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Abstract

Background: Lung cancer is the leading cause of cancer death in men and women in the United
States and Western Europe. Over 160,000 Americans die of this disease every year. The five-year
survival rate is 15% — significantly lower than that of other major cancers. Early detection is a key
factor in increasing lung cancer patient survival. DNA hypermethylation is recognized as an
important mechanism for tumor suppressor gene inactivation in cancer and could yield powerful
biomarkers for early detection of lung cancer. Here we focused on developing DNA methylation
markers for squamous cell carcinoma of the lung. Using the sensitive, high-throughput DNA
methylation analysis technique MethyLight, we examined the methylation profile of 42 loci in a
collection of 45 squamous cell lung cancer samples and adjacent non-tumor lung tissues from the
same patients.

Results: We identified 22 loci showing significantly higher DNA methylation levels in tumor tissue
than adjacent non-tumor lung. Of these, eight showed highly significant hypermethylation in tumor
tissue (p < 0.0001): GDNF, MTHFR, OPCML, TNFRSF25, TCF21, PAX8, PTPRN2 and PITX2.
Used in combination on our specimen collection, this eight-locus panel showed 95.6% sensitivity
and specificity.

Conclusion: We have identified 22 DNA methylation markers for squamous cell lung cancer,
several of which have not previously been reported to be methylated in any type of human cancer.
The top eight markers show great promise as a sensitive and specific DNA methylation marker
panel for squamous cell lung cancer.
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Background

Cancer is responsible for one in four deaths in the US,
making it the second most common cause of death [1].
Lung cancer is the leading cancer killer in men and
women.

Over 160,000 Americans will die of this disease in 2007.
In men, lung cancer accounts for 31% of cancer deaths,
killing more men than leukemia and prostate, colorectal,
and pancreatic cancer combined. In women, lung cancer
accounts for 27% of all cancer deaths, taking as many lives
as breast and colorectal cancer combined [1]. The overall
five-year survival rate of lung cancer patients is 15%, sig-
nificantly lower than that of patients with prostate cancer
(99.9%), breast cancer (88.5%) or colon cancer (64.1%)
[1]. This rate increases dramatically to greater than 50%
when lung cancer is diagnosed at an early stage. However,
only 14-16% of cases are detected early [1].

In contrast to breast, colon, and prostate cancer, no rou-
tine screening method for early detection of lung cancer
exists. Methods based on imaging (chest X-ray, low dose
spiral computed tomography (LDSCT), autofluorescence
bronchoscopy (AFB)), and sputum cytology have been
tested, however, none have proven ideal. Screening via
chest X-ray is not sufficiently sensitive [2], and trials dem-
onstrated that its use in high risk populations showed no
decrease in mortality [3]. LDSCT screening can detect a
number of stage I lung cancers, with survival at 10 years
reported as high as 88% [4]. However, the possibility of
lead-time bias and the high false positive rate [5] limit the
utility of this screening modality. These false positive tests
frequently lead to invasive procedures to remove lesions
that later prove to be benign [6]. In addition, LDSCT
appears to favor detection of peripheral lesions, being less
effective at detecting small pre-invasive/micro-invasive
lesions in the central airways [7]. Its effects on reducing
lung cancer mortality remain in question [8]. Autofluores-
cence bronchoscopy (AFB) also has a high false positive
rate [9,10], and preferentially detects centrally located
cancers. Screening by sputum cytology can detect a
number of aspymptomatic cases, but it has not been
shown to decrease lung cancer mortality [11]. Studies
using molecular marker techniques on sputum samples
appear promising [12].

Given the poor five-year survival rates and limitations of
current screening techniques, it is clear that improved
methods for early detection of lung cancer are needed.
One strategy is to develop sensitive and specific molecular
markers that distinguish cancer type and subtype, that are
detectable in 'remote' patient media (e.g. blood, sputum)
by non-invasive/minimally invasive means, and that can
be assayed using a quantitative approach.

http://www.molecular-cancer.com/content/7/1/62

DNA methylation has emerged as a prime source of
potential cancer-specific biomarkers. In cancer, despite
global DNA hypomethylation, many genes become
hypermethylated. Typically this occurs in CpG rich
regions called CpG islands at/near gene promoters. Meth-
ylation often results in the silencing of tumor suppressor
or growth regulatory genes [13]. Such cancer-specific
hypermethylation results in differential DNA methylation
profiles between tumor and non-tumor tissues, which can
be exploited to distinguish the two, allowing DNA meth-
ylation to serve as a cancer-specific molecular marker.
Using bisulfite treatment, which embeds methylation
information in the DNA sequence, coupled with a sensi-
tive and quantitative real-time PCR-based assay (Methy-
Light), hypermethylated CpGs form stable, -easily
amplifiable, and readily available biomarkers [14]. As no
one locus can be expected to detect all cancers of a partic-
ular type, reactions for multiple loci can be easily com-
bined into panels of markers, increasing the potential to
detect lung cancer in a highly sensitive and specific man-
ner. Because our end goal is a non-invasive lung cancer
detection method using DNA methylation markers, it is
worth noting that DNA hypermethylation has been
detected in remote patient media such as sputum, blood
[15] and bronchoalveolar lavage (BAL) [16] from lung
cancer patients.

Lung cancer is divided clinically into two major subtypes
- the rapidly progressing small cell lung cancer (SCLC),
and the more common non-small cell lung cancer
(NSCLC). As NSCLC accounts for > 85% of all lung cancer
cases, and is less aggressive than SCLC, there is a greater
chance for early detection, resulting in increased patient
survival. NSCLC is divided into four major histological
subtypes: adenocarcinoma (AD), squamous cell carci-
noma (SQ), large cell carcinoma and others (carcinoids,
neuroendocrine cancers, etc). A comparison of SQ and AD
of the lung shows differences in DNA hypermethylation
profiles [17-19], in expression of therapeutic targets [20],
in the mutational and polymorphic spectra [21,22] and in
gene expression profiles [23]. The region of the lung in
which these tumors usually occur also differs, with AD
typically located at the periphery and SQ arising near the
central airways. Given the distinct nature of SQ and AD, it
is to be expected that different molecular markers would
need to be developed to sensitively detect these two types
of lung cancer. We have recently identified a panel of DNA
methylation markers for lung adenocarcinoma [24]. Here
we focus on the development of molecular markers for
squamous cell lung cancer.

SQ accounts for 25 - 35% of all lung cancer cases in the
United States [25]. Our goal was to identify a panel of
DNA markers that are frequently and highly methylated
in SQ lung tumors when compared to non-tumor lung.
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Such a panel may be used for non-invasive/minimally
invasive and potentially subtype-specific early detection
of SQ lung cancer. We envision that in the future, detec-
tion of DNA methylation markers in remote media
(blood, sputum, bronchoalveolar lavage) might comple-
ment less specific imaging-based lung cancer screening
tests, and if sensitivity and specificity are high enough,
might eventually be directly applied to the screening of
high risk populations.

