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Abstract
The number of severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2)-infected patients keeps rising in most of 
the European countries despite the pandemic precaution 
measures. The current antiviral and anti-inflammatory thera-
peutic approaches are only supportive, have limited efficacy, 
and the prevention in reducing the transmission of SARS-
CoV-2 virus is the best hope for public health. It is presumed 
that an effective vaccination against SARS-CoV-2 infection 
could mobilize the innate and adaptive immune responses 
and provide a protection against severe forms of coronavirus 
disease 2019 (COVID-19) disease. As the race for the effective 
and safe vaccine has begun, different strategies were intro-
duced. To date, viral vector-based vaccines, genetic vac-
cines, attenuated vaccines, and protein-based vaccines are 
the major vaccine types tested in the clinical trials. Over 80 
clinical trials have been initiated; however, only 18 vaccines 
have reached the clinical phase II/III or III, and 4 vaccine can-
didates are under consideration or have been approved for 
the use so far. In addition, the protective effect of the off-

target vaccines, such as Bacillus Calmette-Guérin and mea-
sles vaccine, is being explored in randomized prospective 
clinical trials with SARS-CoV-2-infected patients. In this re-
view, we discuss the most promising anti-COVID-19 vaccine 
clinical trials and different vaccination strategies in order to 
provide more clarity into the ongoing clinical trials.

© 2021 S. Karger AG, Basel

Introduction

The rapid spread of coronavirus disease 2019 (CO­
VID-19) has globally become a serious issue [1]. The dis­
ease, caused by a severe acute respiratory syndrome coro­
navirus 2 (SARS-CoV-2), has been first reported in De­
cember 2019 (Wuhan, China) and declared by the World 
Health Organization (WHO) as a pandemic on March 11, 
2020 [2]. To date, the COVID-19-associated deaths keep 
rising in most of the European countries. This phenom­
enon can be influenced by the pandemic precaution mea­
sures, such as mandatory face masks wearing; however, 
the end of the pandemic may not be seen until an effective 
anti-COVID-19 vaccine is developed [3, 4]. SARS-CoV-2 
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belongs to the single-stranded RNA viruses which origi­
nated in bats [5]. SARS-CoV-2 exhibits the same struc­
tural and molecular patterns as other coronaviruses, such 
as structural proteins S (spike), E (envelope), M (mem­
brane), and N (nucleocapsid) (Fig. 1) [6, 7]. The binding 
of the virus and its further entry into the host cell through 
angiotensin-converting enzyme 2 is mediated by the viral 
S protein. As the S protein is processed by a protease 
transmembrane protease serine 2, viral fusion with the 
host cell occurs. The first genetic analyses of the virus re­
vealed an 89% nucleotide identity with bat virus SARS-
like-CoVZXC21 [6]. Further investigation, however, 
confirmed a high similarity (96%) between the SARS-
CoV-2 and the betaCoV RaTG13 of bats [1, 8, 9]. In CO­
VID-19, it has been attempted by multiple studies to 
identify the intermediate host and on the basis of the 
available data, pangolins are most likely the mammals 
serving as a SARS-CoV-2 intermediate host [10]. The un­
derstanding and identification of an intermediate host is 
of major importance. The reason stems from the fact that 
blocking the human-host contact may restrain further 
spread of the novel disease variants, such as the Cluster 5 
identified originally in minks. This cluster includes Y453F 
mutation in the spike protein and was reported among 
people in Denmark. Additionally, the virus was shown to 
infect multiple animal species under experimental condi­
tions, and also few cases of household cats and dogs were 
reported to be positive for SARS-CoV-2 RNA. Therefore, 
concerns regarding the new sources of infection, novel 

