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Abstract
The number of severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2)-infected patients keeps rising in most of 
the European countries despite the pandemic precaution 
measures. The current antiviral and anti-inflammatory thera-
peutic approaches are only supportive, have limited efficacy, 
and the prevention in reducing the transmission of SARS-
CoV-2 virus is the best hope for public health. It is presumed 
that an effective vaccination against SARS-CoV-2 infection 
could mobilize the innate and adaptive immune responses 
and provide a protection against severe forms of coronavirus 
disease 2019 (COVID-19) disease. As the race for the effective 
and safe vaccine has begun, different strategies were intro-
duced. To date, viral vector-based vaccines, genetic vac-
cines, attenuated vaccines, and protein-based vaccines are 
the major vaccine types tested in the clinical trials. Over 80 
clinical trials have been initiated; however, only 18 vaccines 
have reached the clinical phase II/III or III, and 4 vaccine can-
didates are under consideration or have been approved for 
the use so far. In addition, the protective effect of the off-

target vaccines, such as Bacillus Calmette-Guérin and mea-
sles vaccine, is being explored in randomized prospective 
clinical trials with SARS-CoV-2-infected patients. In this re-
view, we discuss the most promising anti-COVID-19 vaccine 
clinical trials and different vaccination strategies in order to 
provide more clarity into the ongoing clinical trials.

© 2021 S. Karger AG, Basel

Introduction

The rapid spread of coronavirus disease 2019 (CO
VID19) has globally become a serious issue [1]. The dis
ease, caused by a severe acute respiratory syndrome coro
navirus 2 (SARSCoV2), has been first reported in De
cember 2019 (Wuhan, China) and declared by the World 
Health Organization (WHO) as a pandemic on March 11, 
2020 [2]. To date, the COVID19associated deaths keep 
rising in most of the European countries. This phenom
enon can be influenced by the pandemic precaution mea
sures, such as mandatory face masks wearing; however, 
the end of the pandemic may not be seen until an effective 
antiCOVID19 vaccine is developed [3, 4]. SARSCoV2 

Edited by: H.-U. Simon, Bern.



Strizova/Smetanova/Bartunkova/MilotaInt Arch Allergy Immunol2
DOI: 10.1159/000514225

belongs to the singlestranded RNA viruses which origi
nated in bats [5]. SARSCoV2 exhibits the same struc
tural and molecular patterns as other coronaviruses, such 
as structural proteins S (spike), E (envelope), M (mem
brane), and N (nucleocapsid) (Fig. 1) [6, 7]. The binding 
of the virus and its further entry into the host cell through 
angiotensinconverting enzyme 2 is mediated by the viral 
S protein. As the S protein is processed by a protease 
transmembrane protease serine 2, viral fusion with the 
host cell occurs. The first genetic analyses of the virus re
vealed an 89% nucleotide identity with bat virus SARS
likeCoVZXC21 [6]. Further investigation, however, 
confirmed a high similarity (96%) between the SARS
CoV2 and the betaCoV RaTG13 of bats [1, 8, 9]. In CO
VID19, it has been attempted by multiple studies to 
identify the intermediate host and on the basis of the 
available data, pangolins are most likely the mammals 
serving as a SARSCoV2 intermediate host [10]. The un
derstanding and identification of an intermediate host is 
of major importance. The reason stems from the fact that 
blocking the humanhost contact may restrain further 
spread of the novel disease variants, such as the Cluster 5 
identified originally in minks. This cluster includes Y453F 
mutation in the spike protein and was reported among 
people in Denmark. Additionally, the virus was shown to 
infect multiple animal species under experimental condi
tions, and also few cases of household cats and dogs were 
reported to be positive for SARSCoV2 RNA. Therefore, 
concerns regarding the new sources of infection, novel 

