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Abstract
Kernel size is an important component of grain yield in maize breeding programs. To extend

the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width

and kernel thickness), we developed a set of four-way cross mapping population derived

from four maize inbred lines with varied kernel sizes. In the present study, we investigated

the genetic basis of natural variation in seed size and other components of maize yield

(e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total,

ten QTL affecting kernel size were identified, three of which (two for kernel length and one

for kernel width) had stable expression in other components of maize yield. The possible

genetic mechanism behind the trade-off of kernel size and yield components was

discussed.

Introduction
Maize (Zea mays L.) is one of the most important cereal crops in the world, and increasing the
maize production by selection for the components of grain yield is the main objective in maize
breeding programs [1]. Maize kernel size, measured by kernel length, width and thickness, is
an important component of grain yield. Moreover, the characteristic of kernel size is also an
important factor of appearance quality, which may influence the corn market grades and con-
sumer preference [2]. Therefore, investigating the genetic basis of kernel size, and discovering
any possible genetic constraints to optimize it, will facilitate the improvement of grain yield in
maize breeding programs.

Quantitative trait locus (QTL) mapping based on molecular markers have been widely used
in the genetic study for different traits in different crops [3–6]. There were several QTL/genes
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have been identified in grain crops for kernel size [2,7–9]. Especially, some genes for kernel
traits have been successfully isolated by map-based cloning strategy in rice, e.g., GS3 [3,10],
qGL3 [11], GW2 [4], qSW5 [12], GS5 [13], GW8 [14], GL7 [15] and GW7 [16], and these genes
can be useful targets of molecular-assisted selection for larger seed size in modern rice breeding
programs. In maize, mutants analysis have identified several genes in key pathways involved in
seed development, such asMn1 [17], o2 [18], sh2 [19], gln1-4 [20], o1 [21], and others [22].
Compared with the effects of mutants in kernel size, which are often dependent on the genetic
background [23], QTL mapping approach is ideal to identify favorable QTL/genes that can
contribute to natural variation of kernel size. In recent years, mapping QTL for kernel size is
attractive in maize, and most studies for kernel size and related traits have been conducted in
bi-parental populations [7–9,24–28].

The available QTL generally detected in bi-parental mapping populations have greatly con-
tributed to the understanding of the genetic basis of kernel size. However, QTL mapping in
such populations is subject to low allele numbers and limited recombination [29]. In recent
years, the generation of multi-parent advanced generation integrated cross (MAGIC) popula-
tions has provided an additional option for QTL mapping. Compared with the bi-parental
linkage populations, the development of MAGIC populations usually involved inter-crossing
of multiple parental lines, which may introduce more than two independent alleles at a locus
and subsequently increased probability of QTL being polymorphic across the multiple parents
[30]. In addition, the precision and resolution of QTL detection can be increased by the ampli-
fied number of recombination events [31]. In view of the merits of MAGIC for QTL mapping,
increasing number of MAGIC populations have been created in model animals and plants
recently. For example, two MAGIC populations have been developed in mice and used for
identifying candidate genes for serum cholesterol and coat color traits [32,33]. In plants,
MAGIC populations were first developed in Arabidopsis and subsequently expanded to crops
[34]. In recent years, encouraging results have been reported for flowering time, leaf morphol-
ogy and seed traits of Arabidopsis thaliana [35–37], fruit weight of tomato [38], plant height
and shoot traits of wheat [39,40], biotic stress and abiotic stress of rice [41] and flowering time
of barley [42]. Very recently, MAGIC populations were also developed in maize and then used
for QTL mapping in traits such as flowering time, plant height, ear height and grain yield [43].

Crop seed is a life-history trait, and the availability of resource pool in seed developmental
processes drives seed production [2,44,45]. Due to the competing apportionment of resources
between fitness components (i.e., seed size and seed number), a trade-off between seed number
and size must occur [46]. A better understanding of natural variation in seed size requires
simultaneous consideration of trade-off of kernel number related traits to seed development
[37].

Given the potential benefits of multi-parental (four-way cross) mapping population, we
developed a set of multi-parental (four-way cross) mapping population in maize [6]. In the
present study, we investigated the natural variation in seed size and other seed related traits.
The objectives of this study were to detect the genetic architecture underlying seed size in
maize, and specifically we were interested in the genetic mechanism behind trade-off of seed
traits to better understand the genetic basis of kernel size.