Results

In an effort to develop sensitive and specific molecular
markers for squamous cell carcinoma (SQ) of the lung,
the methylation status of 42 candidate loci was examined
in a collection of 45 tumors and histologically normal
adjacent non-tumor lung samples from the same patients.
These 42 loci were identified in a pre-screen examination
of the methylation status of 304 MethyLight reactions on
cell lines and a small number of tumors distinct from the
ones used in this study (data not shown). As our aim was
to identify novel high penetrance markers for lung SQ,
many loci previously reported as methylated in NSCLC/
SQ were not included in our study due to their lower
methylation frequency. In five of the 42 loci (HRAS,
MGMT, MTHFR, PAX8 and SLC38A4), the region exam-
ined is not in a CpG island. In our pre-screen, multiple
reactions in and around the CpG islands of these loci were
tested and the chosen reactions showed the highest meth-
ylation in cancer. Paired histologically normal adjacent
lung tissue samples, derived from a separate non-cancer
block of the lung cancer patients, were used as control
samples. Thus, our control tissue matched tumor tissue
fully with respect to most variables, including environ-
mental exposures, age, gender, ethnicity and genetic back-
ground. The use of paired control tissue from lung cancer
patients, which may show higher background methyla-
tion, ensures the identification of markers that are hyper-
methylated in a cancer-specific manner. MethyLight
provides a quantitative measure for methylation at each
locus; the percentage of methylated reference (PMR) value
reflects the level of DNA methylation at the locus exam-
ined compared to in vitro methylated control DNA.

We observed a high methylation frequency (the fraction
of samples showing any methylation) for all 42 loci in
both the tumors and the adjacent non-tumor tissues taken
from the same patient (Figure 1, Table 1). The DNA meth-
ylation in histologically normal adjacent non-tumor lung
is likely due, on the one hand, to the sensitivity of Methy-
Light, and on the other, to age and/or environmental
exposure, and has been observed in other studies [26-28].
We examined the statistical significance of differences in
DNA methylation levels in tumor versus adjacent non-
tumor tissue using the PMR as a continuous variable. Out
of the 42 loci studied, 13 were previously reported to be
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methylated in NSCLC. Hence, a marker from these 13 was
considered statistically significant if it attained the 0.05
level of significance without correction for multiple test-
ing. A marker from the remaining 29 targets was declared
statistically significant if it exceeded the 5% false-discov-
ery rate threshold defined using the Benjamini and Hoch-
berg [29] approach. Overall, twenty-five of the 42 loci
examined showed a statistically significant difference
(highlighted in italics in Table 1). Three markers -
DIRAS3, MGMT, and HRAS - showed statistically signifi-
cant hypermethylation in non-tumor tissue. The impor-
tance of this suggested loss of methylation in the tumors
was not further explored here, as we are focused on iden-
tifying positive methylation markers for SQ of the lung.
The phenomenon could be of interest for future studies.
The remaining 22 loci were found to be statistically signif-
icantly hypermethylated in the tumors (Table 1). This is
the first report of methylation in any cancer for five loci
(CPVL, HOXC9, PAX8, PTPRN2, and SLC38A4), flagging
these loci as potential novel cancer markers. Eight loci
(GDNF, MTHFR, OPCML, TNFRSF25, TCF21, PAXS,
PTPRN2, and PITX2) showed highly statistically signifi-
cant differences with p-values <0.0001.

Potential biomarkers should be effective in all patients
regardless of cancer stage, age, gender or ethnicity. We
examined DNA methylation levels in tumors vs. adjacent
non-tumor tissue in relation to tumor stage. Because the
number of cases was not very large, we grouped stage 1A
and IB cases together (six IA and twenty-five IB), and
stages II and III (no IIA, seven IIB and five IITA). Each of
the eight highly significant loci showed higher DNA
methylation levels in tumors vs. adjacent non-tumor lung
in both early (stage I, n = 31, p-value range = 1 x 107 -
0.0041) and advanced (stage II/II; n = 12, p-value range
=6 x 10-2- 0.0194) lung cancer patients. When analyzing
each stage (IA, IB, IIB and IIIA) independently, the two
most significant markers (GDNF and MTHFR) showed
significantly higher DNA methylation levels in tumor vs.
adjacent non-tumor in every stage, despite the modest
number of cases. Comparison of DNA methylation levels
for the top eight markers in early vs. advanced cancers
showed no significant differences between the methyla-
tion levels in these tumors, reinforcing the idea that these
markers are not stage-specific. This is important, since
effective DNA methylation markers for SQ lung cancer
must function on every stage of cancer, but particularly on
early stage tumors.

We also examined methylation in tumors in relation to
age. HOXC9 showed higher levels of DNA methylation in
patients under the median age (70: p = 0.021) and TCF21
showed increased DNA methylation in females (p =
0.047). However, if a multiple comparisons correction
were applied, these differences would not be significant.
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Schematic representation of DNA methylation levels of 42 loci in 45 tumor and adjacent non-tumor squamous cell lung cancer
cases. Black indicates high methylation levels (> median PMR of all, tumor and non-tumor, positive samples). Grey indicates low
methylation (< median of the positive PMR values), and white indicates no detectable methylation.

DNA methylation of PAX8 appeared higher in males (p =
0.001; significant even with application of a multiple
comparison threshold), a factor that might require con-
sideration if it were to be developed for clinical use. As our
population is primarily Caucasian, we were not able to
examine DNA methylation levels in relation to ethnicity.
Studies are in progress in a larger more ethnically diverse
population, to examine the possible relationship of DNA
methylation to ethnicity.

To provide more insight into the distribution of DNA
methylation levels in the tumor and non-tumor samples,
we plotted the distribution of PMR values for tumor and
non-tumor tissues for the eight most highly significant
loci (Figure 2). These plots illustrate differences in the
nature of these markers that are not evident from the p-

values. For example, GDNF appears to promise substan-
tial specificity and sensitivity due to frequently highly ele-
vated DNA methylation of this locus in tumor tissues. A
similar pattern is seen in MTHFR, OPCML, and
TNFRSF25. For TCF21, PTPRN2, and PITX2, the DNA
methylation levels of tumor tissues show a wider distribu-
tion and more overlap with non-tumor samples. The
PAX8 DNA methylation values were tightly clustered, and
while the difference is highly statistically significant (p =9
x 10), the fold-difference is small, indicating that this
marker may not be as useful in the clinical setting.