potential viral strains, and uncontrolled outbreaks rise 
[11–13]. Moreover, the identification of an intermediate 
host may allow novel vaccine testing [1]. As a matter of 
fact, in Middle East respiratory syndrome disease, the 
first vaccine candidates were tested in dromedary camels 
[14]. The total number of deaths in COVID19 is affected 
by the high transmissibility (assessed by the basic repro
duction number, R0) [15]. COVID19 is mainly transmit
ted through respiratory droplets from sneezing and 
coughing; however, few other transmission routes have 
been described, such as alimentary transmission or 
through conjunctival mucosa [1, 4]. To date, severe and 
deadly forms of COVID19 have been reported. Underly
ing health conditions were seen in cases with lifethreat
ening course of COVID19, and thus, the COVID19 
pandemic represents an enormous threat for the elderly 
[16] or chronically ill patients, particularly for those suf
fering from severe obesity, CKD, diabetes, arterial hyper
tension, or asthma [17]. On the other hand, the viral load 
is presumably one of the factors that dictate the clinical 
course of the disease [18]. This may also be affected by the 
transmission route, and therefore, asymptomatic CO
VID19 patients were reported throughout multiple stud
ies [19, 20]. Currently, multiple therapeutic approaches 
are being applied to deal with the infection. However, 
these approaches are rather supportive, and the preven
tion in reducing the transmission is the best hope for pub
lic health [1, 5, 21]. We have reviewed the current status 
of all antiCOVID19 vaccines that have reached the clin

(S)  glycoprotein

(M)   )EH(nietorpocylg  glycoprotein

(E)  glycoprotein

(N)  phosphoprotein

ssRNA

Fig. 1. Structure of SARSCoV2 virus: 
spike (S) glycoprotein, membrane (M) gly
coprotein, envelope (E) glycoprotein, hem
agglutininesterase (HA) glycoprotein, and 
nucleocapsid (N) phosphoprotein [97, 98].
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ical trials in humans. As the race for the effective and safe 
vaccine has begun, different strategies were introduced. 
In this review, we discuss the most promising antiCO
VID19 vaccine clinical trials and discuss different vacci
nation strategies in order to provide more clarity into the 
ongoing clinical trials.

Methods

We conducted a comprehensive review of the literature on the 
progress of antiSARSCoV2 vaccine development preventing the 
rapid spread of COVID19 disease. The vaccines that were regis
tered until December 2020 in the Clinical Trials database by the 
National Library of Medicine at the US National Institutes of 
Health were reviewed [22]. The authors followed the proposed 
guidelines for biomedical narrative review preparation [23].

Immune Response to SARS-CoV-2 Virus
The immune system affects the severity of the COVID19 dis

ease [7]. SARSCoV2 infection has an impact on both innate and 
adaptive immune responses. It has been described that SARS
CoV2 enters the human body through physical barriers, such as 
respiratory tract, oral mucosa, and conjunctival epithelium [24, 
25]. The dendritic cells, macrophages, and neutrophils represent 
the first line of defense, and their functions may be promoted by 
the production of type I and III interferons by SARSCoV2in
fected epithelial cells [26]. The adaptive Tcell and Bcellmediat
ed immune responses are also presented in COVID19 disease 
and, however, can be suppressed by SARSCoV2 [7]. In some cas
es, the innate immune cells may contribute to the excessive inflam
mation and, therefore, to the disease progression. The inability to 
reach control over the infection may result in dysregulated inflam
matory responses that are potentially lethal. The IgM and IgG an
tibodies to SARSCoV2 are detectable within 1–2 weeks and be
gan to decrease by 8 weeks [27]. Several studies also reported that 
IgA response peaks earlier than IgM [28]. The antibody response 
particularly leads to production of neutralizing antibodies to the S 
protein and to the nucleoprotein. S protein is also the main target 
of the majority of newly designed vaccines [29]. The magnitude of 
neutralizing antibodies positively correlates with the disease sever
ity and the robustness of Tcell response [30]. Tcell responses 
were detectable in individuals recovering from mild COVID19 
who did not have detectable antibody responses to SARSCoV2 
[31, 32]. The effective vaccination may not eradicate the SARS
CoV2 virus but may at least protect from severe and deadly forms 
of the COVID19 disease [7]. Current knowledge regarding the 
diverse aspects of SARSCoV2immune system interplay shall be 
reflected in the vaccine design, including the selection of antigens, 
the vaccine platforms and adjuvants, the vaccination routes, and 
the dosage regimens [33, 34]. The key points of the SARSCoV2 
vaccination strategies are discussed below. To date, over 80 clinical 
trials have been registered in the Clinical Trials database by the 
National Library of Medicine at the US National Institutes of 
Health; however, only 34 of them are active and recruiting (11 of 
phase I, 8 of phase I/II, 3 of phase II, 1 of phase II/III, and 11 of 
phase III) [22]. Moreover, 2 vaccine candidates have been ap
proved for use by the US Food and Drug Administration (FDA) – 

BNT162/Comirnaty and mRNA1273). BNT162/Comirnaty has 
been also permitted by the European Medicines Agency (EMA). 
The vaccination program with BNT162/Comirnaty has been re
cently initiated in many European countries. The main features of 
the registered and ongoing antiSARSCoV2 vaccine clinical trial 
are summarized in Table 1 (Phase I and I/II) and Table 2 (Phase 
II, II/III, and III).