Materials and Methods
The experiment was conducted in Zhengzhou Experiment Station (34°51'N 113°35'E) and
Jiyuan Experiment Station (35°4'N 112°36'E) of Henan Agricultural University (HAU). At the
two experimental locations, HAU has set up experimental field bases for non-profit agricul-
tural research with a wide array of partners in China. In the present study, the field experiments
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in the two stations were approved by HAU. Further, the stations where field studies were con-
ducted are not protected locations for endangered or protected species.

Plant materials
The four-way cross mapping population including 305 individuals was developed from the
four-way cross among D276/D72//A188/Jiao51. The four parental lines were selected based on
the agronomic performances for a range of traits in maize breeding programs. All 305 individu-
als were self-crossed to develop progeny families. Twenty eight out of 305 individuals lacked
enough self-pollinated seeds, and finally, 277 four-way cross F1 individuals were genotyped for
genetic map construction, and their selfed progeny, known as four-way cross families, were
used for phenotyping [6].

Field trials and trait evaluation
In 2010, the 277 four-way cross families, together with their four parents were planted at the
Jiyuan Experiment Station and Zhengzhou Experiment Station, respectively. Field experiments
in each location were arranged in a randomized complete block design with three replicates.
Each plot included one row with 4 m long and 0.67 m wide, and was overplanted and then
thinned to 15 plants per row at a density of 52,500 plants per hectare.

To determine whether flowering time (FT) affects the trade-off between kernel size, FT was
investigated and recorded as the number of days from planting when 50% of the plants in a
row were shedding pollen. At physiological maturity, eight consecutive plants from the center
of each plot were harvested by hand for trait measurements. The ear traits were evaluated,
which included ear row number (ERN) and kernel number per row (KNR). After ears were
dried down to a constant weight, the kernels at the middle of the ears in each plot were shelled
and bulked. Four kernel traits were measured, including 100-kernel weight (HKW), kernel
length (KL), kernel width (KW) and kernel thickness (KT). HKWwas estimated from the aver-
age of three measurements of the weight of 100 randomly selected kernels; KL, KW and KT
were estimated by the average of three replicated measurements of 50 kernels randomly
selected from the bulked kernels using electronic digital calipers.

Phenotypic data analysis
Analysis of variance for phenotype data was performed using the General Line Model (Proc
GLM) procedure in SAS software [47], and Fisher Least Significant Different (LSD) method
was used for multiple comparisons. The components of variance were estimated using a ran-
dom-effect model and broad-sense heritability (H2) for each trait across the two environ-
ments was calculated as defined by Knapp et al. [48]. Phenotypic correlations among traits
were calculated by the Pearson correlation method using the mean values of genotypes across
environments.

Genetic map and QTL mapping
Genetic linkage map was constructed using the algorithm proposed by Zhang et al. which was
implemented in software package GACD as functionality CDM [49]. Two hundred and twenty
one markers were relatively evenly distributed on 10 maize chromosomes and the whole length
of the genome was 1799.03 cM [6].

The algorithm of inclusive composite interval mapping (ICIM) for four-way crosses was
implemented in GACD software (http://www.isbreeding.net) as functionality CDQ [50] and
used for QTL mapping of six traits, i.e., KL, KW, KT, HKW, KNR and ERN. QTL analysis was
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performed on the mean values of each genotype across the two environments. Inclusive linear
models that includes marker variables and marker interactions so as to completely control
both additive and dominance effects were built respectively for each trait. Stepwise regression
was used to select significant marker variables and then used for background control in Inclu-
sive Composite Interval Mapping (ICIM) of QTL [50]. The two probabilities for entering and
removing variables were set at 0.001 and 0.002. The scanning step was 1 cM. LOD threshold
was set at 3.97 by the empirical formula derived from Zhang et al. [50]. The original genotypes,
phenotypes and linkage maps of the four-way cross population was available in S1 Dataset.