potential viral strains, and uncontrolled outbreaks rise 
[11–13]. Moreover, the identification of an intermediate 
host may allow novel vaccine testing [1]. As a matter of 
fact, in Middle East respiratory syndrome disease, the 
first vaccine candidates were tested in dromedary camels 
[14]. The total number of deaths in COVID-19 is affected 
by the high transmissibility (assessed by the basic repro­
duction number, R0) [15]. COVID-19 is mainly transmit­
ted through respiratory droplets from sneezing and 
coughing; however, few other transmission routes have 
been described, such as alimentary transmission or 
through conjunctival mucosa [1, 4]. To date, severe and 
deadly forms of COVID-19 have been reported. Underly­
ing health conditions were seen in cases with life-threat­
ening course of COVID-19, and thus, the COVID-19 
pandemic represents an enormous threat for the elderly 
[16] or chronically ill patients, particularly for those suf­
fering from severe obesity, CKD, diabetes, arterial hyper­
tension, or asthma [17]. On the other hand, the viral load 
is presumably one of the factors that dictate the clinical 
course of the disease [18]. This may also be affected by the 
transmission route, and therefore, asymptomatic CO­
VID-19 patients were reported throughout multiple stud­
ies [19, 20]. Currently, multiple therapeutic approaches 
are being applied to deal with the infection. However, 
these approaches are rather supportive, and the preven­
tion in reducing the transmission is the best hope for pub­
lic health [1, 5, 21]. We have reviewed the current status 
of all anti-COVID-19 vaccines that have reached the clin­

(S)  glycoprotein

(M)   )EH(nietorpocylg  glycoprotein

(E)  glycoprotein
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ssRNA

Fig. 1. Structure of SARS-CoV-2 virus: 
spike (S) glycoprotein, membrane (M) gly­
coprotein, envelope (E) glycoprotein, hem­
agglutinin-esterase (HA) glycoprotein, and 
nucleocapsid (N) phosphoprotein [97, 98].
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ical trials in humans. As the race for the effective and safe 
vaccine has begun, different strategies were introduced. 
In this review, we discuss the most promising anti-CO­
VID-19 vaccine clinical trials and discuss different vacci­
nation strategies in order to provide more clarity into the 
ongoing clinical trials.

Methods

We conducted a comprehensive review of the literature on the 
progress of anti-SARS-CoV-2 vaccine development preventing the 
rapid spread of COVID-19 disease. The vaccines that were regis­
tered until December 2020 in the Clinical Trials database by the 
National Library of Medicine at the US National Institutes of 
Health were reviewed [22]. The authors followed the proposed 
guidelines for biomedical narrative review preparation [23].

Immune Response to SARS-CoV-2 Virus
The immune system affects the severity of the COVID-19 dis­

ease [7]. SARS-CoV-2 infection has an impact on both innate and 
adaptive immune responses. It has been described that SARS-
CoV-2 enters the human body through physical barriers, such as 
respiratory tract, oral mucosa, and conjunctival epithelium [24, 
25]. The dendritic cells, macrophages, and neutrophils represent 
the first line of defense, and their functions may be promoted by 
the production of type I and III interferons by SARS-CoV-2-in­
fected epithelial cells [26]. The adaptive T-cell- and B-cell-mediat­
ed immune responses are also presented in COVID-19 disease 
and, however, can be suppressed by SARS-CoV-2 [7]. In some cas­
es, the innate immune cells may contribute to the excessive inflam­
mation and, therefore, to the disease progression. The inability to 
reach control over the infection may result in dysregulated inflam­
matory responses that are potentially lethal. The IgM and IgG an­
tibodies to SARS-CoV-2 are detectable within 1–2 weeks and be­
gan to decrease by 8 weeks [27]. Several studies also reported that 
IgA response peaks earlier than IgM [28]. The antibody response 
particularly leads to production of neutralizing antibodies to the S 
protein and to the nucleoprotein. S protein is also the main target 
of the majority of newly designed vaccines [29]. The magnitude of 
neutralizing antibodies positively correlates with the disease sever­
ity and the robustness of T-cell response [30]. T-cell responses 
were detectable in individuals recovering from mild COVID-19 
who did not have detectable antibody responses to SARS-CoV-2 
[31, 32]. The effective vaccination may not eradicate the SARS-
CoV-2 virus but may at least protect from severe and deadly forms 
of the COVID-19 disease [7]. Current knowledge regarding the 
diverse aspects of SARS-CoV-2-immune system interplay shall be 
reflected in the vaccine design, including the selection of antigens, 
the vaccine platforms and adjuvants, the vaccination routes, and 
the dosage regimens [33, 34]. The key points of the SARS-CoV-2 
vaccination strategies are discussed below. To date, over 80 clinical 
trials have been registered in the Clinical Trials database by the 
National Library of Medicine at the US National Institutes of 
Health; however, only 34 of them are active and recruiting (11 of 
phase I, 8 of phase I/II, 3 of phase II, 1 of phase II/III, and 11 of 
phase III) [22]. Moreover, 2 vaccine candidates have been ap­
proved for use by the US Food and Drug Administration (FDA) – 

BNT162/Comirnaty and mRNA-1273). BNT162/Comirnaty has 
been also permitted by the European Medicines Agency (EMA). 
The vaccination program with BNT162/Comirnaty has been re­
cently initiated in many European countries. The main features of 
the registered and ongoing anti-SARS-CoV-2 vaccine clinical trial 
are summarized in Table 1 (Phase I and I/II) and Table 2 (Phase 
II, II/III, and III).