Inactivated Vaccines
Inactivated vaccines are based on presenting the form of patho

gen with a loss of diseaseproducing capacity. The virus cultivation 
occurs in cell lines that represent a substrate for the production of 
large quantities of antigen. Virus multiplication is often followed 
by a purification and concentration prior to the vaccine inactiva
tion [35]. Formaldehyde and betapropiolactone are used in the 
majority of licensed human antiviral vaccines to inactivate the vi
rus [36]. Multiple doses or adjuvants are required to achieve suf
ficient efficacy of inactivated vaccines [37]. To date, 4 inactivated 
vaccines have reached the phase III clinical trials and are currently 
under evaluation (#NCT04510207, #NCT04508075, and 
#NCT04456595).

Subunit Vaccines
Subunit vaccines are composed of purified antigens instead of 

whole microorganisms, and different carriers serve as a transport
er for those antigens. In the antiSARSCoV2 subunit vaccines, 
the antigens are represented by viral proteins, peptides, or nanopar
ticles. Because of relatively low immunogenicity of the subunit 
vaccines, adjuvants are required to create a stronger immune  
response [38]. Currently, aluminum salts, virosomes, AS03 
(αtocopherol, surfactant polysorbate 80, and squalene), AS04 
(Monophosphoryl lipid A, MPLA) and MF59 (squalene) are the 
most widespread licensing adjuvants [39, 40]. These adjuvant sys
tems are also used in a number of antiSARSCoV2 vaccines; 
however, novel adjuvants are tested as well. AdvaxSM (clinical 
trial #NCT04453852) is an adjuvant composed of polysaccharide 
deltainulin and CpG oligodeoxynucleotide (CpG ODN). CpG 
ODN is a TLR 9 agonist with Thelper 1 skewing properties [41]. 
Granulocyte macrophage colonystimulating factor is a proin
flammatory cytokine which may also serve as an adjuvant 
(#NCT03305341 and #NCT04386252).

Nonetheless, subunit vaccines provide a high level of safety. 
Bacterial expression systems represent the most commonly used 
technique to produce recombinant proteins with high expression. 
However, in antigens where posttranslational modification is re
quired, the use of mammalian or insect cells may be considered 
[42]. Other offered alternatives include transgenic plants [43]. This 
technology has been also adopted as a source of SARSCoV2 virus 
spike protein for the purpose of vaccine development (phase I/II 
trial #NCT04473690). To date, there are no SARSCoV2recom
binant vaccines tested in phase III. Three vaccines are being evalu
ated in clinical phase I/II (#NCT04527575 and #NCT04537208) 
and phase II (#NCT04533399). Recombinant technologies, in
cluding bacterial, insect, or mammalian cellbased expression sys
tems can also be used for the generation of viruslike particles 
(VLPs). VLPs that are formed by a capsid protein do not contain 
infectious viral RNA or DNA. Moreover, the antisense RNA can 
inhibit virus expression, and the viral RNA/DNA may activate dif
ferent pattern recognition receptors and trigger antiviral immune 
responses. These responses are primarily characterized by a pro
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duction of type I interferons and proinflammatory cytokines [44]. 
VLPsbased antiSARSCoV2 vaccine (#NCT04450004) is cur
rently tested in phase I clinical trials.

DNA Vaccines
DNA vaccines deliver coronavirus’s genes to the human cells. 

