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Abstract

Veterinary Herbal Medicine (VHM) is a comprehensive, current, and informative discipline

on the utilization of herbs in veterinary practice. Driven by chemistry but progressively

directed by pharmacology and the clinical sciences, drug research has contributed more to

address the needs for innovative veterinary medicine for curing animal diseases. However,

research into veterinary medicine of vegetal origin in the pharmaceutical industry has

reduced, owing to questions such as the short of compatibility of traditional natural-product

extract libraries with high-throughput screening. Here, we present a cross-species chemo-

genomic screening platform to dissect the genetic basis of multifactorial diseases and to

determine the most suitable points of attack for future veterinary medicines, thereby increas-

ing the number of treatment options. First, based on critically examined pharmacology and

text mining, we build a cross-species drug-likeness evaluation approach to screen the lead

compounds in veterinary medicines. Second, a specific cross-species target prediction

model is developed to infer drug-target connections, with the purpose of understanding how

drugs work on the specific targets. Third, we focus on exploring the multiple targets interfer-

ence effects of veterinary medicines by heterogeneous network convergence and modulari-

zation analysis. Finally, we manually integrate a disease pathway to test whether the cross-

species chemogenomic platform could uncover the active mechanism of veterinary medi-

cine, which is exemplified by a specific network module. We believe the proposed cross-

species chemogenomic platform allows for the systematization of current and traditional

knowledge of veterinary medicine and, importantly, for the application of this emerging body

of knowledge to the development of new drugs for animal diseases.
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Introduction

Drug discovery aims at finding molecules that will target a specific pathway or pathogen with

minimal side effects [1]. However, productivity, in terms of new drug approvals, has presum-

ably been falling for almost a decade and the safety of a considerable number of highly effective

drugs has recently been introduced into doubt [2]. For example, about 2.3 million adverse

event reports were collected against *6000 marketed drugs between 1969 and 2002 [3].

Therefore, the pharmaceutical industry is presently beleaguered by detailed scrutiny from the

financial sector, managers and the wider population [2]. To achieve the potential for rescuing

the pharmaceutical industry, shifting the focus of drug discovery from chemosynthesis to

cross-species sources, typically natural products from medicinal plants, is essential for discov-

ering effective therapeutic agents that revolutionized treatment of serious animal diseases.

Medicinal plants are a vital source of phytochemicals that supply traditional medicinal

treatment of various diseases [4]. At present, the interest in medicinal plants has increased sig-

nificantly in animal therapy, which is named as VHM [5]. As described by Viegi et al. [6], cat-

tle, horses, sheep, goats and pigs account for about 70% of the animals cured with herbal

remedies, followed by poultry (9.1%), dogs (5.3%) and rabbits (4.3%). This is not only because

of a general trend towards the utilization of natural products for therapeutic diseases but also

attributable to the availability of extensive evidence regarding the efficacy of herbal remedies

[7]. A case in point is ‘Zoopharmacognosy’, which refers to animals self-medicate by searching

for herbs best capable of treating their disease [8, 9]. Although the clinical efficiency and safety

of herbs are unquestioned for animal disease, identification of the new structural leads remains

a matter of dispute. This raises questions about whether these most successful source of drugs

(natural products) has any place in modern drug discovery [10, 11].

With the above background, it is worth considering how new drugs have been discovered.

In general, three different type approaches have been, and continue to be utilized. These are:

traditional, empirical and experimental. The traditional approach takes advantage of material

that has been discovered by years of trial and error in dissimilar medical system. Typical exam-

ples cover drugs such as morphine, quinine and ephedrine that have been widely and long-

term used, and the closest adopted compounds such as the antimalarial artemisinin. The

empirical approach constructs on an interpretation of a correlative physiological process and

regularly exploits a therapeutic agent from a naturally occurring lead molecule. Representative

drugs include muscle relaxant tubocurarine, β-adrenoceptor antagonist propranolol, and his-

tamine H2 receptor antagonist cimetidine [10]. The drawback of this approach is that it lacks

the scientific and standard evaluation system of modern medicine. The experimental approach

is based on the development of molecular biological techniques and the advances in genomics.

The majority of drug discovery is currently on the basis of the experimental approach, which is

unfortunatly time-consuming and laborious [12]. Thus, a new approach, such as computer

strategies, will be needed to remedy this situation.

More recently, the advent of–omics technologies that rapidly measure the entirety of the com-

plement of various organisms, for example, genes (genomics) or metabolites (metabonomics)—

and to integrate these diverse data into a complete picture—has given rise to a new way of looking

at the herbal remedies in the form of chemogenomic profile [13]. Chemogenomics is an incipient

discipline that integrates the latest instruments of genomics and chemistry and applies them to

target and drug discovery. Its strength lies in eliminating the bottleneck that presently arises in tar-

get identification by measuring the wide, conditional effects of chemical libraries on entire biolog-

ical systems or by filtering huge chemical libraries rapidly and effectively against given targets.

The hope is that chemogenomics will concurrently recognize and verify therapeutic targets and

detect drug candidates to quickly and efficiently generate new drugs for many diseases [14].

Large-scale cross-species chemogenomic platform to discover veterinary drug from herbal medicines
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In this study, we construct a cross-species chemogenomic screening platform to decode the

drug discovery procedure and utilized it into VHM, which is exemplified by identifying lead

compounds that have curative effect on Bovine pneumonia of erchen decoction (Fig 1). This

herbal remedy is a China proved prescription for the treatment of pneumonia, which is com-

posed of Pinellia ternata (Thunb.) Breit (Pinellia ternate), Tangerine Peel, Poria cocos (Schw.)