Results

Phenotypic variation and heritability
The phenotypic variations of kernel size and related traits among the four parental lines were
investigated in Jiyuan and Zhengzhou locations in 2010, and significant variations were
observed for all traits measured in this study, including three kernel size traits (i.e., KL, KW
and KT), ear traits (i.e., ERN and KNE) and kernel weight (HKW) (Table 1). Among the four-
way families comprising of 277 entries, extensive phenotypic variation was observed in kernel
size, HKW, ERN, KNR as well as FT (Table 2, S1 Fig). The heritability (H2) of the traits ranged

Table 1. Summary of phenotype analysis andmultiple comparisons of traits evaluated for the four parental lines.

Traitsa Lines Mean SD Range LSD 0.05 LSD 0.01

KL (mm) Jiao51 7.68 0.56 6.07–9.44 a A

A188 8.70 0.61 7.05–9.78 b B

D276 9.62 0.71 8.13–11.34 c C

D72 9.87 0.66 8.26–11.08 d C

KW (mm) D276 6.93 0.64 5.25–8.96 a A

A188 7.48 0.52 5.97–8.74 b B

Jiao51 8.18 0.59 6.65–9.58 c C

D72 8.42 0.68 6.02–10.03 d D

KT (mm) A188 3.96 0.40 3.31–5.75 a A

Jiao51 5.00 0.51 3.71–6.26 b B

D276 5.31 0.55 3.93–6.94 c C

D72 5.81 0.75 6.20–7.39 d D

ERN A188 11.3 0.76 10.0–12.0 a A

D72 12.5 0.87 11.2–14.0 ab AB

D276 13.7 1.50 11.0–15.7 b B

Jiao51 16.1 0.62 15.2–17.0 c C

KNR D276 10.5 3.18 7.0–14.0 a A

D72 12.0 1.83 9.6–15.0 ab A

A188 12.5 1.93 10.0–14.5 b A

Jiao51 16.8 0.90 15.4–17.9 c AB

HKW (g) A188 9.3 1.01 7.58–10.5 a A

Jiao51 14.5 0.41 13.8–15.2 b B

D276 18.3 3.00 13.42–22.5 c C

D72 23.1 0.90 21.8–24.15 d D

a: KL: kernel length; KW: kernel width; KT: kernel thickness; ERN: ear row number; KNR: kernel number per row; HKW: hundred kernel weight. LSD:

Least Significant Difference; The same letters in LSD 0.05 and LSD 0.01 columns indicate that difference is not significant in the same group at P < 0.05

(LSD 0.05) or P < 0.01 (LSD 0.01) levels.

doi:10.1371/journal.pone.0153428.t001
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from 0.70 (KNR) to 0.81 (FT) across the two environments, suggesting that genetic factor
played an important role in the four-way cross population.

Correlation of seed size and other traits
Of the traits surveyed in this study, a number of significant pairwise correlations were observed
between kernel size and the other traits (i.e., FT, ERN, KNR and HKW) (Table 3). For example,
ERN showed significant positive correlation with KL (r = 0.248), while with significant negative
correlation with KW (r = -0.319) and KT (r = -0.187), suggesting the trade-offs between ERN
and kernel size. However, KNR was only significantly correlated with one of the three traits of
kernel size (KT, r = -0.606), which implied the trade-offs between KNR and KT instead of KL
and KW. Significant positive correlations were also observed between HKW and kernel size (r
values were 0.462, 0.693 and 0.493 for KL, KW and KT, respectively), which means each of the
three kernel size components contributed to the weight of the kernel in this population. Corre-
lation between FT and kernel size was observed, however, FT was significant but weak corre-
lated with KL (r = 0.156), and not significant with KW and KT.

Given the extensive correlation among all traits, multiple linear regression model was used
to estimate the effect of the different life-history traits on kernel size. The best fit model (small-
est AIC) of KL (F = 54.53, p-value<2.2e-16, r2 = 0.56) included: KW, KT, ERN and HKW,
which explained 15.9, 9.0, 8.1 and 16.3% of the variation of KL, respectively. For the KW, the
best model (F = 103.4, p-value<2.2e-16, r2 = 0.65) could explain 65% of the variance. The

Table 2. Phenotypic variation among four-way cross families for all traits measured.