Inactivated Vaccines
Inactivated vaccines are based on presenting the form of patho­

gen with a loss of disease-producing capacity. The virus cultivation 
occurs in cell lines that represent a substrate for the production of 
large quantities of antigen. Virus multiplication is often followed 
by a purification and concentration prior to the vaccine inactiva­
tion [35]. Formaldehyde and beta-propiolactone are used in the 
majority of licensed human antiviral vaccines to inactivate the vi­
rus [36]. Multiple doses or adjuvants are required to achieve suf­
ficient efficacy of inactivated vaccines [37]. To date, 4 inactivated 
vaccines have reached the phase III clinical trials and are currently 
under evaluation (#NCT04510207, #NCT04508075, and 
#NCT04456595).

Subunit Vaccines
Subunit vaccines are composed of purified antigens instead of 

whole microorganisms, and different carriers serve as a transport­
er for those antigens. In the anti-SARS-CoV-2 subunit vaccines, 
the antigens are represented by viral proteins, peptides, or nanopar­
ticles. Because of relatively low immunogenicity of the subunit 
vaccines, adjuvants are required to create a stronger immune  
response [38]. Currently, aluminum salts, virosomes, AS03 
(α-tocopherol, surfactant polysorbate 80, and squalene), AS04 
(Monophosphoryl lipid A, MPLA) and MF59 (squalene) are the 
most widespread licensing adjuvants [39, 40]. These adjuvant sys­
tems are also used in a number of anti-SARS-CoV-2 vaccines; 
however, novel adjuvants are tested as well. Advax-SM (clinical 
trial #NCT04453852) is an adjuvant composed of polysaccharide 
delta-inulin and CpG oligodeoxynucleotide (CpG ODN). CpG 
ODN is a TLR 9 agonist with T-helper 1 skewing properties [41]. 
Granulocyte macrophage colony-stimulating factor is a proin­
flammatory cytokine which may also serve as an adjuvant 
(#NCT03305341 and #NCT04386252).

Nonetheless, subunit vaccines provide a high level of safety. 
Bacterial expression systems represent the most commonly used 
technique to produce recombinant proteins with high expression. 
However, in antigens where posttranslational modification is re­
quired, the use of mammalian or insect cells may be considered 
[42]. Other offered alternatives include transgenic plants [43]. This 
technology has been also adopted as a source of SARS-CoV-2 virus 
spike protein for the purpose of vaccine development (phase I/II 
trial #NCT04473690). To date, there are no SARS-CoV-2-recom­
binant vaccines tested in phase III. Three vaccines are being evalu­
ated in clinical phase I/II (#NCT04527575 and #NCT04537208) 
and phase II (#NCT04533399). Recombinant technologies, in­
cluding bacterial, insect, or mammalian cell-based expression sys­
tems can also be used for the generation of virus-like particles 
(VLPs). VLPs that are formed by a capsid protein do not contain 
infectious viral RNA or DNA. Moreover, the antisense RNA can 
inhibit virus expression, and the viral RNA/DNA may activate dif­
ferent pattern recognition receptors and trigger antiviral immune 
responses. These responses are primarily characterized by a pro­
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duction of type I interferons and proinflammatory cytokines [44]. 
VLPs-based anti-SARS-CoV-2 vaccine (#NCT04450004) is cur­
rently tested in phase I clinical trials.

DNA Vaccines
DNA vaccines deliver coronavirus’s genes to the human cells. 