The vaccination principle depends on the DNA translocation into 
the cell nucleus where the transcription of the antigen is initiated 
and followed by a translation. DNA vaccines frequently use plas
mids as vectors. Depending on the route of vaccine administration 
(intramuscular, intradermal, and subcutaneous), either myocytes 
or keratinocytes are addressed. Nonetheless, antigenpresenting 
cells residing close to the site of application can be transfected di
rectly by DNA vaccines as well. In such cases, the expressed anti
gens are loaded onto MHC I and MHC II molecules due to the 
crosspriming potential [45]. The produced antigens are either re
leased by exosomes or apoptotic bodies which lead to a recognition 
by antigenpresenting cells and further evolvement of humoral or 
cytotoxic immune responses. Different delivery devices are used to 
create a robust immune response [46, 47]. The main safety con
cerns imply a possible integration of transfected DNA into somat
ic and/or germ cells of the host. In such cases, a dysregulation of 
gene expression might occur and lead to various mutations. How
ever, only extrachromosomal plasmids with a very low level of 
chromosomal integration are usually employed in the develop
ment of DNA vaccines. Furthermore, the majority of plasmids re
main at the site of administration [48]. Three antiSARSCoV2 
DNA vaccines are currently in phase I/II of clinical assessment 
(#NCT04527081, #NCT04447781, and #NCT04445389).

RNA Vaccines
Messenger RNA (mRNA) vaccines were first tested in early 

1990s; however, their use was limited because of their instability 
[49]. The mRNA encodes the genetic information to produce an 
antigen, and thus, RNA vaccines also lead to a production of coro
navirus’s proteins in vivo. The in vitro generation of an RNA vac
cine includes a reaction of a DNA plasmid template and a recom
binant RNA polymerase. In addition, a synthetic cap analog and a 
poly(A) tail are added to form a mature RNA sequence. The stabi
lization is further achieved by various transport systems (such as 
lipid nanoparticles, nanoemulsions, and cationic peptides) or 
methods enabling facilitated transfection (gene gun and electro
poration). Conventional mRNA vaccines are based on the initia
tion of the transient antigen expression in the cytoplasm of the host 
cells. Another platform is represented by selfamplifying mRNA 
vaccines that contain both the genes coding the targeted antigen as 
well as the genes required for the selfreplication (mostly RNA
dependent RNA polymerase) [50]. The conventional mRNA vac
cines induce a prompt antigen expression, and the expressed anti
gens generate both humoral and cellular immune responses [51–
54]. In selfamplifying mRNA vaccines, a delayed antigen 
expression may prevail and limit the efficacy of the vaccine. Yet, 
the selfamplifying mRNA vaccine platform reaches higher yields, 
and thus, an equivalent protection is conferred at much lower dos
es [55]. Regarding the safety profiles, the replicons of both above
mentioned platforms are not capable of producing viral particles 
due to the lack of viral structural proteins. Moreover, neither con
ventional nor selfamplifying mRNA vaccines can integrate into 
the host genome. The mRNAbased vaccines were able to induce 
production of functional antibodies with neutralizing properties V
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in rabies, influenza, or Zika virus and represent also a promising 
vaccination strategy in the prevention against COVID19 infec
tion [56]. The efficacy and safety are being assessed in the ongoing 
phase II and phase III clinical trials (#NCT04515147, 
#NCT04368728, and #NCT04470427).

Viral Vector-Based Vaccines
Viral vectorbased vaccines (VBVs) are constructed by engi-

neering a viral vector to carry coronavirus genes and slowly repli-
cate in the host cells. The replication leads to the production of coro-
navirus proteins and a subsequent immune system activation. Po
tential viral vectors include a broad spectrum of both DNA and 
RNA viruses, such as adenoviruses, parvoviruses (e.g., adenoas
sociated viruses), togaviruses (e.g., Semliki Forest virus), para
myxoviruses (e.g., measles virus, Newcastle disease virus or hu
man parainfluenza virus), rhabdoviruses (e.g., vesicular stomatitis 
virus), and poxviruses (e.g., Modified Vaccinia Ankara). These 
viral vectors can be constructed as replicating or nonreplicating 
vectors [57]. The efficacy of VBV may be significantly affected by 
the preexisting immunity of the host. This can be avoided by the 
use of nonhuman or rare serotype vectors [58, 59]. The main safe
ty concerns include the potential of viral genes to integrate into 
the host genome and uncontrolled replication. On the other hand, 
the high yield production supports the use of VBV particularly in 
the time of disease outbreaks [60]. In SARSCoV2 vaccine devel
opment, the most commonly used vectors are the adenoviral vec
tors, such as ChAdOx (#NCT04536051 and #NCT04516746), ad
enovirus type 5 (#NCT04564716, #NCT04540419, and 
#NCT04526990), and adenovirus type 26 (#NCT04564716 and 
#NCT04505722). All these vaccines are currently being evaluated 
in phase III clinical trials. However, lentivirus (#NCT04276896 
and #NCT04428073), measles (#NCT04498247 and 
#NCT04497298), baculovirus (#NCT04522089), or MVA 
(#NCT04569383) are also being tested.