Wolf (Tuckahoe) and Glycyrrhiza uralensis Fisch (Licorice). First, based on critically examined

pharmacology knowledge, we propose a large-scale statistical analysis to evaluate the efficiency

of ingredients in herbal remedy, which consists of drug-likeness (DL) assessment and chemical

properties comparison. Second, specific informatics method is developed based on complex

structure-, omics- analysis to infer drug-target connections, with purpose to understand how

drugs work on the specific targets. Third, we focus on the exploration of the interactions among

active ingredients, targets and disease by carrying out network-based systematic investigations,

such as network convergence and modularized analysis. Finally, we choose a typical convergent

module and associate it with pathway to reveal the molecular basis of the therapeutic potential.

We believe the large-scale cross-species chemogenomic platform promise to improve decision

making in pharmaceutical development and announce the mechanism of action.

Materials and methods

Data sets

All the compounds in erchen decoction are collected from the TCMSP database[15].

DL assessment

DL is calculated by Tanimoto similarity [16] between herbal compounds and the average

molecular properties of all veterinary drugs in FDA. The molecular properties refer to the

Fig 1. Flowchart of the cross-species chemogenomic platform.

https://doi.org/10.1371/journal.pone.0184880.g001
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1,664 symbols which are calculated by Dragon professional version 5.4. The 1,664 descriptors

are divided into 20 different types, such as constitutional, topological, 2D-autocorrelations,

geometrical and so on. After removing the descriptors that are not available for all drugs, 1,533

descriptors are finally used (S1 Table).

TðA;BÞ ¼
A � B

kAk2
þ kBk2

� A � B

where A is the molecular descriptors of herbal compounds, B represent the average molecular

properties of all veterinary drugs in FDA. In this work, ingredients with DL� 0.15 are

regarded as the candidate bioactive molecules, because the mean value of DL for all veterinary

drugs in FDA is 0.15 (S1 Fig).

Physicochemical features calculation

Molecular weight (MW), number of hydrogen bond acceptors (nHAcc), number of hydrogen

bond donors (nHDon), octanol-water partition coefficient (MlogP) and number of rotatable

bonds (RBN) these physicochemical parameters are calculated by the Dragon software [17] in

this work. According to the Lipinski’s rule of five, the threshold value of them are respectively

set to: 500, 10, 5, 5 and 10.

Target identification

In an effort to predict the therapeutic target of animals, we construct a novel cross-species tar-

get prediction model (CSDT) by using Random Forest [18], which expands the predicted pro-

tein scope to all Swiss-Prot in Uniprot database [19], including 549,649 sequences involving

13,241 species such as Eukaryotes, Procaryotes, and Viruses. The building mainly includes the

following four steps (S2 Fig):

1. Benchmark Dataset. Drug-target interactions are retrieved from the DrugBank database

(http://www.drugbank.ca/, accessed on October 1, 2015). To eliminate noise of this data set,

we further match them to STIICH [20], SuperTarget [21] and KEGG [22] database. In total,

a 12,907 drug-target Interactions including 5,689 drugs and 3,650 targets is applied in this

work as the benchmark dataset (S2 Table);

2. Descriptor calculation. To characterize the drugs and targets with known pharmacological

interactions, drug structures and protein sequences are converted into numerical descrip-

tors by employing DRAGON program (http://www.talete.mi.it/index.htm) and ProteinEn-

coding (http://jing.cz3.nus.edu.sg/cgi-bin/prof/prof.cgi/), respectively. As a result, each

drug is represented as 900 physicochemical descriptors. For a certain protein, it is charac-

terize by 1,545 dimensions structural and physicochemical features (S3 Table);

3. Construction of training and test sets. The positive set is constructed by the known drug-target

interactions that extracted from the DrugBank database [23]. The negative set is assembled by

a random generation of the same number of relations that do not overlap with those positive

interactions, which is repeated 1,000 times to overcome the choice bias of the negative set. For

each time, the dataset is then randomly split into two subsets, i.e., training set (19,360 = 9,680

positive interactions+9680 negative interactions, 3/4 of total sets) used to construct the model

and an independent test set (6,454 = 3,227positive interactions+3,227negative interactions, 1/

4 of total sets) to validate the accuracy of the model. Finally, these data are applied for random

forests (RF) (http://www.stat.berkeley.edu/users/breiman/) modeling process. Default settings
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are used for the parameters: 500 for the number of trees and the square root of the total num-

ber of variables for the number of randomly selected variables, respectively.

4. Model performance. With the purpose of deriving a reliable in silicomodel, both internal

and external validation methods are applied. For the internal validation, the target predic-

tion model is evaluated and verified with 5-fold cross-validation. The training set is firstly

randomly separated into five approximately equal-sized subsets, where four subsets are

selected as the training set to build a model and the remaining samples as test set. This pro-

cess is repeated five times to ensure every subset can be predicted as a validation set once.

As a result, the derived model performs well in predicting the drug targets with the accuracy

of 77.04±0.80%, the sensitivity of 75.3±1.10%, the specificity of 77.48±0.98%, and the area

under the receiver operating curves (AUC) of 0.86±0.01 (S3 Fig), respectively. For the exter-

nal validation, the model shows the accuracy of 75.81±1.31%, the sensitivity of 74.27±
1.67%, the specificity of 76.30±1.48%, and the AUC of 0.85±0.12 (S3 Fig).

Drug direct targeting

We also apply the ensemble similarity (WES) algorithm [24] to identify direct targets of ingre-

dients in erchen decoction. WES quantitatively evaluates whether a molecule will direct bind

to a target based on the weighted structural and physicochemical features it shares with known

ligands of the target. The WES model performs well in predicting the binding (sensitivity 85%,

SEN) and the nonbinding (specificity 71%, SPE) patterns, with the accuracy of 78%, the preci-

sion (PRE 74%) and the area under the receiver operating curves (AUC) of 0.85, respectively.