The vaccination principle depends on the DNA translocation into 
the cell nucleus where the transcription of the antigen is initiated 
and followed by a translation. DNA vaccines frequently use plas­
mids as vectors. Depending on the route of vaccine administration 
(intramuscular, intradermal, and subcutaneous), either myocytes 
or keratinocytes are addressed. Nonetheless, antigen-presenting 
cells residing close to the site of application can be transfected di­
rectly by DNA vaccines as well. In such cases, the expressed anti­
gens are loaded onto MHC I and MHC II molecules due to the 
cross-priming potential [45]. The produced antigens are either re­
leased by exosomes or apoptotic bodies which lead to a recognition 
by antigen-presenting cells and further evolvement of humoral or 
cytotoxic immune responses. Different delivery devices are used to 
create a robust immune response [46, 47]. The main safety con­
cerns imply a possible integration of transfected DNA into somat­
ic and/or germ cells of the host. In such cases, a dysregulation of 
gene expression might occur and lead to various mutations. How­
ever, only extrachromosomal plasmids with a very low level of 
chromosomal integration are usually employed in the develop­
ment of DNA vaccines. Furthermore, the majority of plasmids re­
main at the site of administration [48]. Three anti-SARS-CoV-2 
DNA vaccines are currently in phase I/II of clinical assessment 
(#NCT04527081, #NCT04447781, and #NCT04445389).

RNA Vaccines
Messenger RNA (mRNA) vaccines were first tested in early 

1990s; however, their use was limited because of their instability 
[49]. The mRNA encodes the genetic information to produce an 
antigen, and thus, RNA vaccines also lead to a production of coro­
navirus’s proteins in vivo. The in vitro generation of an RNA vac­
cine includes a reaction of a DNA plasmid template and a recom­
binant RNA polymerase. In addition, a synthetic cap analog and a 
poly(A) tail are added to form a mature RNA sequence. The stabi­
lization is further achieved by various transport systems (such as 
lipid nanoparticles, nano-emulsions, and cationic peptides) or 
methods enabling facilitated transfection (gene gun and electro­
poration). Conventional mRNA vaccines are based on the initia­
tion of the transient antigen expression in the cytoplasm of the host 
cells. Another platform is represented by self-amplifying mRNA 
vaccines that contain both the genes coding the targeted antigen as 
well as the genes required for the self-replication (mostly RNA-
dependent RNA polymerase) [50]. The conventional mRNA vac­
cines induce a prompt antigen expression, and the expressed anti­
gens generate both humoral and cellular immune responses [51–
54]. In self-amplifying mRNA vaccines, a delayed antigen 
expression may prevail and limit the efficacy of the vaccine. Yet, 
the self-amplifying mRNA vaccine platform reaches higher yields, 
and thus, an equivalent protection is conferred at much lower dos­
es [55]. Regarding the safety profiles, the replicons of both above­
mentioned platforms are not capable of producing viral particles 
due to the lack of viral structural proteins. Moreover, neither con­
ventional nor self-amplifying mRNA vaccines can integrate into 
the host genome. The mRNA-based vaccines were able to induce 
production of functional antibodies with neutralizing properties V
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in rabies, influenza, or Zika virus and represent also a promising 
vaccination strategy in the prevention against COVID-19 infec­
tion [56]. The efficacy and safety are being assessed in the ongoing 
phase II and phase III clinical trials (#NCT04515147, 
#NCT04368728, and #NCT04470427).

Viral Vector-Based Vaccines
Viral vector-based vaccines (VBVs) are constructed by engi-

neering a viral vector to carry coronavirus genes and slowly repli-
cate in the host cells. The replication leads to the production of coro-
navirus proteins and a subsequent immune system activation. Po­
tential viral vectors include a broad spectrum of both DNA and 
RNA viruses, such as adenoviruses, parvoviruses (e.g., adeno-as­
sociated viruses), togaviruses (e.g., Semliki Forest virus), para­
myxoviruses (e.g., measles virus, Newcastle disease virus or hu­
man parainfluenza virus), rhabdoviruses (e.g., vesicular stomatitis 
virus), and poxviruses (e.g., Modified Vaccinia Ankara). These 
viral vectors can be constructed as replicating or nonreplicating 
vectors [57]. The efficacy of VBV may be significantly affected by 
the preexisting immunity of the host. This can be avoided by the 
use of nonhuman or rare serotype vectors [58, 59]. The main safe­
ty concerns include the potential of viral genes to integrate into 
the host genome and uncontrolled replication. On the other hand, 
the high yield production supports the use of VBV particularly in 
the time of disease outbreaks [60]. In SARS-CoV-2 vaccine devel­
opment, the most commonly used vectors are the adenoviral vec­
tors, such as ChAdOx (#NCT04536051 and #NCT04516746), ad­
enovirus type 5 (#NCT04564716, #NCT04540419, and 
#NCT04526990), and adenovirus type 26 (#NCT04564716 and 
#NCT04505722). All these vaccines are currently being evaluated 
in phase III clinical trials. However, lentivirus (#NCT04276896 
and #NCT04428073), measles (#NCT04498247 and 
#NCT04497298), baculovirus (#NCT04522089), or MVA 
(#NCT04569383) are also being tested.