The utility of clinical markers is often evaluated by gener-
ating a receiver operating characteristic (ROC) curve, in
which sensitivity versus 1-specificity at all possible cutoff
values is plotted. Ultimately, such ROC curves will be gen-
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Table I: Statistical analysis of differences in methylation levels between tumor and adjacent non-tumor tissues

Tumor Adjacent Non-Tumor
Gene Name? Methylation Median Methylation Median p-valued MC
Frequency® PMR¢ Frequency® PMR¢ Corr.e
GDNF 95% 67.11 95% 3.29 5.0E-11 0.0017
MTHFRf 100% 56.51 100% 2595 2.0E-10 *
OPCML: 95% 19.49 98% 5.80 1.0E-09 *
TNFRSF25 98% 50.52 93% 25.89 2.0E-07 *
TCF21 93% 60.64 88% 11.17 3.0E-07 *
PAXS8f 100% 83.90 100% 69.49 9.0E-06 0.0034
PTPRN2 80% 35.60 58% 4.02 1.0E-05 0.0052
PITX2 93% 19.37 95% 1.50 3.0E-05 0.0069
MTIG 95% 1.89 93% 0.59 0.0001 0.0086
PENK 93% 14.30 95% 6.82 0.0002 0.0103
GPIBB 98% 59.52 100% 42.68 0.0009 *
MGMT? 100% 26.73 98% 33.96 0.0009 *
SLC38A4f 56% 6.00 31% 0.00 0.0010 0.0121
SFRP2 98% 10.19 921% 2.67 0.0038 *
RARRES | 60% 9.27 47% 0.71 0.0048 0.0138
DIRAS3 100% 57.25 100% 63.92 0.0074 *
NEUROG| 37% 3.03 17% 0.08 0.0079 0.0155
WDR33 31% 0.34 9% 0.20 0.0089 00172
TFAP2A 46% 5.68 20% 10.00 0.0092 0.0190
SFRPI 91% 1.63 98% 0.56 0.0124 *
CYPIBI 58% 3.53 40% 041 00143 *
HOXC9 66% 10.62 60% 0.48 0.0157 0.0207
ABCBI 100% 27.07 100% 24.33 0.0193 0.0224
HRASf 100% 82.08 100% 90.01 0.0215 0.0241
GRIN2B 44% 28.03 31% 1.26 0.0235 0.0259
CACNAIG 93% 0.74 95% 0.44 0.0282 0.0276
HICI 98% 33.81 100% 23.52 0.0315 0.0293
CPVL 66% 1.65 53% 0.33 0.0739 0.0310
SEZ6L 89% 5.08 95% 3.51 0.0745 0.0328
NEURODI| 44% 9.97 33% 0.70 0.0748 0.0345
CCND2 98% 1.74 96% 1.18 0.0827 0.0362
MINTI 98% 3.18 98% 2.49 0.0879 0.0379
DLEC 55% 19.39 64% 0.17 0.1169 *
RNRI 100% 43.28 100% 31.91 0.1930 0.0397
BLTI 98% 28.01 100% 25.63 0.2420 0.0414
ONECUT2 98% 17.23 100% 14.29 0.3369 *
PLAGLI 100% 45.72 100% 50.38 0.3747 0.0431
GATM 26% 11.95 69% 0.10 0.4462 0.0448
CDXI 98% 46.96 100% 44.40 0.7469 0.0466
TWISTI 66% 1.98 86% 1.07 0.7578 0.0483
TMEFF2 100% 11.54 100% 11.82 0.7591 *
RPA3 49% 0.24 49% 0.16 0.8863 0.0500

aHuman Genome Organization nomenclature. Loci showing a statistically significant difference in methylation between tumor and non-tumor tissue
are highlighted in italics. The top eight loci are noted in bold. Loci are ranked in order of ascending p-value. b Percentage of samples with positive
methylation value. ¢ Median percent methylated reference calculated from positive methylation values. 4 p-value calculated by Wilcoxon signed rank
test. ¢ To minimize the risk of false discovery, a false-discovery rate threshold using the Benjamini and Hochberg (1995) approach was applied to all
loci not previously found to be methylated in squamous cell lung cancer (see methods). f This reaction is not targeted to a CpG Island & This primer/
probe set shares homology with the CpG island of the adjacent HNT gene, which appears to have arisen via gene duplication. * Denotes loci

previously reported to be methylated in lung cancer tumor samples

erated based on methylation values detected in remote
media. However, here we used ROC curves based on the
tumor and non-tumor PMR values to provide an early
indication of the potential of the top eight loci as cancer-
specific markers. The area under the curve (AUC), an indi-

cator of marker performance, ranged from a modest 0.75
for PITX2 to a much better 0.9 for GDNF (Figure 3). The
sensitivity and specificity values for each of the eight top
loci were individually calculated using the present tumor
collection in a five-fold cross validation (Table 2). The
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quantitative marker values were dichotomized at a level
that would minimize the classification error. Sensitivity
ranged from 58-89% and specificity from 69-100%.

While measurements for several individual markers look
promising, it is unrealistic to expect detection of all cases
of a particular type of cancer using a single biomarker.
Thus, our goal is to develop a panel of DNA methylation
markers that, used in combination, can sensitively and
specifically detect lung SQ. To assess the performance of
combinations of our markers in the identification of
tumors, we fit a random forest classifier to the data set,
using 90 samples and 42 variables. Using bootstrap sam-
ples of the data, we grew a forest of 30,000 trees. Splits
were determined using a random sample of five variables
and trees were grown until there was only one observation
in each leaf. When the 42 loci were ranked using the ran-
dom forests classifier, the top four loci were the same as

when the data was ranked by p-value or AUC value, and
the order of the ranking is the same for these top four in
all three groups (data not shown). Using all 42 loci in
combination, we observed 97.7% sensitivity and 97.7%
specificity. While this is encouraging, 42 loci are too many
to test in a clinical setting. Trimming the panel down to
just the top eight loci resulted in 95.6% sensitivity and
specificity. Further restricting our analysis to the four most
highly ranked loci maintained sensitivity at 95.6% while
specificity dropped to 93.3%.

Discussion

Thirteen of the 42 loci examined here were previously
reported to be methylated in lung cancer tumor samples.
Consistent with the literature, eight loci (MTHFR,
OPCML, TNFRSF25, TCF21, SFRP2, SFRP1, CYP1BI,
GPIBB, DLEC and ONECUT?2) [17,24,30-39] are hyper-
methylated in tumor tissue in our study. Indeed, MTHFR,
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Table 2: AUC, Sensitivity & Specificity Analysis

5-fold cross validation

Locus AUC Sensitivity Specificity
GDNF 0.90 0.82 0.98
MTHFR 0.89 0.89 0.82
OPCML 0.87 0.76 0.89
TNFRSF25 0.82 0.76 091
TCF21 0.82 0.62 091
PAX8 0.77 0.64 0.69
PTPRN2 0.76 0.58 0.89
PITX2 0.75 0.60 1.00

OPCML, TNFRSF25 and TCF21 show highly statistically
significant differences (p < 1 x 10-%) between tumor and
adjacent non-tumor tissues in our study. The results for
three loci are in contrast with the published literature.
MGMT, DIRAS3 (previously described as ARHI) and
TMEFF2 (previously described as HPP1) have been
reported to be hypermethylated in lung cancer
[17,18,28,33-36,40-45]. We found that MGMT and
DIRAS3 were statistically significantly more highly meth-
ylated in adjacent non-tumor than in SQ samples, while
for TMEFF2, we observed almost no difference in methyl-
ation levels between tumor and non-tumor tissue (Table
1). The differences between our results and the published
literature may be due to a variety of reasons, including
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technical differences (such as the use of the quantitative
MethyLight versus qualitative methylation specific PCR, or
the less sensitive CpG island microarrays), the sampling
of a different region of the gene, differences in the lung
cancer histologies studied (many studies contain a mix of
NSCLC samples), and ethnic/racial differences in the
patient populations studied. In the case of MGMT we sam-
pled regions in and out of the CpG island in our pre-
screen, and the region outside of the CpG island looked
more promising, and was therefore tested. Thus, the
primer/probe set we used differs from what has been pub-
lished in the literature.