Routes of Administration
The route of administration is another crucial aspect that sig

nificantly affects the vaccine efficacy. Conventional vaccination 
approaches include mucosal and parenteral administration. Par
enteral route generally includes intramuscular (IM), subcutaneous 
(SC), and intradermal (ID) application [61]. Due to an increased 
infiltration of dermis with DCs, the ID application initiates great
er adaptive immune response than the IM application providing a 
significant dose sparing effect. However, improved efficacy is as
sociated with a less favorable safety profile [62]. Mucosal vaccines 
including the intranasal and oral administration routes provide a 
number of advantages, particularly the avoidance of a needle ap
plication and a lower risk of systemic adverse events (AEs). Nev
ertheless, the systemic responses to mucosal vaccination are weak
er as compared to parenterally administrated vaccinations [63]. 
The majority of vaccinations are administered intramuscularly. 
However, the intradermal administration (#NCT03305341 and 
#NCT04447781), oral administration (#NCT04334980), or com
bined administration (intramuscular and mucosal) of the vaccines 
(#NCT04552366) is being evaluated.

The Most Promising Anti-COVID-19 Vaccines
The first vaccine with favorable results was the ChAdOx1 

nCoV19 (also known as AZD1222, AstraZeneca/University of 
Oxford). This vaccine was evaluated in July 2020 in the phase I/II 

singleblind randomized trial with 1077 participants. The patients 
were exposed to 2 doses of recombinant adenovirus vaccine 
ChAdOx1 nCoV19 in a 28day interval. Neutralizing antibodies 
against SARSCoV2 spike protein were detected in 91% of pa
tients after the first dose. The production of virusspecific anti
bodies peaked on day 28, and a robust Tcell response was also 
observed. Severe AEs were not reported [64]. The efficacy has 
been recently confirmed in a pooled interim analysis of 4 phase 
I/–III clinical trials. [65]. The preliminary results of a double
blind, randomized, placebocontrolled phase I/II trial with an
other vaccine candidate Ad26.COV2 (JanssenCilag Internation
al N.V.) were published in September 2020 (data published as a 
preprint). The study included >800 patients, and the seroconver
sion rate with the production of antispike proteinneutralizing 
antibodies was seen in 83–100% patients across the cohorts. The 
specific Thelper 1 response was detected in 80–83% of the par
ticipants with a robust activation of CD8+ T cells. Local and sys
temic AEs included fever, headache, myalgia, and injection site 
pain. In November 2020, the preliminary results of an openlabel 
clinical trial including 45 healthy adults treated with mRNA1273 
vaccine (Moderna Biotech Spain, S.L.) were shown. The vaccine 
was administered in 2 doses and various concentrations (25, 100, 
and 250 μg). The seroconversion occurred in all participants, and 
the response depended on the administered dose. On the other 
hand, higher doses were associated with increased risk of system
ic AEs (reported in 33% participants) [66]. The mRNA BNT162 
(Pfizer/BioNTech) vaccine has been proven in a large observer
blinded, randomized, placebocontrolled trial with >43,000 par
ticipants to be a safe and potent vaccine. Two doses (30 μg per 
dose) were administered in a 21day interval. The overall reported 
efficacy of 95% was observed across different subgroups defined 
by age, sex, race, ethnicity, baseline BMI, and the presence of co
existing conditions. A 52% efficacy was observed after the first 
dose indicating early protection. Injection site reactions, fatigue, 
headaches, and fevers were the most common AEs (reported in 
27% of patients) [67].

Off-Target Vaccinations
It has been shown that various vaccination principles bear a 

potential to prevent or at least to suppress the detrimental effect 
of COVID19. The crossprotection has been discussed particu
larly in association with the Bacillus CalmetteGuérin (BCG) 
vaccination. In BCG vaccinated populations, the incidence and 
the severity of the COVID19 disease appears to be lower than 
BCGnonvaccinated populations [68–72]. A similar phenom
enon of a crossprotection was also described in individuals after 
the measles infection, or the measles, mumps, rubella vaccina
tion [73, 74]. These findings were supported by previous obser
vations that a nonspecific effect of these vaccines protects against 
other infections including those of viral origin [75–78]. There
fore, a number of prospective randomized clinical trials has been 
initiated to validate the preventive effect of both BCG vaccine 
(#NCT04379336, #NCT04537663, #NCT04327206, 
#NCT04328441, #NCT04461379, #NCT04369794, 
#NCT04414267, #NCT04384549, and other) and the measles 
vaccine (NCT04357028 and NCT04475081).