GO and KEGG pathway enrichment

We utilize the DAVID [25] to decipher the biological interpretation of the predicted targets of

erchen decoction.

Network construction

Target-target (T-T) interaction are built by searching the STRING database. Specifically, in the

STRING database, the target-target interactions are respectively given a confidence score: high

confidence (0.7), medium confidence (0.4) and low confidence (0.15). To ensure the accuracy

of the obtained target-target interactions, we search the STRING database with the confidence

(score) greater than or equal to 0.7. The compound-target network and target-target network

are displayed by Cytoscape 3.3 [26]. Cytoscape is a popular bioinformatics package for biologi-

cal network visualization and data integration.

Results and discussion

Identification lead compounds through cross-species drug-likeness

evaluation

Multicomponent quantitative analysis is one of the mainstream quality control methods of

herbal medicines, since the ingredients of herbal medicines materials are heterogeneous [27].

In this work, 493 chemical components of erchen decoction are extracted from our database

TCMSP (http://lsp.nwu.edu.cn/tcmsp.php). TCMSP is a unique systems pharmacology plat-

form of Chinese herbal medicines that captures the relationships between drugs, targets and

diseases [15].
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To efficiently remove compounds chemically unsuitable for veterinary drug discovery, we

construct a cross-species drug-likeness evaluation method based on Tanimoto coefficient [16]

(see materials and methods). Here, DL is a complicated balance of diverse molecular proper-

ties and structure features which govern whether a particular molecule in erchen decoction is

analogous to the known veterinary drugs in FDA (http://www.fda.gov/). And, the filtering cri-

teria is defined as DL� 0.15, because the average value of DL for all 333 veterinary drugs in

FDA is 0.15. In total, among the 493 compounds, 126 representative compounds with favor-

able DL value are singled out and displayed in Table 1. Note that 48% (61/126) of the active

agents have been reported by literatures S4 Table. For example, baicalin in Pinellia ternate pro-

tects mice from Staphylococcus aureus pneumonia via inhibition of the cytolytic activity of α-

hemolysin [28]. Cavidine possesses anti-inflammatory activity and has been used to treat vari-

ous inflammatory diseases [29]. These results indicate that the DL prediction approach is not

only easy to discover known active ingredient, but also available to predict potential active

ingredients.

MW, nHAcc, nHDon, MlogP and RBN are the mainly pharmacophoric features that

influence the behavior of molecule in a living organism, including bioavailability, transport

properties, affinity to proteins, reactivity, toxicity, metabolic stability and many others [30].

Therefore, we further compare these chemical properties of the obtained potential active

ingredients in erchen decoction with that of the 126 randomly selected molecules in the

TCMSP database to further testify the validity and precision of the cross-species DL evaluation

method.

The distributions of the five pharmacological features of the above two types of ligands have

different characteristics (Fig 2). Specifically speaking, a majority of the potential active com-

pounds in erchen decoction have very low molecular weights in comparison to the ligands in

TCMSP, which presumably is be caused by the fact that in proteins often very small solvent

molecules are bound. Meanwhile, considerably more (40%) ingredients than TCMSP ligands

fulfil the Lipinski "Rule of five" regarding the molecular weight. The same applies for RBN:

23% more active compounds in erchen decoction fulfil the Lipinski "Rule of five". A bigger

percentage of active compounds in erchen decoction (90%) have less than 10 nHAcc, which is

similar to that of TCMSP ligands. Meanwhile, a slightly fraction (18%) of the erchen decoction

ligands have ten to twenty of them. Nevertheless, for TCMSP ligands, there are hardly no mol-

ecules meet the condition described above. Interestingly, this distribution is also applies to

nHDon. Most potential active compounds in erchen (70%) have a MlogP value around 5, and

the MlogP values of the TCMSP ligands accumulate around 10. Approximately 30% fraction

of TCMSP ligands are "drug-like" according to the Lipinski "Rule of five", have a MlogP value

less than 5. These results indicate that the cross-species DL evaluation method can reliably

screen potential active ingredients.

Prediction target proteins through the cross-species drug-target (CSDT)

interaction assessment model

In the elucidation of the pharmacological activities of the filtered active ingredients in erchen

decoction, knowledge of potential targets is of highest importance, which remains an ongoing

focus in drug discovery efforts [31]. In silico prediction of such interaction is in favor of

improving the efficiency of the laborious and costly experimental determination of drug-target

interaction [32, 33]. However, limiting by the scope of the training datasets, both in chemical

space as well as biological space, current drug-target interaction prediction models, especially

ligand-based methods, seem to be all trivially adapted to make predictions for new targets of

human drugs. Thus, there is still no available target prediction model for veterinary drugs.
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Table 1. Candidate active compounds.