When examining the function of the 22 statistically signif-
icant potential markers for SQ, four major functional cat-
egories emerged. Eight loci encode proteins involved in
signaling and growth regulation, seven loci encode tran-
scription factors, four loci encode proteins with metabolic
function, and three loci belong to no particular group
(Table 3). Our strongest potential biomarkers, the eight
most statistically significantly hypermethylated loci, are
scattered across the first three of these groups. Because our
focus is development of DNA methylation markers, our
primary concern is consistent methylation of a particular
locus, not whether the associated gene is actually silenced
by methylation. Hence, genes in which the consistently
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hypermethylated locus is outside of the CpG island can
serve as markers (e.g. HRAS, MGMT, MTHFR, PAXS,
SLC38A4), even though the DNA methylation may not be
of functional significance. While we have not determined
whether the genes for our eight top markers are silenced,
there is published evidence for the inactivation of some of
these genes in lung cancer. For others, their expression in
cancer has not yet been investigated, and might be worth
examining in future, more mechanistic, studies. As six of
the top eight loci show potentially functionally relevant
DNA hypermethylation in tumors, we will discuss what is
known about their role in cancer development.

OPCML, TNFRSF25 and TCF21 have been previously
reported to be hypermethylated in lung cancer [30-32]
and based on their function, methylation-induced silenc-
ing could favor tumor growth. Opioid binding protein/
cell adhesion molecule (OPCML) is an opioid receptor
and is involved in cell-cell adhesion. It binds opioid pep-
tides (e.g. enkephalin) and causes apoptosis of lung can-
cer cell lines, indicating it functions as a tumor suppressor
gene. This inhibition was reversed by nicotine [46], which
may be of particular interest in lung cancer pathogenesis.
It is of note that PENK, which encodes the precursor pep-
tide of the OPCML ligand enkephalin, was also found to
be significantly hypermethylated in tumor tissue in our

Table 3: Putative biological role of the 22 statistically significantly hypermethylated loci

Functional Gene Gene Name? Gene FunctionP
Categories Symbol2
Signaling GDNF glial cell derived neurotrophic factor Growth factor
GPIBB glycoprotein | b, beta polypeptide Platelet membrane receptor
OPCML opioid binding protein/cell adhesion molecule-like Cell adhesion molecule
PENK proenkephalin Opioid peptide precursor
PTPRN2 protein tyrosine phosphatase, receptor type, N polypeptide 2 Phoshatase
SFRPI secreted frizzled-related protein | Whnt Signaling modulator
SFRP2 secreted frizzled-related protein 2 Wht signalling modulator
TNFRSF25 tumor necrosis factor receptor superfamily, member 25 Cell surface receptor
Transcription Factor HOXC9 homeobox C9 Transcription factor
NEURODI neurogenic differentiation | Transcription factor
NEUROGI neurogenin | Transcription factor
PAX8 paired box gene — 8 Transcription factor
PITX2 paired-like homeodomain transcription factor 2 Transcription factor
TFAP2A transcription factor AP 2 alpha Transcription Factor
TCF21 transcription factor 21 Transcription factor
Metabolism CYPIBI cytochrome p450 family |, subfamily B, polypeptide | Liver metabolism
MTIG metallothionein 1G Heavy metal binding
MTHFR 5,10 methylenetetrahydrofolate reductase (NADPH) Methyl group metabolism
SLC38A4 solute carrier family 38, member 4 Amino acid transporter
Other ABCBI ATP-binding cassette, sub-family B (MDR/TAP), member | Drug efflux pump
RARRES| retinoic acid receptor responder | Unclear
WDR33 WD repeat domain 33 Unclear
a Gene symbol is the Human Genome Organization nomenclature. ® Gene Name and Function as listed per [63].
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studies. This might suggest methylation-induced silencing
of a tumor suppressor pathway. We recently reported
OPCML as highly methylated in lung adenocarcinoma,
[24] indicating that it is a potential AD/SQ lung cancer
biomarker.

Tumor necrosis factor receptor superfamily member 25
(TNFRSF25) has been shown to be methylated in bladder
cancer, and very recently methylation in lung SQ was
reported [31,47]. As this receptor mediates apoptosis,
methylation-induced silencing may facilitate evasion of
cell death - a key step in cancer growth. The transcription
factor TCF21 has been reported to be more highly meth-
ylated in lung cancer tissue than non-tumor adjacent lung,
and overexpression in mouse xenografts results in a reduc-
tion in tumor size and weight [32]. This implies a tumor
suppressor function for TCF21, therefore tumor-associ-
ated promoter DNA methylation, and possibly transcrip-
tional silencing, are not surprising.

For other genes, such as PITX2, PAX8 and PTPRN2, the
biological consequences of DNA methylation remain a
question. Functionally, it is unclear how PITX2 silencing
would contribute to lung cancer growth. This member of
the paired-like homeodomain transcription factor family
functions in left-right asymmetry in development [48],
but has no described function in adult lung. However,
cancer-related methylation is reported in other tissues in
which the gene has no described function, for example, in
acute myeloid leukemia [49], breast cancer [50], and pros-
tate cancer [51]. Interestingly, higher DNA methylation
levels of PITX2 are associated with greater recurrence of
both breast and prostate cancer [50,51]. Whether such a
link exists in lung cancer will require further studies. Pro-
tein tyrosine phosphatase, receptor type, N polypeptide 2
(PTPRN2) is an autoantigen involved in insulin depend-
ent diabetes mellitus [52]. No previous reports of methyl-
ation of PTPRN2 exist, making it a potentially novel
cancer biomarker.

The most intriguing of the identified loci is the top marker
GDNF, encoding glial cell line-derived neurotrophic fac-
tor. GDNF has been reported to be overexpressed in lung
tumor tissue [53] and is silent in normal adult lung [54].
As a ligand for the RET proto-oncogene, GDNF would be
a likely candidate for promoting cancer progression, and
has been proposed to do so in pancreatic cancer [55].
DNA methylation of this locus would seem contradictory.
However, the high DNA methylation we report is at pro-
moter 2 (located at the intron 1/exon 2 boundary of
GDNF), a promoter that has been shown to have low
activity [56]. Indeed, in our preliminary studies, a primer
designed against the primary promoter of GDNF showed
no hypermethylation (data not shown). It may be possi-
ble that DNA methylation at the downstream promoter is
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somehow related to the transcriptional activity from the
upstream promoter. Given the fact that GDNF is, to our
knowledge, the strongest candidate DNA methylation
marker for lung SQ identified to date, this issue would be
worth investigating further.