Traits Min Max Mean±SD H2

Flowering Time (days) 59.20 67.40 63.48±1.45 0.81

Kernel length (mm) 8.95 10.94 9.88±0.34 0.77

Kernel width (mm) 7.70 9.28 8.32±0.29 0.73

Kernel thickness (mm) 4.10 5.70 4.90±0.02 0.79

Ear row number 12.30 17.00 14.56±0.93 0.75

Kernel number per row 28.79 51.80 41.77±4.08 0.70

100 kernel weight (g) 19.55 29.95 23.46±1.85 0.71

Minimum (Min), maximum (Max) phenotypic values for each trait, as well as the phenotypic mean plus or

minus their standard deviation (SD) and their broad-sense heritability (H2) were shown.

doi:10.1371/journal.pone.0153428.t002

Table 3. Pairwise Pearson’s correlations between traits measured.

Traitsa FT KL KW KT ERN KNR

KL 0.156*

KW -0.051 0.545**

KT -0.036 -0.176* 0.234**

ERN 0.177** 0.248** -0.319** -0.187**

KNR -0.069 0.036 -0.095 -0.606** 0.043

HKW -0.107 0.462** 0.693** 0.493** -0.196** -0.260**

a: FT: flowering time; KL: kernel length; KW: kernel width; KT: kernel thickness; ERN: ear row number; KNR: kernel number per row; HKW: hundred kernel

weight;

*: Significant at 0.05 level;

**: Significant at 0.01 level.

doi:10.1371/journal.pone.0153428.t003
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model included: KL, ERN and HKW, which explained 19.2, 16.1 and 16.9% of the variation of
kernel width, respectively. Similarly, KL, KNR and HKW can explain 13.2, 10.9 and 11.8% of
the variation of KT, respectively (F = 47.0, p-value<2.2e-16, r2 = 0.45). Thus, agronomic traits
can explain some of the variation in kernel size, but the variance explained is smaller than the
heritability.

QTL mapping results of kernel size and related traits
A summary of the QTL detected across environments, including the positions, LOD scores,
genetic effects (additive effects of aF and aM and dominance effect d), phenotypic variation
explained (PVE) and the mean values of four different genotypes, were shown in Table 4. A

Table 4. Estimated QTL locations and genetic effects affecting six traits using average data from two environments.

