in https://zenodo.org/record/1420602#.W6Bju5NKhBw
[https://doi.org/10.5281/zenodo.1420602]. Codes used for the other analyses in this
study are available from the corresponding author upon reasonable request.

Data availability
The gene expression datasets used in this study were retrieved from The Cancer
Genome Atlas (TCGA, https://gdc-portal.nci.nih.gov) Data Portal. Other data

supporting the findings of this study are available within the paper and its sup-
plementary information files.
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