While the top eight markers identified in this study show
highly significant DNA hypermethylation in cancer, it will
of course be important to validate these markers in an
independent collection of samples. Such studies are in
progress using a specimen collection balanced for gender
and the major ethnic groups in the United States.

Conclusion

Our primary goal is to find sensitive and specific biomar-
kers for the early detection of lung cancer. Differences in
the biology and treatment of different lung cancer histo-
logical subtypes warrant the development of markers for
each cancer subtype. We have recently reported a panel of
DNA methylation markers for lung adenocarcinoma [24].
Here we report the identification of promising DNA
methylation markers for squamous cell lung cancer. Sta-
tistical analysis of the difference in DNA methylation lev-
els between SQ tumor and adjacent non-tumor lung tissue
identified 25 statistically significant loci. Of these, three
are potential negative DNA methylation markers (more
methylated in adjacent non-tumor tissues), while 22 are
potential positive DNA methylation markers. Of the 22
loci, we focused on those eight that were ranked most sig-
nificantly hypermethylated in the cancer versuspaired
non-cancer samples by p-value and ROC curves. These
eight loci are significantly hypermethylated in both early
(stage 1) and more advanced cancers. Two of those eight
loci (PAX8, PTPRN2) have never been reported to be
hypermethylated in human cancer specimens, and thus
constitute promising new candidate cancer markers. To
our knowledge, the eight-locus panel consisting of GDNF,
MTHFR, OPCML, TNFRSF25, TCF21, PAX8, PTPRN2 and
PITX2, constitutes the highest sensitivity and specificity
DNA methylation marker panel for lung SQ reported to
date. Following its validation on a separate set of tumor
and non-tumor lung samples, the next step will be to
examine the DNA methylation of these loci in remote
media (such as blood, sputum, bronchoalveolar lavage)
from lung cancer patients and control non-cancer cases. In
conjunction with our work on AD lung cancer and ongo-
ing studies of other NSCLC subtypes, we hope to develop
a panel of markers for the sensitive and specific detection
of non-small cell lung cancer that would also identify the
histological subtype. The further development of DNA
methylation markers promises to be important not only
for diagnostics, but also for prognostication, the ability to
follow response to therapy, and guidance in the choice of
treatment.
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Methods

Tissue samples and DNA extraction

Samples were collected from the Los Angeles County Hos-
pital archives, the Norris Comprehensive Cancer Center
archives and the National Disease Research Interchange
(NDRI). Study subjects included 21 males and 22 females
ranging in age from 45 - 84 at time of diagnosis (median
age: 70 years old). Age and gender information was miss-
ing for 2 patients. The study population was primarily
Caucasian, with 35 Caucasians, 2 African Americans and
race unknown for 8 patients. Information as to tumor
stage was available for 43 of the 45 patients. TNM status
was either listed in the pathology report, or discerned
from the report using the International System for Staging
Lung Cancer [57]. This information was used to assign
tumor stage. There were 6 stage IA, 25 stage IB, 7 stage I1B
and 5 stage IIIA patients. Sections were cut from separate,
histologically verified, tumor and adjacent non-tumor
paraffin blocks. A 5 pm slide was haematoxylin & eosin
(H&E) stained and coverslipped for histological confir-
mation of tumor histological type, and presence or
absence of tumor, by an expert lung pathologist (MNK).
Five adjacent 10 um slides were cut, H&E stained, and
tumor or non-tumor material was manually microdis-
sected. DNA was extracted via proteinase K digestion [58].
Briefly, cells were lysed in a solution containing 100 mM
Tris-HCI (pH 8.0), 10 mM EDTA (pH 8.0), 1 mg/mL pro-
teinase K, and 0.05 mg/mL tRNA and incubated at 50°C
overnight. The DNA was bisulfite converted as previously
described [59]. All studies were institutionally approved
by the University of Southern California Institutional
Review Board (IRB# HS-016041, HS-06-00447), and the
identities of patients were not made available to labora-
tory investigators.

Methylation analysis

DNA methylation analysis was done by MethyLight as
previously described [59]. A pre-screen methylation anal-
ysis using cell lines and five sets of paired SQ/non-tumor
adjacent lung (distinct from the samples used in this
study) were used to screen over 300 DNA methylation
loci, and led to the identification of 42 loci of interest,
which were evaluated in this study. The primer and probe
sequences are described in the supplemental data [see
additional file 1]. In addition to primer and probe sets
designed specifically for the locus of interest, two internal
reference primer and probe sets directed against collagen
and ALU repeats were included in the analysis to normal-
ize for input DNA [60,61]. The percentage methylated ref-
erence (PMR) compares the level of methylation in the
sample to in vitro methylated control DNA. It is calculated
by dividing the GENE:reference ratio of a sample by the
GENE:reference ratio of M. Sssl-treated in vitro methylated
human DNA and multiplying by 100 [59]. PMRs were

http://www.molecular-cancer.com/content/7/1/62

individually calculated using the collagen and ALU con-
trols and then averaged.

Statistical analysis

Using PMR as a continuous variable, methylation levels of
tumor samples were compared to adjacent non-tumor
lung by means of the Wilcoxon signed rank test. The large
number of loci analyzed increases the potential for false
discovery. To counteract this risk, a multiple comparisons
threshold was set and applied to those loci for which no
previous data demonstrated their methylation in SQ of
the lung at the time of analysis (Table 1, last column;
[29]). To examine whether tumor-specific hypermethyla-
tion was seen in early as well as later stages of SQ lung can-
cer, methylation levels in tumor and adjacent non-tumor
tissue were compared for "early" (stages IA and IB, n = 31)
and more advanced cancers (stages II and III, n = 12), as
well as for each individual stage (IA, IB, IIB and IITA) using
the Wilcoxon test. The same test was applied to the com-
parison of methylation levels in tumor samples between
the early and advanced cancers. Associations with gender
and age were tested using the Wilcoxon test to compare
methylation levels within the tumor sample collection
only. As an indicator of the potential utility of methyla-
tion of these loci as a marker for cancer, Receiver Operat-
ing Characteristic (ROC) curves were calculated for each
of our top markers, using the PMR values for the tumor
and adjacent non-tumor lung specimens. All statistical
tests were two-sided. Statistical tests were carried out using
JMP (v 5.0.1a, SAS Institute Inc, NC).

To determine which combinations of markers would be
most effective to correctly identify tumor vs. non-tumor
samples, we fit a random forest classifier to the data set,
using the R programming language (v 2.5; [62]) and 90
samples and 42 variables. Using bootstrap samples of the
data, we grew a forest of 30,000 trees. Splits were deter-
mined using a random sample of five variables and trees
were grown until there was only one observation in each
leaf. We determined error rates using the observations that
were not used to generate the trees. For each observation,
its outcome was predicted by having the majority vote
from the trees that were generated without the original
data point in their bootstrap sample. These predicted val-
ues were compared against the true tissue type to estimate
prediction error.

