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ABSTRACT We report the 3.2-Mb draft genome sequence of Brevundimonas denitri-
ficans strain TAR-002T, isolated from deep-sea floor sediment. The draft genome se-
quence of strain TAR-002T consists of 3,231,216 bp in 44 contigs, with a G�C con-
tent of 68.47%, 3,866 potential coding sequences (CDSs), 3 rRNAs, and 45 tRNAs.

The element arsenic exists widely in the environment (1). Organisms utilize arsenic
as a trace element; however, arsenic is a toxic substance at high concentrations (2).

While the organic arsenic compounds have low toxicity, inorganic arsenic compounds,
such as arsenic acid, are extremely toxic; therefore, they are utilized as pesticides and
wood preservatives (3). On the other hand, environmental pollution of soils and water
quality caused by inorganic arsenic compounds has been a problem for a long time.
Bioremediation, which uses the ability of microbes and plants to purify the contami-
nated environment caused by some heavy metals, such as cadmium, cobalt, and
arsenic, has received much attention in recent years (4, 5). The Ars system in some
microbes is well studied as an arsenic resistance mechanism-mediated arsenate reduc-
tase and arsenite transporter (6). Arsenic acid is reduced to arsenious acid by arsenate
reductase; subsequently, arsenious acid is excreted by an arsenite transporter. Further,
some microbes use the detoxification route, in which arsenious acid is converted to
trimethylarsine by arsenite methyltransferase. The Ars system has been confirmed in
Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and so on (7–9). Brevundimo-
nas denitrificans TAR-002T (10), which is affiliated with the family Caulobacteraceae,
shows arsenic resistance and seems to have some tolerance mechanism.

The draft genome sequencing of B. denitrificans TAR-002T was performed on an Ion
Torrent PGM sequencer (Life Technologies) equipped with a 318 chip. Data from the
genomic DNA library contained 873,055 reads and 260,517,854 nucleotide bases, with
an average read length of 298.34 bp using 400-base chemistry. Assembly using
Newbler version 2.7 (Roche, Inc.) generated 44 contigs with maximum and minimum
contig sizes of 240,832 bp and 568 bp, respectively.

The draft genome comprising 3,231,216 nucleotides was annotated with the help of
the MetaGeneMark (11) and the Rapid Annotations using Subsystems Technology
(RAST) server (12). These annotation results indicate that strain TAR-002T possesses
three different type of genes encoding arsenate reductase, which catalyzes the reduc-
tion of arsenic acid to arsenious acid. In the Ars system, arsenious acid is transported
out of the cell via the ArsB protein (in some cases, with ArsA protein). ACR3, which exists
in B. denitrificans TAR-002T, is a homolog of ArsB and is considered to function as an
efflux pump. As for the detoxification metabolism, ArsM, which converts arsenious acid
into trimethylarsine, is a volatile compound and exists in strain TAR-002T. In this
genome analysis, it is clear that strain TAR-002T possesses four S-adenosyl-methionine-
dependent methyltransferase-coding genes. Moreover, ArsH, which is an organoarseni-
cal oxidase that confers resistance to trivalent forms of organoarsenic compound, is
also identified. On the other hand, the expression of these genes seems to be regulated
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by seven ArsR family transcriptional regulators, since one of them is clustered with
these genes encoding ArsH, ACR3, and arsenate reductase.

Accession number(s). The draft genome sequence of B. denitrificans TAR-002T re-
ported in this paper has been deposited to the DDBJ/EMBL/GenBank under the accession
no. BEWU00000000 (contig accession no. BEWU01000001 to BEWU01000044) in Bio-
Project number PRJDB6380.
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