No. Herb Compound Name DL MW MLOGP nHDon nHAcc RBN

M017 Tuckahoe Cerevisterol 0.18 430.74 5.15 3 3 4

M020 Tangerine

Peel

beta-Citraurin 0.16 432.7 7.1 1 2 9

M024 Tuckahoe 3-oxo-6, 16α-dihydroxylanosta-7, 9, 26-trien-23-oicacid 0.27 502.81 5.01 3 5 6

M030 Licorice licorice-saponin B2 0.33 809.06 3.35 8 15 7

M033 Pinellia

ternate

soya-cerebroside ii_qt 0.34 552 10.32 4 5 29

M034 Pinellia

ternate

soya-cerebroside I_qt 0.34 552 10.32 4 5 29

M043 Tuckahoe poricoic acid DM 0.25 528.8 4.98 3 6 11

M058 Licorice Licorice glycoside A 0.78 726.74 1.81 8 16 14

M068 Licorice Gancaonin H 0.16 420.49 4.71 3 6 3

M075 Licorice Isoglycyrol 0.17 366.39 4.36 1 6 1

M079 Licorice Hispaglabridin B 0.18 390.51 5 1 4 1

M085 Licorice kanzonols L 0.23 488.62 6.57 3 6 5

M090 Pinellia

ternate

campesterol 0.15 400.76 7.97 1 1 5

M114 Tangerine

Peel

naringin 0.39 580.59 -0.47 8 14 6

M118 Tuckahoe poricoic acid D 0.23 514.77 4.73 4 6 10

M123 Tuckahoe Ergosterol 0.15 396.72 6.93 1 1 4

M136 Licorice Araboglycyrrhizin 0.39 779.03 2.72 7 14 6

M140 Tuckahoe Dehydroeburiconic acid 0.23 466.77 6.85 1 3 6

M149 Licorice 18α-hydroxyglycyrrhetic acid 0.33 486.76 4.55 3 5 1

M154 Licorice Xambioona 0.17 388.49 4.68 0 4 1

M155 Licorice Vicenin-2 0.35 594.57 -2.45 11 15 5

M175 Licorice Liquiritin apioside 0.36 550.56 -0.75 7 13 7

M187 Tuckahoe polysaccharides 0.17 504.5 -6.01 11 16 7

M188 Tuckahoe Beta-Glucan 0.17 504.5 -6.01 11 16 7

M207 Tuckahoe poricoic acid H 0.21 500.79 6.39 3 5 10

M214 Licorice licorice glycoside E 0.59 693.71 1.59 7 14 10

M222 Licorice licorice-saponin G2_qt 0.34 486.76 4.4 3 5 2

M223 Licorice 24-Hydroxyglycyrrhetic acid 0.34 486.76 4.4 3 5 2

M225 Licorice Docosyl caffeate 0.29 488.83 11.16 2 4 24

M238 Pinellia

ternate

Stigmasterol 0.17 412.77 7.64 1 1 5

M243 Licorice Artonin E 0.18 436.49 4.67 4 7 3

M249 Licorice licorice-saponin F3_qt 0.34 454.76 5.93 1 3 0

M267 Pinellia

ternate

soya-cerebroside I 0.62 714.16 8.57 7 10 32

M268 Pinellia

ternate

soya-cerebroside ii 0.61 714.16 8.57 7 10 32

M289 Licorice rutin 0.46 610.57 -1.45 10 16 6

M290 Pinellia

ternate

Baicalin 0.16 446.39 0.64 6 11 4

M297 Licorice Kanzonol Z 0.15 406.51 4.93 2 5 3

M299 Licorice licorice-saponin K2 0.33 823.04 2.01 9 16 8

M310 Licorice 2’,7-Dihydroxy-4’-methoxyisoflavan-7-O-β-d-glucopyranoside 0.15 434.48 0.59 5 9 5

M317 Licorice glycyrrhetol 0.28 456.78 5.28 2 3 1

(Continued )
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Table 1. (Continued)

No. Herb Compound Name DL MW MLOGP nHDon nHAcc RBN

M328 Licorice Astragalin 0.16 448.41 -0.32 7 11 4

M331 Licorice Kanzonol H 0.17 424.58 6.1 2 5 4

M334 Pinellia

ternate

Cavidine 0.16 353.45 3.72 0 5 2

M340 Licorice 11-deoxyglycyrrhetic acid 0.29 456.78 6.42 2 3 1

M343 Tangerine

Peel

Limonin 0.36 470.56 1.42 0 8 1

M352 Licorice uralsaponin B 0.33 823.04 2.42 8 16 7

M355 Licorice 24-Hydroxy-11-deoxyglycyrrhetic acid 0.29 458.75 5.13 3 4 1

M366 Tuckahoe Polyporenic acid C 0.25 482.77 5.68 2 4 6

M367 Tuckahoe (16α)-16-Hydroxy-24-methylene-3-oxolanosta-7,9(11)-dien-21-oic acid 0.25 482.77 5.68 2 4 6