Routes of Administration
The route of administration is another crucial aspect that sig­

nificantly affects the vaccine efficacy. Conventional vaccination 
approaches include mucosal and parenteral administration. Par­
enteral route generally includes intramuscular (IM), subcutaneous 
(SC), and intradermal (ID) application [61]. Due to an increased 
infiltration of dermis with DCs, the ID application initiates great­
er adaptive immune response than the IM application providing a 
significant dose sparing effect. However, improved efficacy is as­
sociated with a less favorable safety profile [62]. Mucosal vaccines 
including the intranasal and oral administration routes provide a 
number of advantages, particularly the avoidance of a needle ap­
plication and a lower risk of systemic adverse events (AEs). Nev­
ertheless, the systemic responses to mucosal vaccination are weak­
er as compared to parenterally administrated vaccinations [63]. 
The majority of vaccinations are administered intramuscularly. 
However, the intradermal administration (#NCT03305341 and 
#NCT04447781), oral administration (#NCT04334980), or com­
bined administration (intramuscular and mucosal) of the vaccines 
(#NCT04552366) is being evaluated.

The Most Promising Anti-COVID-19 Vaccines
The first vaccine with favorable results was the ChAdOx1 

nCoV-19 (also known as AZD1222, AstraZeneca/University of 
Oxford). This vaccine was evaluated in July 2020 in the phase I/II 

single-blind randomized trial with 1077 participants. The patients 
were exposed to 2 doses of recombinant adenovirus vaccine 
ChAdOx1 nCoV-19 in a 28-day interval. Neutralizing antibodies 
against SARS-CoV-2 spike protein were detected in 91% of pa­
tients after the first dose. The production of virus-specific anti­
bodies peaked on day 28, and a robust T-cell response was also 
observed. Severe AEs were not reported [64]. The efficacy has 
been recently confirmed in a pooled interim analysis of 4 phase 
I/–III clinical trials. [65]. The preliminary results of a double-
blind, randomized, placebo-controlled phase I/II trial with an­
other vaccine candidate Ad26.COV2 (Janssen-Cilag Internation­
al N.V.) were published in September 2020 (data published as a 
preprint). The study included >800 patients, and the seroconver­
sion rate with the production of anti-spike protein-neutralizing 
antibodies was seen in 83–100% patients across the cohorts. The 
specific T-helper 1 response was detected in 80–83% of the par­
ticipants with a robust activation of CD8+ T cells. Local and sys­
temic AEs included fever, headache, myalgia, and injection site 
pain. In November 2020, the preliminary results of an open-label 
clinical trial including 45 healthy adults treated with mRNA-1273 
vaccine (Moderna Biotech Spain, S.L.) were shown. The vaccine 
was administered in 2 doses and various concentrations (25, 100, 
and 250 μg). The seroconversion occurred in all participants, and 
the response depended on the administered dose. On the other 
hand, higher doses were associated with increased risk of system­
ic AEs (reported in 33% participants) [66]. The mRNA BNT162 
(Pfizer/BioNTech) vaccine has been proven in a large observer-
blinded, randomized, placebo-controlled trial with >43,000 par­
ticipants to be a safe and potent vaccine. Two doses (30 μg per 
dose) were administered in a 21-day interval. The overall reported 
efficacy of 95% was observed across different subgroups defined 
by age, sex, race, ethnicity, baseline BMI, and the presence of co­
existing conditions. A 52% efficacy was observed after the first 
dose indicating early protection. Injection site reactions, fatigue, 
headaches, and fevers were the most common AEs (reported in 
27% of patients) [67].