Genetic effectsb

Traitsa QTL Bin Position (cM) Left marker Right marker LOD aF aM d PVE (%)c

KL qKL3-1 3.04/05 72 umc1347 bnlg1957 4.79 -0.03 -0.06 -0.04 7.41

qKL5-1 5.06 129 umc1680 umc1019 12.13 0.01 0.14 0.01 17.94

qKL7-1 7.02/03 78 bnlg1792 umc1567 4.87 0 -0.06 -0.07 7.41

qKL7-2 7.03/04 121 umc1408 dupssr13 5.97 -0.09 -0.03 0.01 8.14

qKL10-1 10.04/05 50 umc1053 umc1506 4.04 -0.07 -0.02 -0.02 5.51

KW qKW5-1 5.03/04 61 bnlg1700 umc2298 4.84 0.08 0 0.03 9.15

qKW6-1 6.00/01 0 phi126 umc1018 4.23 -0.01 0.06 -0.05 7.14

qKW7-1 7.00 42 umc1642 bnlg2132 4.77 -0.07 0.04 0 9.54

KT qKT1-1 1.07/08 131 bnlg1556 phi039 6.19 -6.24 -4.22 3.35 12.81

qKT5-1 5.01 7 umc1766 umc1365 6.24 7.20 0.43 3.19 11.12

HKW qHKW1-1 1.06/07 114 umc1590 bnlg1556 4.09 -0.47 -0.07 0.11 6.90

qHKW1-2 1.11 233 phi227562 bnlg1006 4.18 -0.42 0.38 -0.10 6.72

qHKW3-1 3.04 70 umc1012 umc1347 4.58 0.30 -0.08 -0.35 6.62

qHKW5-1 5.03/04 61 bnlg1700 umc2298 6.15 0.46 0.13 0.18 8.23

qHKW7-1 7.05 157 umc2222 phi082 4.77 -0.11 -0.36 -0.28 6.72

KNR qKNR1-1 1.02 33 bnlg1429 bnlg1007 4.18 -0.55 0.93 0.03 6.22

qKNR3-1 3.04 67 umc1012 umc1347 4.43 -0.19 -1.02 0.08 6.85

qKNR5-1 5.01 0 umc1766 umc1365 5.03 -0.91 -0.53 -0.12 5.83

qKNR5-2 5.03/04 54 bnlg1700 umc2298 4.55 -0.19 -0.94 -0.33 6.09

qKNR5-3 5.04/05 70 umc1591 umc1348 4.27 -0.86 -0.31 -0.15 5.42

qKNR5-4 5.07/08 179 bnlg2305 zct389 4.35 0.47 -0.80 0.07 5.13

ERN qERN1-1 1.10/11 206 bnlg1347 umc2100 4.91 -0.18 -0.05 -0.05 5.10

qERN1-2 1.11 235 phi227562 bnlg1006 4.06 0.19 -0.17 -0.04 4.87

qERN4-1 4.08/09 121 umc2286 umc1051 4.11 -0.02 0.19 0.11 5.19

qERN6-1 6.02/03 36 umc1656 umc1887 9.4 -0.04 -0.30 -0.01 11.24

qERN7-1 7.02 76 phi034 bnlg1792 5.63 0.04 -0.24 0.04 5.94

qERN9-1 9.03 79 umc1700 umc1691 4.59 -0.15 -0.13 0.02 4.74

qERN10-1 10.01/02 13 umc1319 umc1576 5.61 0.22 0.01 -0.07 5.97

a: Trait abbreviation as follow, KL: kernel length; KW: kernel width; KT: kernel thickness; ERN: ear row number; KNR: kernel number per row; HKW:

hundred kernel weight.
b: The genetic effects of aF and aM were the additive genetic effects of the two single crosses, D276×D72 and A188×Jiao51, respectively; the genetic

effect of d was the dominance effect between the two single crosses.
c: Phenotypic variation explained.

doi:10.1371/journal.pone.0153428.t004
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total of 10 QTL were identified for kernel size, including 5 QTL for KL, 3 QTL for KW and 2
QTL for KT. Single QTL of kernel size explained from 5.51% to 17.94% of the phenotypic vari-
ation. Five QTL were identified for HKWwhich located on chromosomes 1, 3, 5 and 7, and
single QTL explained from 6.62% to 8.23% of the phenotypic variation. Six QTL were identi-
fied for KNR, which included 4 QTL on chromosome 5 and 1 each on chromosomes 1 and 3.
Single QTL of KNR can explain from 5.13% to 6.85% of the phenotypic variation. Seven QTL
were identified for ERN which located on chromosomes 1, 4, 6, 7, 9 and 10, and the largest
QTL for ERN was located on chromosome 6 and explained 11.24% of the phenotypic
variation.

Positions of all detected QTL were marked in the linkage maps, and overlaps between QTL
of kernel size with other traits were observed (Table 4 and Fig 1). The first overlapped QTL

Fig 1. Genetic linkagemaps and QTL identified in the four-way cross population.

doi:10.1371/journal.pone.0153428.g001
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located on chromosome 5 (bin 5.03/04). In this region, qKW5-1, which conferred the kernel
width, shared the same flanking markers with qHKW5-1 and also with qKNR5-2. The second
region located on chromosome 3 (bin 3.04/05). In this region, qHKW3-1 shared the same
flanking markers with qKNR3-1, which had the largest effect for KNR. Moreover, one QTL for
KL, qKL3-1, was also detected, which shared the same flanking marker umc1347 with qHKW3-
1 and qKNR3-1. Other region with closely linked QTL was also identified on chromosome 7
(bin 7.02/03). In this region, both QTL for KL (qKL7-1) and ERN (qERN7-1) were identified,
and they shared the same marker bnlg1792 within the QTL region. Despite the significant cor-
relations between kernel size traits (i.e., KL, KW and KW), we did not detect any overlapping
QTL region for the three kernel-size traits.