Competing interests

IALO and PWL are shareholders of Epigenomics AG,
which has a commercial interest in the development of
DNA markers for disease detection and diagnosis. None
of the work performed in the laboratories of the authors is
or has been supported or directed by Epigenomics.

Page 10 of 13

(page number not for citation purposes)



Molecular Cancer 2008, 7:62

Authors’ contributions

PPA was involved in experimental execution and exten-
sive data analysis, drafting the manuscript, and generation
of figures. JSG was involved in marker design, experimen-
tal execution and initial analysis. MNK reviewed all histo-
logical slides prior to microdissection. JAH provided
samples and statistical discussions. ST helped locate and
section tissues from the Los Angeles County Hospital and
provided the linked and de-identified clinicopathological
information. MC and DJW provided experimental advice
and designed several of the MethyLight reactions used in
this study. PWL provided experimental advice and discus-
sion regarding data interpretation. KDS oversaw statistical
analysis and drafted statistical sections of the manuscript.
IALO designed the study, oversaw all aspects of the
project, mentored PPA and JSG, and revised manuscript
drafts. All authors reviewed and commented on the man-
uscript during its drafting and approved the final version.

Additional material

Additional file 1

Primer and Probe information and sequences.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1476-
4598-7-62-S1.doc]

Acknowledgements

The authors thank members of the Laird lab for help with MethyLight and
probe/primer design, and Laird-Offringa lab members for critical comments
on the manuscript. We thank Joe Hacia, Gyeong-Hoon Kang, Brian Pike,
Jeffrey Tsou and Deborah Weener for help with primer/probe design. This
project was funded by grant support for IALO: National Institutes of
Health/National Cancer Institute R21 CA102247 and ROl CAI119029,
Whittier Foundation Translational Research Grant, a STOP Cancer award
and generous support by the Kazan, McClain, Abrams, Fernandez, Lyons &
Farrise Foundation and Paul and Michelle Zygielbaum. Two of the cancer
samples used in this study were provided by the Norris Comprehensive
Cancer Center's NIH-funded Slide Retrieval and Tissue Discard Reposi-
tory. None of the funding agencies played any role in the collection, analysis,
interpretation of the data, writing of the manuscript, nor the decision to
publish. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the funding agencies.

References

I.  Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun M]: Cancer statis-
tics, 2007. CA Cancer | Clin 2007, 57(1):43-66.

2. Kaneko M, Eguchi K, Ohmatsu H, Kakinuma R, Naruke T, Suemasu K,
Moriyama N: Peripheral lung cancer: screening and detection
with low-dose spiral CT versus radiography. Radiology 1996,
201(3):798-802.

3.  Gavelli G, Giampalma E: Sensitivity and specificity of chest X-
ray screening for lung cancer: review article. Cancer 2000,
89(11 Suppl):2453-2456.

4. Henschke Cl, Yankelevitz DF, Libby DM, Pasmantier MW, Smith JP,
Miettinen OS: Survival of patients with stage | lung cancer
detected on CT screening. N Engl | Med 2006,
355(17):1763-1771.

20.

21.

22.

23.

24.

http://www.molecular-cancer.com/content/7/1/62

Crestanello JA, Allen MS, Jett R, Cassivi SD, Nichols FC 3rd, Swensen
S), Deschamps C, Pairolero PC: Thoracic surgical operations in
patients enrolled in a computed tomographic screening trial.
J Thorac Cardiovasc Surg 2004, 128(2):254-259.

Diederich S, Wormanns D: Impact of low-dose CT on lung can-
cer screening. Lung Cancer 2004, 45(Suppl 2):S13-19.
McWilliams A, MacAulay C, Gazdar AF, Lam S: Innovative molec-
ular and imaging approaches for the detection of lung cancer
and its precursor lesions. Oncogene 2002, 21(45):6949-6959.
Bach PB, Jett JR, Pastorino U, Tockman MS, Swensen S, Begg CB:
Computed tomography screening and lung cancer out-
comes. Jama 2007, 297(9):953-961.

Haussinger K, Becker H, Stanzel F, Kreuzer A, Schmidt B, Strausz |,
Cavaliere S, Herth F, Kohlhaufl M, Muller KM, et al.: Autofluores-
cence bronchoscopy with white light bronchoscopy com-
pared with white light bronchoscopy alone for the detection
of precancerous lesions: a European randomised controlled
multicentre trial. Thorax 2005, 60(6):496-503.

Feller-Kopman D, Lunn W, Ernst A: Autofluorescence bronchos-
copy and endobronchial ultrasound: a practical review. Ann
Thorac Surg 2005, 80(6):2395-2401.

Bach PB, Kelley M], Tate RC, McCrory DC: Screening for lung
cancer: a review of the current literature. Chest 2003, 123(|
Suppl):72S-82S.

Li R, Todd NW, Qiu Q, Fan T, Zhao RY, Rodgers WH, Fang HB, Katz
RL, Stass SA, Jiang F: Genetic deletions in sputum as diagnostic
markers for early detection of stage | non-small cell lung can-
cer. Clin Cancer Res 2007, 13(2):482-487.

Laird PWV, Jaenisch R: The role of DNA methylation in cancer
genetic and epigenetics. Annu Rev Genet 1996, 30:441-464.

Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D,
Danenberg PV, Laird PW: MethyLight: a high-throughput assay
to measure DNA methylation.  Nucleic Acids Res 2000,
28(8):E32.

Belinsky SA: Gene-promoter hypermethylation as a biomar-
ker in lung cancer. Nat Rev Cancer 2004, 4(9):707-717.

de Fraipont F, Moro-Sibilot D, Michelland S, Brambilla E, Brambilla C,
Favrot MC: Promoter methylation of genes in bronchial lav-
ages: a marker for early diagnosis of primary and relapsing
non-small cell lung cancer? Lung Cancer 2005, 50(2):199-209.
Field JK, Liloglou T, Warrak S, Burger M, Becker E, Berlin K, Nim-
mrich |, Maier S: Methylation discriminators in NSCLC identi-
fied by a microarray based approach. Int | Oncol 2005,
27(1):105-111.

Toyooka S, Toyooka KO, Maruyama R, Virmani AK, Girard L, Miya-
jima K, Harada K, Ariyoshi Y, Takahashi T, Sugio K, et al.: DNA
methylation profiles of lung tumors. Mol Cancer Ther 2001,
1(1):61-67.

Ehrich M, Field JK, Liloglou T, Xinarianos G, Oeth P, Nelson MR, Can-
tor CR, Boom D van den: Cytosine methylation profiles as a
molecular marker in non-small cell lung cancer. Cancer Res
2006, 66(22):10911-10918.

Vischioni B, Oudejans JJ, Vos W, Rodriguez JA, Giaccone G: Fre-
quent overexpression of aurora B kinase, a novel drug tar-
get, in non-small cell lung carcinoma patients. Mol Cancer Ther
2006, 5(11):2905-2913.