M369

Tangerine

Peel

Tangeraxanthin 0.26 484.78 7.65 1 2 10

M376 Licorice 4H-1-Benzopyran-4-one, 2-(4-(beta-D-glucopyranosyloxy)phenyl)-

2,3-dihydro-5,7-dihydroxy-, (2S)-

0.17 434.43 0.39 6 10 4

M381 Tuckahoe Poricoic acid A 0.21 498.77 5.94 3 5 10

M392 Pinellia

ternate

beta-Sitosterol 0.17 414.79 8.08 1 1 6

M394 Tangerine

Peel

beta-Sitosterol 0.17 414.79 8.08 1 1 6

M395 Tuckahoe Daucosterol_qt 0.17 414.79 8.08 1 1 6

M399 Tuckahoe 3-epidehydrotumulosic acid 0.25 484.79 5.72 3 4 6

M400 Tuckahoe dehydrotumulosic acid 0.25 484.79 5.72 3 4 6

M424 Licorice glycyrrhizin 0.33 823.04 2.42 8 16 7

M425 Licorice glycyrrhizic acid 0.33 823.04 2.42 8 16 7

M426 Licorice licorice-saponin H2 0.33 823.04 2.42 8 16 7

M451 Licorice Ononin 0.16 430.44 0.68 4 9 5

M454 Tuckahoe Oleanolic acid 0.28 456.78 6.42 2 3 1

M455 Licorice 3,22-Dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-

29-oic acid

0.42 512.75 4.37 1 6 2

M462 Licorice licorice-saponin H2_qt 0.31 470.76 5.49 2 4 1

M463 Licorice 18β-glycyrrhetic acid 0.31 470.76 5.49 2 4 1

M464 Licorice apioglycyrrhizin_qt 0.31 470.76 5.49 2 4 1

M465 Licorice Araboglycyrrhizin_qt 0.31 470.76 5.49 2 4 1

M466 Licorice glycyrrhetinic acid 0.31 470.76 5.49 2 4 1

M471 Licorice violanthin 0.32 578.57 -1.56 10 14 4

M479 Tuckahoe Trametenolic acid 0.21 456.78 7.03 2 3 5

M480 Licorice isoglabrolide 0.35 468.74 5.15 1 4 0

M484 Tuckahoe 25-hydroxy-3-epidehydrotumulosic acid 0.28 514.82 4.78 4 5 6

M491 Licorice liquoric acid 0.37 484.74 4.05 2 5 1

M493 Licorice schaftoside 0.38 596.54 -1.5 10 16 6

M496 Tuckahoe pachyman 0.16 500.56 -4.27 9 14 7

M497 Licorice licuraside 0.31 550.56 -0.41 8 13 9

M509 Tuckahoe Daucosterol 0.49 576.95 6.34 4 6 9

M511 Pinellia

ternate

Daucosterol 0.49 576.95 6.34 4 6 9

M523 Tuckahoe Poricoic acid B 0.19 484.74 5.64 3 5 9

M543 Licorice glyasperin E 0.16 444.51 6.41 2 6 6

M546 Tuckahoe Dehydroeburicoic acid 0.23 468.79 6.89 2 3 6

(Continued )
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Table 1. (Continued)

No. Herb Compound Name DL MW MLOGP nHDon nHAcc RBN

M547 Pinellia

ternate

Cycloartenol 0.21 426.8 7.55 1 1 4

M561 Licorice 3β-formylglabrolide 0.41 496.75 5.33 0 5 2

M563 Licorice Isoschaftoside 0.3 564.54 -1.94 10 14 4

M565 Licorice Hirsutrin 0.18 464.41 -0.59 8 12 4

M597 Licorice (-)-Medicocarpin 0.23 432.46 0.75 4 9 4

M598 Pinellia

ternate

TRIPALMITIN 0.84 807.49 19.52 0 6 50

M609 Tuckahoe (3β)-3-Hydroxylanosta-7,9(11),24-trien-21-oic acid 0.21 454.76 6.58 2 3 5

M611 Tuckahoe poricoic acid C 0.19 482.77 7.11 2 4 10

M612 Licorice Mairin 0.27 456.78 6.52 2 3 2

M625 Tuckahoe Ergosta-7,22-dien-3-ol 0.15 398.74 7.18 1 1 4

M633 Tangerine

Peel

hesperidin 0.48 610.62 -0.48 8 15 7

M646 Licorice apioglycyrrhizin 0.39 779.03 2.54 7 14 7

M663 Licorice Nicotiflorin 0.43 594.57 -1.18 9 15 6

M668 Pinellia

ternate

Stigmast-4-en-3-one 0.17 412.77 8.18 0 1 6

M669 Tuckahoe dehydropachymic acid 0.32 526.83 6.1 2 5 8

M685 Licorice licorice-saponin J2 0.33 825.06 2.26 9 16 8

M690 Licorice glabrolide 0.36 468.74 5 1 4 0

M693 Pinellia

ternate

1,2,3,4,6-Pentagalloyl glucose 0.57 1092.83 4.59 17 30 19

M696 Licorice Kanzonol F 0.25 420.54 5.3 1 5 3

M700 Licorice licorice-saponin C2_qt 0.29 454.76 6.17 2 3 1

M704 Licorice glycyroside 0.39 562.57 -0.73 6 13 8

M708 Tangerine

Peel

Neohesperidin 0.45 610.62 -0.48 8 15 7

M709 Licorice Isoviolanthin 0.32 578.57 -1.56 10 14 4

M712 Licorice 6@-O-acetylliquiritin 0.18 444.47 2.33 3 9 5

M728 Tuckahoe Eburicoic acid 0.23 470.81 7.33 2 3 6

M732 Licorice Narcissoside 0.5 624.6 -1.2 9 16 7

M738 Tuckahoe beta-Amyrin acetate 0.31 468.84 7.68 0 2 2

M756 Tuckahoe pachymic acid 0.32 528.85 6.54 2 5 8

M767 Tuckahoe poricoic acid G 0.19 486.76 6.08 3 5 9

M768 Pinellia

ternate

(+)-Isolariciresinol monoglucoside 0.21 522.6 0.35 7 11 7

M770 Licorice 22β-acetylglabric acid 0.42 528.8 4.77 2 6 3

M772 Licorice licorice-saponin J2_qt 0.31 472.78 5.33 3 4 2

M776 Pinellia

ternate

Ergosterol peroxide 0.2 428.72 6.73 1 3 4

M777 Tuckahoe Ergosterol peroxide 0.2 428.72 6.73 1 3 4

M781 Licorice licorice-saponin G2 0.32 839.04 1.33 9 17 8

M783 Licorice Ursolic acid 0.28 456.78 6.47 2 3 1

M794 Licorice 1-Methoxyficifolinol 0.19 422.56 6.1 2 5 5

M803 Tuckahoe 29-hydroxypolyporenic acid C 0.27 498.77 4.59 3 5 7

M807 Licorice licorice-saponin C2 0.33 807.04 3.1 8 15 7

M828 Tuckahoe Tumulosic acid 0.25 486.81 6.16 3 4 6

M836 Licorice Morusin 0.16 420.49 4.94 3 6 3

(Continued )
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To obtain the target proteins of the filtered active ingredients, we build a random forest

[18] target prediction model, which expands the predicted protein scope to all Swiss-Prot in

the Uniprot database [19], including 549,649 sequences involving 13,241 species such as

Eukaryotes, Procaryotes, and Viruses (see materials and methods). The algorithm is based on

extraction of conserved patterns from subdivided drug-target interaction vectors. The advan-

tage of this model lies in that it allows us to take proteins of different species into accounts and

thus predict the targets of a broad spectrum of species on a large scale. And indeed there are a

similar model that we have contributed in our previous work which has been successfully

applied to human target protein prediction [34]. Also, to evaluate the reliability of CSDT, we

further compare the AUC of CSDT with the BATMAN-TCM [35] and HGBI method [36].