Discussion

The trade-off between kernel size traits in maize
Grain seed is a life-history trait, and the trade-off of grain seed and related traits has widely
reported in many plant species [2,37,44,45]. However, few studies have addressed the genetic
mechanism behind trade-off of the factors involved in maize kernel development by taking
into account life-history traits. In the present study, complex genetic mechanism behind the
trade-off of seed traits in the four-way cross population was observed. On one hand, over-
lapped QTL for kernel size (i.e., qKL3-1, qKL7-1 and qKW5-1) and yield-components were
observed, and most of them had the same direction of additive effects (aF and aM) (Table 4),
which indicated the allele that increases kernel size is from the same natural accession, indicat-
ing past occurrence of directional selection for kernel size and yield components. On the other
hand, kernel size (i.e., KW and KT) showed significant negative correlation with ERN and
KNR (Table 3), which implied the potential trade-off behind them. However, there is little evi-
dence for overlap in their genetic architecture since no common QTL between the traits were
detected.

Comparison with published QTL/gene
In the present study, we mapped 10 QTL for kernel size, with three of them (qKW5-1, qKL3-1
and qKL7-1) had consistent co-localization or adjacent to QTL for one of the components of
maize yield (Table 4). We compared the QTL with published kernel-size QTL, and overlapped
QTL independent of the genetic background were identified.

qKW5-1 with flanking markers bnlg1700 and umc2298 in the present study, shared the
same QTL region with CQTL5-1, an common QTL for kernel width in multiple connected RIL
populations in maize [8]; In this region, the other QTL for kernel width (i.e., qKW5) was also
identified in an independent QTL mapping of kernel-size [9] (S1 Table). More importantly, we
identified qKW5-1 overlapped with the qHKW5-1 (the QTL with the largest effect for 100-ker-
nel weight in the present study), similar results were also observed by Li et al. [8] and Liu et al.
[9], who also identified the QTL for kernel-width overlapped with kernel weight in this region.
Within qKW5-1 region, ZmGW2-Chr5 conferring kernel size in maize has been identified and
is perhaps one of candidate genes for the QTL [51]. Therefore, it could be concluded that this
genomic region is very important for grain yield since the QTL has the stable expression across
different genetic background.

qKL7-1 located in bin 7.02/03 is another important region for the genetic control of grain
yield and kernel traits. In this region, cluster QTL for kernel-size and yield-related trait were
also identified in independent studies. For example, Li et al. [8] found one common QTL
(CQTL7-1) conferring kernel weight, kernel width and thickness in multiple connected RIL
populations in maize. Peng et al. [7] identified two QTL, Qqknpp7 and Qqgypp7, conferring
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kernel number and grain yield per plant, respectively. Other kernel-size QTL in the present
study with known QTL/gene included qKL5-1 with gln1-3 [20] and Yqknpp5 [7], qKT1-1 with
CQTL1-2 [8], and qKT5-1 with qKT5-1 [9]. The consistency of QTL/gene in independent study
implied the common genetic basis for these traits (S1 Table).

Joint analysis for multiple related traits
In this study, QTL analysis was performed on the six traits, respectively. In total, 10 QTL for
kernel size (KL, KW and KT) and 18 QTL for other three traits (ERN, KNR and HKW) were
detected. In fact, these traits were highly related (Table 3). Multiple-trait analysis took into
account the correlated structure of multiple traits, and could improve the statistical power of
the QTL detection and the precision of parameter estimation [52]. However, there were seldom
studies focused on the QTL mapping methods for jointly analyzing multiple traits in four-way
crosses till now on. We will try to develop a statistical method for joint analysis on four-way
cross populations in the future.

Implications for molecular-assisted selection (MAS) breeding
In the present study, a total of 10 significant QTL for kernel size were identified, which ranged
from two for KT to five for KL. However, these QTL seemed to be independent genetic regula-
tion of seed size since no consistent QTL were observed. These QTL could be valuable because
it means that improvement in one trait can be accomplished without a corresponding decrease
in the other. Here, we also found that at least three QTL (i.e., qKL3-1, qKL7-1 and qKW5-1)
with stable expression across kernel size and at least one of the other kernel related traits, and
they had the same direction of the additive effects. These QTL may imply the genetic regulation
of seed size and the components of maize yield, and may have high values using MAS to
improve yield in maize.
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