Off-Target Vaccinations
It has been shown that various vaccination principles bear a 

potential to prevent or at least to suppress the detrimental effect 
of COVID-19. The cross-protection has been discussed particu­
larly in association with the Bacillus Calmette-Guérin (BCG) 
vaccination. In BCG vaccinated populations, the incidence and 
the severity of the COVID-19 disease appears to be lower than 
BCG-non-vaccinated populations [68–72]. A similar phenom­
enon of a cross-protection was also described in individuals after 
the measles infection, or the measles, mumps, rubella vaccina­
tion [73, 74]. These findings were supported by previous obser­
vations that a nonspecific effect of these vaccines protects against 
other infections including those of viral origin [75–78]. There­
fore, a number of prospective randomized clinical trials has been 
initiated to validate the preventive effect of both BCG vaccine 
(#NCT04379336, #NCT04537663, #NCT04327206, 
#NCT04328441, #NCT04461379, #NCT04369794, 
#NCT04414267, #NCT04384549, and other) and the measles 
vaccine (NCT04357028 and NCT04475081).
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Discussion

An effective vaccination against SARS-CoV-2 infec­
tion could mobilize the innate and adaptive immune re­
sponses and provide a protection against severe forms of 
COVID-19. Since the SARS-CoV-2 virus may undergo 
mutational changes and antigenically evolve over time, 
the vaccine may become, as in influenza, a seasonal pro­
tection. On the other hand, coronaviruses have a low mu­
tation rate in comparison to other RNA viruses, particu­
larly Influenza type A [79]. The anti-SARS-CoV-2 vacci­
nation may not lead to the eradication of the disease, 
however, may most certainly decrease the disease-related 
mortality and morbidity [75, 80, 81].

In COVID-19, live vaccines have not yet been regis­
tered in human clinical trials. Previous studies have 
shown that booster (secondary) vaccination with life-at­
tenuated viruses generate only limited immune response 
as compared to the first vaccination dose [82, 83]. Also, 
the preexisting immunity caused by previous COVID-19 
infection may inhibit the efficacy of live attenuated vac­
cines and the presence of neutralizing antibodies can be 
associated with the virus neutralization. Moreover, the 
genome instability may lead to a back mutation recover­
ing their virulence, mainly in viruses with higher muta­
tion rate [84–86]. Therefore, the live vaccines may not 
represent the optimal vaccine type in prevention of CO­
VID-19 infection [87].

Other classical vaccination approaches, such as inacti­
vated or recombinant subunit vaccines, are currently be­
ing tested against COVID-19 infection in clinical trials. 
Their efficacy is, however, also limited by relatively low 
response rates and short-term immune memory. There­
fore, both approaches require the use of potent adjuvants 
such as CpG ODN, ADVAX-SM, or granulocyte macro­
phage colony-stimulating factor representing novel strat­
egies to enhance immune response. Another obstacle of 
inactivated vaccines represents the risk of reversed out­
come associated with enhanced virus-mediated disease 
and fatal consequences. In the cases of respiratory syncy­
tial virus vaccination, the vaccine was found to be immu­
nogenic; however, the elicited antibodies were nonpro­
tective and respiratory syncytial virus disease progression 
in single cases resulted in death in vaccinated infants [88, 
89]. Therefore, novel vaccine designs, such as mRNA vac­
cines and recombinant VBV vaccines are being extensive­
ly investigated to avoid these barriers. FDA and EMA 
have been recently authorized mRNA vaccine candidate 
BNT162/comirnaty and mRNA-1273 for the use [90]. 
Furthermore, other vaccine candidates, including Ad26.

COV2.S and ChAdOx1-SARS-CoV-2 (AZD1222), are 
currently under consideration [91]. To note, novel vac­
cine approaches raise many safety concerns. However, 
strategies following the good manufacturing practice 
principles and appropriate preclinical and clinical testing 
under the surveillance of regulatory authorities should 
ensure good safety profile [92]. The efficacy and safety 
also remain an issue in immunocompromised patients 
with primary or secondary immunodeficiencies. Gener­
ally, administration of attenuated life virus vaccines has 
to be considered with caution and indicated upon careful 
individual assessment of risk and benefits in these pa­
tients. Non-live vaccines such as influenza or pneumo­
coccal vaccine are regarded as safe, even though their ef­
ficacy may be reduced in patients with severely impaired 
antibody response [93, 94]. Similar principles might be 
applied also in anti-SARS-CoV-2 vaccination; however, 
neither recommendations nor guidelines are available 
yet. The level of virus-specific antibodies does not corre­
late with the acquired immune response mediated by T 
cells that might be preserved in the majority of the anti­
body deficient patients [95, 96]. Thus, the examination of 
T-cell response should also be considered in healthy sub­
jects. Surprisingly, other vaccines such as BCG and mea­
sles vaccine have also shown efficacy in the prevention of 
COVID-19 disease. The leading vaccine candidates are 
currently being distributed and among selected popula­
tion with great expectations to reduce the COVID-19 
spread.
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