Although, the other two models outperforms CSDT, CSDT has wide adaptation range which

provides help for target prediction of VHM. Thus, we can conclude that the target prediction

model in this work is reliable to predict the targets that causes Bovine pneumonia. In addition,

to guarantee the comprehensive of the target of active ingredients in erchen decoction, we fur-

ther introduce the WES algorithm into this part [24]. WES quantitatively evaluates whether a

Table 1. (Continued)

No. Herb Compound Name DL MW MLOGP nHDon nHAcc RBN

M844 Licorice licorice-saponin K2_qt 0.31 470.76 5.08 3 4 2

M860 Tuckahoe (3β,16α,17α)-3,16-Dihydroxylanosta-7,9(11),24-trien-21-oic acid 0.23 470.76 5.41 3 4 5

M864 Licorice Isoononin 0.17 430.44 0.68 4 9 5

M895 Pinellia

ternate

valeraldoxime 0.31 514.72 2.29 2 7 6

https://doi.org/10.1371/journal.pone.0184880.t001

Fig 2. Statistics: Comparison of erchen decoction potential active compounds with equal number compounds in TCMSP

database. Chemical properties of these two types of molecules are compared: distributions for molecular weight (MW), octanol-water

partition coefficient (MlogP), numbers of hydrogen bond donors and acceptors (nHDon and nHAcc), and number of rotatable bonds

(RBN) value are shown.

https://doi.org/10.1371/journal.pone.0184880.g002
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molecule will direct bind to a target based on the weighted structural and physicochemical fea-

tures it shares with known ligands of the target.

In total, we obtain 5,219 targets for the 126 active ingredients. Considering that the focus of

our work is to obtain the targets therapeutic for Bovine pneumonia, we further restrict the spe-

cies to Bovin (Bos Taurus), STRP1 (Streptococcus pyogenes) and STRPN (Streptococcus pneumo-
nia), which result in 448 targets (S5 Table). To verify whether the screened 448 targets are

closely related to Bovin pneumonia, we respectively enrich the GO biological processes of

these three types of targets by using David [25] and visualize them by enrichment Map [37]

with the threshold of P-value� 0.01. The Enrichment Map Cytoscape Plugin allows us to visu-

alize the results of target-set enrichment as a network. GO analysis of Bovin targets reveal that

the GO term ‘inflammatory response’ and ‘immune system process’ are significantly enriched

(Fig 3 and S6 Table). Interestingly, the inflammatory response is responsible for the majority

of the pulmonary damage [38]. The importance of ‘Immune system process’ in curing bacterial

pneumonia is clearly demonstrated in experimental models of bovine pneumonia [39]. Erchen

decoction not only targets the proteins of Bovin, but also works on the proteins of bacteria

(STRP1 and STRPN). For the targets of STRP1 and STRPN, the main biological processes are

‘translation’, ‘tRNA metabolic process’, ‘nucleotide-excision repair’, ‘amino acid activation’,

‘tRNA aminoacylation’ and ‘ncRNA metabolic process’ (S7 Table and S8 Table). These pro-

cesses are associated with cellular and metabolic processes, mainly involving in cell cycle regu-

lation. These results suggest that erchen decoction has antibacterial activity. Taken together,

the obtained targets function by directly inhibiting pathogenic bacteria proliferation through

targeting their proteins essential for the bacteria life cycle, and also, indirectly suppressing bac-

terial infection via strengthening the immune systems of bovine.

Recognition multiple targets interference effects by heterogeneous

network convergence and modularization analysis

To identify the interrelated target set of each active ingredient in erchen decoction, we perform

heterogeneous network convergence and modularization analysis in this part. Network con-

vergence is the efficient coexistence of heterogeneous data communication within a single net-

work. Modularization analysis is of benefit to search for functional closely related information

in a biological network.

First, to discover the most potential lead compounds and decipher the action mechanism of

erchen decoction, we generate two levels of networks: Compound-Target network (C-T net-

work) and Target-Target network (T-T network). S5 Table shows a detailed view of the C-T

interactions, which consists of 126 active compounds and 448 candidate targets of Bovin,

STRP1 and STRPN through 1,773 interactions. Among them, proteins such as VDR USP10

connect with more than 13 compounds, which can be labeled as hub targets. These results

indicate that the distribution of the compounds is extremely inhomogeneous. Thus, interven-

ing measures of multiple targets are of benefit to the recovery of Bovin pneumonia. T-T inter-

actions are built by searching the STRING database [40] with the required confidence (score)

greater than the high confidence threshold 0.7. The STRING database contains protein inter-

actions from numerous sources, including experimental data, computational prediction meth-

ods and public text collections, which can be regarded as functional protein association

networks. S9 Table provides a comprehensive view of the cross-species target space which con-

sists of 448 nodes and 696 edges. Among these interactions, about two-thirds of the targets are

regulated by at least 10 proteins, indicating the close relationship among them.