Strizova/Smetanova/Bartunkova/MilotaInt Arch Allergy Immunol8
DOI: 10.1159/000514225

Discussion

An effective vaccination against SARSCoV2 infec
tion could mobilize the innate and adaptive immune re
sponses and provide a protection against severe forms of 
COVID19. Since the SARSCoV2 virus may undergo 
mutational changes and antigenically evolve over time, 
the vaccine may become, as in influenza, a seasonal pro
tection. On the other hand, coronaviruses have a low mu
tation rate in comparison to other RNA viruses, particu
larly Influenza type A [79]. The antiSARSCoV2 vacci
nation may not lead to the eradication of the disease, 
however, may most certainly decrease the diseaserelated 
mortality and morbidity [75, 80, 81].

In COVID19, live vaccines have not yet been regis
tered in human clinical trials. Previous studies have 
shown that booster (secondary) vaccination with lifeat
tenuated viruses generate only limited immune response 
as compared to the first vaccination dose [82, 83]. Also, 
the preexisting immunity caused by previous COVID19 
infection may inhibit the efficacy of live attenuated vac
cines and the presence of neutralizing antibodies can be 
associated with the virus neutralization. Moreover, the 
genome instability may lead to a back mutation recover
ing their virulence, mainly in viruses with higher muta
tion rate [84–86]. Therefore, the live vaccines may not 
represent the optimal vaccine type in prevention of CO
VID19 infection [87].

Other classical vaccination approaches, such as inacti
vated or recombinant subunit vaccines, are currently be
ing tested against COVID19 infection in clinical trials. 
Their efficacy is, however, also limited by relatively low 
response rates and shortterm immune memory. There
fore, both approaches require the use of potent adjuvants 
such as CpG ODN, ADVAXSM, or granulocyte macro
phage colonystimulating factor representing novel strat
egies to enhance immune response. Another obstacle of 
inactivated vaccines represents the risk of reversed out
come associated with enhanced virusmediated disease 
and fatal consequences. In the cases of respiratory syncy
tial virus vaccination, the vaccine was found to be immu
nogenic; however, the elicited antibodies were nonpro
tective and respiratory syncytial virus disease progression 
in single cases resulted in death in vaccinated infants [88, 
89]. Therefore, novel vaccine designs, such as mRNA vac
cines and recombinant VBV vaccines are being extensive
ly investigated to avoid these barriers. FDA and EMA 
have been recently authorized mRNA vaccine candidate 
BNT162/comirnaty and mRNA1273 for the use [90]. 
Furthermore, other vaccine candidates, including Ad26.

COV2.S and ChAdOx1SARSCoV2 (AZD1222), are 
currently under consideration [91]. To note, novel vac
cine approaches raise many safety concerns. However, 
strategies following the good manufacturing practice 
principles and appropriate preclinical and clinical testing 
under the surveillance of regulatory authorities should 
ensure good safety profile [92]. The efficacy and safety 
also remain an issue in immunocompromised patients 
with primary or secondary immunodeficiencies. Gener
ally, administration of attenuated life virus vaccines has 
to be considered with caution and indicated upon careful 
individual assessment of risk and benefits in these pa
tients. Nonlive vaccines such as influenza or pneumo
coccal vaccine are regarded as safe, even though their ef
ficacy may be reduced in patients with severely impaired 
antibody response [93, 94]. Similar principles might be 
applied also in antiSARSCoV2 vaccination; however, 
neither recommendations nor guidelines are available 
yet. The level of virusspecific antibodies does not corre
late with the acquired immune response mediated by T 
cells that might be preserved in the majority of the anti
body deficient patients [95, 96]. Thus, the examination of 
Tcell response should also be considered in healthy sub
jects. Surprisingly, other vaccines such as BCG and mea
sles vaccine have also shown efficacy in the prevention of 
COVID19 disease. The leading vaccine candidates are 
currently being distributed and among selected popula
tion with great expectations to reduce the COVID19 
spread.
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