Tam 1Y, Chung LP, Suen WS, Wang E, Wong MC, Ho KK, Lam WK,
Chiu SW, Girard L, Minna |D, et al.: Distinct epidermal growth
factor receptor and KRAS mutation patterns in non-small
cell lung cancer patients with different tobacco exposure and
clinicopathologic features. Clin  Cancer Res 2006,
12(5):1647-1653.

Zhou W, Heist RS, Liu G, Neuberg DS, Asomaning K, Su L, Wain JC,
Lynch TJ, Giovannucci E, Christiani DC: Polymorphisms of vita-
min D receptor and survival in early-stage non-small cell
lung cancer patients. Cancer Epidemiol Biomarkers Prev 2006,
15(11):2239-2245.

Raponi M, Zhang Y, Yu, Chen G, Lee G, Taylor JM, Macdonald J, Tho-
mas D, Moskaluk C, Wang Y, et al.: Gene expression signatures
for predicting prognosis of squamous cell and adenocarcino-
mas of the lung. Cancer Res 2006, 66(15):7466-7472.

Tsou JA, Galler JS, Siegmund KD, Laird PW, Turla S, Cozen W, Hagen
JA, Koss MN, Laird-Offringa IA: Identification of a panel of sensi-
tive and specific DNA methylation markers for lung adeno-
carcinoma. Mol Cancer 2007, 6:70.

Page 11 of 13

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1476-4598-7-62-S1.doc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17237035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17237035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8939234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8939234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11147625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11147625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17065637
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17065637
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15282462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15282462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15552777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15552777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12362276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12362276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12362276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17341709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17341709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17341709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15923251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15923251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15923251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16305928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16305928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12527566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12527566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17255269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17255269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17255269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8982461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8982461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10734209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10734209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15343277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15343277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16043258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16043258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16043258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15942649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15942649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12467239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12467239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17108128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17108128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17121938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17121938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17121938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16533793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16533793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16533793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17119052
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17119052
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17119052
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16885343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16885343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16885343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17967182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17967182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17967182

Molecular Cancer 2008, 7:62

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Janssen-Heijnen ML, Coebergh JW: Trends in incidence and prog-
nosis of the histological subtypes of lung cancer in North
America, Australia, New Zealand and Europe. Lung Cancer
2001, 31(2-3):123-137.

Dammann R, Strunnikova M, Schagdarsurengin U, Rastetter M, Pap-
ritz M, Hattenhorst UE, Hofmann HS, Silber RE, Burdach S, Hansen
G: CpG island methylation and expression of tumour-associ-
ated genes in lung carcinoma. Eur | Cancer 2005,
41(8):1223-1236.

Kim YT, Lee SH, Sung SW, Kim JH: Can aberrant promoter
hypermethylation of CpG islands predict the clinical out-
come of non-small cell lung cancer after curative resection?
Ann Thorac Surg 2005, 79(4):1180-1188. discussion | 1801188

Safar AM, Spencer H 3rd, Su X, Coffey M, Cooney CA, Ratnasinghe
LD, Hutchins LF, Fan CY: Methylation profiling of archived non-
small cell lung cancer: a promising prognostic system. Clin
Cancer Res 2005, 11(12):4400-4405.

Benjamini Y, Hochberg Y: Controlling the false discovery rate: a
practical and powerful approach to multiple testing. | R Statist
Soc B 2005, 57:289-300.

Virmani AK, Tsou JA, Siegmund KD, Shen LY, Long TI, Laird PW,
Gazdar AF, Laird-Offringa |A: Hierarchical clustering of lung can-
cer cell lines using DNA methylation markers. Cancer Epide-
miol Biomarkers Prev 2002, 11(3):291-297.

Nakas CT, Alonzo TA: ROC graphs for assessing the ability of a
diagnostic marker to detect three disease classes with an
umbrella ordering. Biometrics 2007, 63(2):603-609.

Smith LT, Lin M, Brena RM, Lang JC, Schuller DE, Otterson GA, Mor-
rison CD, Smiraglia D), Plass C: Epigenetic regulation of the
tumor suppressor gene TCF21 on 6q23-q24 in lung and head
and neck cancer. Proc Natl Acad Sci USA 2006, 103(4):982-987.
Zochbauer-Muller S, Fong KM, Virmani AK, Geradts ], Gazdar AF,
Minna JD: Aberrant promoter methylation of multiple genes
in non-small cell lung cancers. Cancer Res 2001, 6 1(1):249-255.
Brabender |, Usadel H, Metzger R, Schneider PM, Park J, Salonga D,
Tsao-Wei DD, Groshen S, Lord RV, Takebe N, et al.: Quantitative
O(6)-methylguanine DNA methyltransferase methylation
analysis in curatively resected non-small cell lung cancer:
associations with clinical outcome. Clin Cancer Res 2003,
9(1):223-227.

Gu J, Berman D, Lu C, Wistuba Il, Roth JA, Frazier M, Spitz MR, Wu
X: Aberrant promoter methylation profile and association
with survival in patients with non-small cell lung cancer. Clin
Cancer Res 2006, 12(24):7329-7338.

Harden SV, Tokumaru Y, Westra WH, Goodman S, Ahrendt SA,
Yang SC, Sidransky D: Gene promoter hypermethylation in
tumors and lymph nodes of stage | lung cancer patients. Clin
Cancer Res 2003, 9(4):1370-1375.

Rauch T, Li H, Wu X, Pfeifer GP: MIRA-assisted microarray anal-
ysis, a new technology for the determination of DNA meth-
ylation patterns, identifies frequent methylation of
homeodomain-containing genes in lung cancer cells. Cancer
Res 2006, 66(16):7939-7947.

Marsit CJ, Houseman EA, Christensen BC, Eddy K, Bueno R, Sugar-
baker DJ, Nelson HH, Karagas MR, Kelsey KT: Examination of a
CpG island methylator phenotype and implications of meth-
ylation profiles in solid tumors. Cancer Res 2006,
66(21):10621-10629.

Dai Z, Lakshmanan RR, Zhu WG, Smiraglia D}, Rush L}, Fruhwald MC,
Brena RM, Li B, Wright FA, Ross P, et al.: Global methylation pro-
filing of lung cancer identifies novel methylated genes. Neo-
plasia 2001, 3(4):314-323.

LiuY, Lan Q, Siegfried JM, Luketich JD, Keohavong P: Aberrant pro-
moter methylation of plé and MGMT genes in lung tumors
from smoking and never-smoking lung cancer patients. Neo-
plasia 2006, 8(1):46-51.

Furonaka O, Takeshima Y, Awaya H, Kushitani K, Kohno N, Inai K:
Aberrant methylation and loss of expression of O-methyl-
guanine-DNA methyltransferase in pulmonary squamous
cell carcinoma and adenocarcinoma. Pathol Int 2005,
55(6):303-309.

Guo M, House MG, Hooker C, Han Y, Heath E, Gabrielson E, Yang
SC, Baylin SB, Herman ]G, Brock MV: Promoter hypermethyla-
tion of resected bronchial margins: a field defect of changes?
Clin Cancer Res 2004, 10(15):5131-5136.