Then, we converge and modularize the aforementioned heterogeneous C-T and T-T net-

work using Markov Cluster Algorithm (MCL) [41] implemented by clusterMaker2 for the
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purpose of uncovering the pharmacology correlation among the target proteins of a certain

compound. ClusterMaker is a Cytoscape plugin that unifies different clustering techniques

and displays into a single interface. MCL is a fast and scalable unsupervised cluster algorithm

for graphs (also known as networks) based on simulation of (stochastic) flow in graphs. As a

result, these interactions are mainly assigned to 11 modules, where each module contains at

least 12 targets

Further, we analyze the chemical characteristics of molecules and proteins within the same

modules to help us understand multiple targets interference effects of erchen. By applying the

Tanimoto similarity with CDK fingerprints, we evaluate the molecular similarity among mod-

ules by comparing the molecules in different modules. The result shows that mean similarity

of molecules in the same module (0.57) higher than that between modules (0.35) (one-tailed

Fig 3. The GO biological process enrichment analysis of Bovine targets.

https://doi.org/10.1371/journal.pone.0184880.g003
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student’s t-test P-value = 2.3E-213, S4A Fig). As an example, the pharmacophore model for

molecules in module 1 that target TBC1D1 protein shows a good alignment to the pharmaco-

phore and among themselves (S10 Table and S5 Fig). Similarly, to search for the common fea-

tures of the proteins from the same module, we compare the similarity of protein sequences

in the same module and between modules using the Smith–Waterman sequence alignment

method. The similarity score is normalized by dividing it by the geometric mean of the scores

obtained from the S-score of each protein against itself. We observe that the mean sequence

similarity of proteins in the same module (0.031) higher than that between modules (0.021)

(one-tailed student’s t-test P-value = 1.45E-114, S4B Fig). These findings suggest that the mole-

cules with similar structure trend to target similar targets.

Finally, we enrich the GO biological process and KEGG pathway of each module by David

to annotate these modules. We find that these modules are associated with inflammation,

immunization, and apoptosis (Fig 4B, S11 Table). We present in detail two of the converged

modules (Module 1 and Module 7) (Fig 4A), selected to show the method’s ability to reproduce

diverse features of these compound-target interactions.

Module 1

Module 1 reflects the 187 interactions between 18 molecules and 87 targets. The 87 targets are

not only from Bovine, but also from STRP1 and STRPN these two species. Among them, an

overwhelming number of targets are from Bovine (95.4%, 83/87). Thus we annotate the bio-

logical process and KEGG pathway of Module 1 (S11 Table) by using these Bovine targets.

For biological process, the top 5 are respectively proteolysis involved in proteolysis involved

in cellular protein catabolic process, cellular protein catabolic process, protein catabolic pro-

cess, regulation of small GTPase mediated signal transduction, and cellular macromolecule

catabolic process. These biological processes are all associated with protein catabolic. Interest-

ingly, it has been reported that lung disorders where the inflammatory mediators produce

direct lung damage and cause catabolism or protein degradation [42]. And therefore, the mole-

cules in Module 1 can therapeutic for Bovine pneumonia by intervening these functionally

related target proteins. For example, Vicenin-2 (M155), a flavonoid glycoside, is a potential

anti-inflammatory constituent of Licorice [43]. Inflammatory stimuli increase SAMHD1 [44],

which is a target protein of Vicenin-2. In addition, by literature research, we also observe the

Bovine pneumonia associated biological function of targets in Module 1 belong to other spe-

cies. For example, Cas9, a target of STRP1, can mediate bacterial immunity.

The result of KEGG pathway enrichment shows that MAPK signaling pathway, Inositol

phosphate metabolism, Ubiquitin mediated proteolysis, Arrhythmogenic right ventricular car-

diomyopathy (ARVC), and Cardiac muscle contraction pathway play important roles in Mod-

ule 1. For example, MAPK signaling pathway (Fig 5) is a chain of proteins that plays a key role

in anti-inflammatory therapy [45]. Members of Inositol phosphates metabolism pathway are a

group of mono- to polyphosphorylated inositols [46]. They play crucial roles in diverse cellular

functions, such as cell growth, apoptosis, cell migration, endocytosis, and cell differentiation

[47]. Ubiquitin mediated proteolysis involves in the degradation of native cellular proteins

[48].

Module 7

Module 7 is an example of a converged module that covers primarily of Bovin genes encoding

proteins (17 of 28) and, STRP1 targets (9/28). Also, there are two STRPN targets in Module 7.

In consideration of the number of targets in each species, we respectively enrich the biological

process and KEGG pathway of Bovin (S11 Table) and STRP1 (S12 Table) targets in Module 7.
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The results show that these two categories of targets participate in diverse metabolic pathways

and cellular roles.

The Bovin targets in Module 7 are mainly involved in programmed cell death, cell death,

death, apoptosis, and positive regulation of cellular component organization. Thus, molecules

in Module 7 are intimately correlated to regulate cell apoptosis. This result is supported by a

recent study that chlamydia pneumonia induces T cell apoptosis through glutathione redox

imbalance and secretion of TNF-alpha [49]. In particular, Beta-Glucan (M188), which is

derived from Tuckahoe, was predicted to target ACTA1. Beta-Glucan has been reported to

inhibit the growth of bacteria, virus, and fungus [50], to stimulate macrophages as immune

Fig 4. Illustration of heterogeneous network convergence and modularization analysis. (A) Global view of the modularized set of

relationships among potential active compounds and their predicted protein targets. Module 1 and Module 7 are enlarged sub-modules in the

global network. A compound node and a target protein node are linked if the protein is targeted by the corresponding compound. Analogous to the

edge between a compound and a target, links are placed among targets if they are functional associated. Yellow node represents active

compounds in erchen decoction. Green, blue and gray node respectively indicates that target of streptococcus pyogenes, Streptococcus

pneumonia and Bovine.

https://doi.org/10.1371/journal.pone.0184880.g004
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enhancer [51] and enhance apoptosis in human colon cancer cells SNU-C4 [52]. Interestingly,

mutations in the gene ACTA1 account for cell death [53]. Also, we evaluate the 9 STRP1 tar-

gets to test whether the proteins encoded by genes in the same module have related functions.