43.

44,

45.

46.

47.

48.

49.

50.

51,

52.

53.

54.

55.

56.

57.

58.

59.

60.

http://www.molecular-cancer.com/content/7/1/62

Luo RZ, Fang X, Marquez R, Liu SY, Mills GB, Liao WS, Yu Y, Bast RC:
ARHlI is a Ras-related small G-protein with a novel N-termi-
nal extension that inhibits growth of ovarian and breast can-
cers. Oncogene 2003, 22(19):2897-2909.

Suzuki M, Shigematsu H, Shames DS, Sunaga N, Takahashi T, Shiv-
apurkar N, lizasa T, Frenkel EP, Minna JD, Fujisawa T, et al.: DNA
methylation-associated inactivation of TGFbeta-related
genes DRM/Gremlin, RUNX3, and HPPI in human cancers.
Br J Cancer 2005, 93(9):1029-1037.

Hanabata T, Tsukuda K, Toyooka S, Yano M, Aoe M, Nagahiro |, Sano
Y, Date H, Shimizu N: DNA methylation of multiple genes and
clinicopathological relationship of non-small cell lung can-
cers. Oncol Rep 2004, 12(1):177-180.

Maneckjee R, Minna JD: Opioids induce while nicotine sup-
presses apoptosis in human lung cancer cells. Cell Growth Differ
1994, 5(10):1033-1040.

Friedrich MG, Weisenberger D], Cheng JC, Chandrasoma S, Sieg-
mund KD, Gonzalgo ML, Toma MI, Huland H, Yoo C, Tsai YC, et al.:
Detection of methylated apoptosis-associated genes in urine
sediments of bladder cancer patients. Clin Cancer Res 2004,
10(22):7457-7465.

Blum M, Steinbeisser H, Campione M, Schweickert A: Vertebrate
left-right asymmetry: old studies and new insights. Cell Mol
Biol (Noisy-le-grand) 1999, 45(5):505-516.

Toyota M, Kopecky K], Toyota MO, Jair KW, Willman CL, Issa JP:
Methylation profiling in acute myeloid leukemia. Blood 2001,
97(9):2823-2829.

Maier S, Nimmrich |, Koenig T, Eppenberger-Castori S, Bohlmann I,
Paradiso A, Spyratos F, Thomssen C, Mueller V, Nahrig ], et al.: DNA-
methylation of the homeodomain transcription factor
PITX2 reliably predicts risk of distant disease recurrence in
tamoxifen-treated, node-negative breast cancer patients —
Technical and clinical validation in a multi-centre setting in
collaboration with the European organisation for research
and treatment of cancer (EORTC) pathobiology group. Eur |
Cancer 2007, 43(11):1679-1686.

Hampton T: New Markers may help predict prostate cancer
relapse risk. Journal of the American Medical Association 2006,
295(19):2234-2238.

Li Q, Borovitskaya AE, DeSilva MG, Wasserfall C, Maclaren NK, Not-
kins AL, Lan MS: Autoantigens in insulin-dependent diabetes
mellitus: molecular cloning and characterization of human
IA-2 beta. Proc Assoc Am Physicians 1997, 109(4):429-439.

Garnis C, Davies JJ, Buys TP, Tsao MS, MacAulay C, Lam S, Lam WL:
Chromosome 5p aberrations are early events in lung cancer:
implication of glial cell line-derived neurotrophic factor in
disease progression. Oncogene 2005, 24(30):4806-4812.
Fromont-Hankard G, Philippe-Chomette P, Delezoide AL, Nessmann
C, Aigrain Y, Peuchmaur M: Glial cell-derived neurotrophic fac-
tor expression in normal human lung and congenital cystic
adenomatoid malformation.  Arch Pathol Lab Med 2002,
126(4):432-436.

Funahashi H, Okada Y, Sawai H, Takahashi H, Matsuo Y, Takeyama H,
Manabe T: The role of glial cell line-derived neurotrophic fac-
tor (GDNF) and integrins for invasion and metastasis in
human pancreatic cancer cells. | Surg Oncol 2005, 91(1):77-83.
Grimm L, Holinski-Feder E, Teodoridis ], Scheffer B, Schindelhauer D,
Meitinger T, Ueffing M: Analysis of the human GDNF gene
reveals an inducible promoter, three exons, a triplet repeat
within the 3'-UTR and alternative splice products. Hum Mol
Genet 1998, 7(12):1873-1886.

Mountain CF: The international system for staging lung can-
cer. Semin Surg Oncol 2000, 18(2):106-115.

Laird PW, Zijderveld A, Linders K, Rudnicki MA, Jaenisch R, Berns A:
Simplified mammalian DNA isolation procedure. Nucleic Acids
Res 1991, 19(15):4293.

Weisenberger D), Siegmund KD, Campan M, Young |, Long T, Faasse
MA, Kang GH, Widschwendter M, Weener D, Buchanan D, et al.:
CpG island methylator phenotype underlies sporadic micro-
satellite instability and is tightly associated with BRAF muta-
tion in colorectal cancer. Nat Genet 2006, 38(7):787-793.

Eads CA, Danenberg KD, Kawakami K, Saltz LB, Danenberg PV, Laird
PW: CpG island hypermethylation in human colorectal
tumors is not associated with DNA methyltransferase over-
expression. Cancer Res 1999, 59(10):2302-2306.

Page 12 of 13

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11165391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11165391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11165391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15911247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15911247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15797047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15797047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15958624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15958624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11895880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11895880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17688513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17688513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17688513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16415157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16415157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16415157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11196170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11196170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17189404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17189404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12684406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12684406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16912168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16912168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16912168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17079487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17079487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17079487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11571631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11571631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16533425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16533425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16533425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15943786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15943786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15943786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12771940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12771940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12771940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16234815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16234815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7848904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7848904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15569975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15569975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15569975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10512183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10512183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11313277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11313277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17601725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17601725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17601725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16705097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16705097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9220540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9220540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9220540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15870700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15870700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15870700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11900567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11900567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11900567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15999351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15999351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15999351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9811930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9811930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9811930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10657912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10657912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1870982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1870982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16804544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16804544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16804544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10344733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10344733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10344733

Molecular Cancer 2008, 7:62

6l.

62.

63.

Weisenberger DJ, Campan M, Long Tl, Kim M, Woods C, Fiala E, Ehr-
lich M, Laird PW: Analysis of repetitive element DNA methyl-
ation by MethyLight. Nucleic Acids Res 2005, 33(21):6823-6836.
lhaka R, Gentleman R: R: a language for data analysis and graph-
ics. | Comput Graph Statist 1996, 5:299-314.

GeneCards [http://www.genecards.org]

http://www.molecular-cancer.com/content/7/1/62

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 13 of 13

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16326863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16326863
http://www.genecards.org
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Discussion
	Conclusion
	Methods
	Tissue samples and DNA extraction
	Methylation analysis
	Statistical analysis

	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