These targets involve in many biological processes, such as translation, amino acid activation,

tRNA aminoacylation for protein translation, tRNA aminoacylation, and tRNA metabolic pro-

cess. In brief, these biological processes are all relevant to cell metabolic. Study shows that

changes in metabolic processes play a critical role in the survival or death of cells subjected to

various stresses [54]. Thus, despite the targets in the same module belong to different species,

they still share homogeneous function.

The enriched KEGG pathway of STRP1 targets are Ribosome, Aminoacyl-tRNA biosynthesis

and Valine, leucine and isoleucine biosynthesis. Interfering with these pathways has effects on

protein metabolism. However, deregulation of proteostasis results in protein stress and damage

that may cause cell death [55]. Hence, we can conclude that KEGG pathway enrichment could

also reflect the function of the module. Together, these results indicate that the strategy in this

study has the ability to capture the cellular response of multiple targets interference.

Conclusions

VHM is a holistic approach that is suited to evaluating the well-being of the whole animal, and

treatments are commonly non-invasive with few side effects. Although quite new-fangled to

Fig 5. Active mechanism of erchen decoction in combating Bovine pneumonia of Module 1.

https://doi.org/10.1371/journal.pone.0184880.g005

Large-scale cross-species chemogenomic platform to discover veterinary drug from herbal medicines

PLOS ONE | https://doi.org/10.1371/journal.pone.0184880 September 15, 2017 15 / 20

https://doi.org/10.1371/journal.pone.0184880.g005
https://doi.org/10.1371/journal.pone.0184880


the Western world, it is a health care system that has been used in China to treat animals for

thousands of years. It is an adaptation and extension of Traditional Chinese Medicine used to

heal humans. However, VHM lacks the tools necessary to identify the lead compounds which

have the effect to treating animal illness. As a group with computational technology strengths,

we first gravitate toward methods such as systems pharmacology [56] [24] that investigate

databases or construct model for clues. The application of bioinformatics approaches enable

us to elucidate the therapeutic effects of drugs at multiple scales of biological organization (the

organ and organismal levels) through network analyses. And there have been a few examples

of successful integration of different procedures to help determine the action mechanism of a

small molecule[57] [58].

In this study, to clarify the procedure of veterinary drug discovery from herbal medicines, a

cross-species chemogenomic platform was proposed. First, we build a cross-species drug-like-

ness evaluation approach to screen the lead compounds in veterinary medicines by critically

examined pharmacology and text mining. We observe that erchen decoction can treat animal

pneumonitis through multicomponent therapeutics. Furthermore, we compare the chemical

properties of these molecules with equal number of randomly selected molecules. The results

demonstrate that the constructed cross-species DL evaluation method is reliable to screen

potentially active molecule. Second, to understand how drugs work on the specific targets, a

specific cross-species target prediction model (CSDT) is developed to infer drug-target con-

nection. In addition, by enriching the GO biological process of these targets, we find that all

the biological processes of the targets are physiologically relevant. Thus, we can speculate that

the active compounds in erchen decoction exert their therapeutic effect by interfering func-

tional associated multiple targets network. To determine whether the therapeutic activity

could be attributed to the selectively functional in target network, we subsequently converge

the heterogeneous network and modulated analysis. Interestingly, the empirical analysis

results demonstrate our scientific hypotheses. Finally, we manually characterize an integrated

pathway to test whether the cross-species chemogenomic platform could uncover the active

mechanism of veterinary medicine, which is exemplified by a network module.

The cross-species chemogenomic platform shows how powerful the ability to effectively

and systematically integrate large sets of disparate data will be in discovering new drugs and

understanding the molecular mechanisms of a small molecule in biological systems. When

done in a disciplined and thoughtful manner, such data integration characterizes a modern

instantiation of the scientific approach, depending on high-throughput biotechnology, data

consolidation and multidisciplinary tactics to offer hints and avenues to new targets and mech-

anisms of small-molecule action.
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S1 Fig. DL distribution of FDA-approved veterinary drugs.
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S2 Fig. The flowchart of the CSDT model.
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S3 Fig. ROC (Receiver Operating Characteristic) plot of CSDT model.

(TIF)

S4 Fig. (A) The frequency histogram of molecule similarity between modules (blue) and

within modules (brown). Firstly, the similarity among molecules in the same module are calcu-

lated by applying the Tanimoto similarity with their CDK fingerprints. Then, using the same

method, we evaluate the molecular similarity among modules by comparing the molecules in
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different datasets. The result shows that mean similarity of molecules in the same module (0.57)

higher than that between modules (0.35) (one-tailed student’s t-test P-value = 2.3E-213). (B)

The frequency histogram of target sequence similarity between modules (blue) and within mod-

ules (brown). The sequence similarity between two targets are calculated based on the Smith–

Waterman sequence alignment score. The similarity score is normalized by dividing it by the

geometric mean of the scores obtained from the S-score of each protein against itself. The result

shows that the mean sequence similarity of proteins in the same module (0.031) higher than

that between modules (0.021) (one-tailed student’s t-test P-value = 1.45E-114).

(TIF)

S5 Fig. The alignment of compounds on the best pharmacophore model for the protein

TBC1D1 in module 1.

(TIF)
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