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Abstract: Image matching is an outstanding issue because of the existing of geometric and radiometric
distortion in stereo remote sensing images. Weighted α-shape (WαSH) local invariant features are
tolerant to image rotation, scale change, affine deformation, illumination change, and blurring.
However, since the number of WαSH features is small, it is difficult to get enough matches to estimate
the satisfactory homography matrix or fundamental matrix. In addition, the WαSH detector is
extremely sensitive to image noise because it is built on sampled edges. Considering the shortcomings
of the WαSH detector, this paper improves the WαSH feature matching method based on the
2D discrete wavelet transform (2D-DWT). The method firstly performs 2D-DWT on the image,
and then detects WαSH features on the transformed images. According to the methods of descriptor
construction for WαSH features, three matching methods on the basis of wavelet transform WαSH
features (WWF), improved wavelet transform WαSH features (IWWF), and layered IWWF (LIWWF)
are distinguished with respect to the character of the sub-images. The experimental results on the
dataset containing affine distortion, scale distortion, illumination change, and noise images, showed
that the proposed methods acquired more matches and better stableness than WαSH. Experimentation
on remote sensing images with less affine distortion and slight noise showed that the proposed
methods obtained the correct matching rate greater than 90%. For images containing severe distortion,
KAZE obtained a 35.71% correct matching rate, which is unacceptable for calculating the homography
matrix, while IWWF achieved a 71.42% correct matching rate. IWWF was the only method that
achieved the correct matching rate of no less than 50% for all four test stereo remote sensing image
pairs and was the most stable compared to MSER, DWT-MSER, WαSH, DWT-WαSH, KAZE, WWF,
and LIWWF.

Keywords: stereo remote sensing image; feature matching; 2D-DWT; WαSH; MSER; image deformation

1. Introduction

Image feature matching, which aims to acquire reliable homonymous features—matches between
images—is one of the most basic and important processes of remote sensing image processing [1,2].
The accuracy of matching results directly affects the reliability of image registration [3] and fusion,
automatic moving objects detection [4], and aerial triangulation and 3D reconstruction [5].

Feature matching includes three steps: feature detecting, feature describing, and similarity
matching. At present, the most widely used feature matching algorithm is the Scale Invariant Feature
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Transform (SIFT) algorithm [6] which firstly uses the difference-of-Gaussian (DOG) operator to identify
potential interest features, followed by features localization and orientation assignment, and then
describes the features according to local image gradients, finally performing the similarity matching to
acquire matches. The SIFT algorithm is adaptable to distortions, such as scale, rotation, translation,
etc. Therefore, it is used in most matching processes of aerial or aerospace images. Yu et al. [1]
employed the SIFT algorithm to create a set of matches and then removed outliers from the matches
and the estimated the transformation relationship between unmanned aerial vehicle (UAV) images
by using a maximum likelihood framework. It achieved the feature matching of UAV images under
non-rigid transformation in precision agriculture. Chang et al. [7] combined the SIFT algorithm with
scale constraints and geometric constraints to achieve highly-accurate registration of high-resolution
satellite image. Xiang et al. [8] used a SIFT-liked matching algorithm to extract reliable matches for
GF-3 SAR images and then provided a coarse-to-fine registration algorithm, giving a robust, efficient
and precise performance of SAR image. Qi and Zhu [9] decomposed remote sensing images by discrete
wavelet transform (DWT), and extracted the SIFT features on low-frequency sub-images, then used a
coarse-to-fine strategy to improve the precision and efficiency of SIFT.

However, because of the effect of affine distortion as a result of the camera view change at the
time of image acquisition, the matching performance of SIFT algorithm decreases sharply result
in that reliable potential matches cannot be obtained [10,11]. In this case, affine-invariant features,
such as Harris-Affine [12], maximally stable extremal region (MSER) [13], and edge-based region
(EBR) [14,15] are required. Mikolajczyk et al. [16] compared six common affine-invariant feature
detectors in which the results showed that MSER performs best in most cases and does well on
images containing homogeneous regions with distinctive boundaries. Based on the MSER detector,
Zhang et al. [17] proposed an automatic coarse-to-fine image registration strategy that achieves
high accuracy for images containing affine distortion. Sedaghat and Ebadi [18] extracted the MSER
and Harris-Affine features and selected the initial matches using the Euclidean distance between
feature descriptors, followed by a consistency check process. Then oriented least square matching is
developed to improve the positional accuracy of the affine-invariant features. Their affine-invariant
image matching method was successfully applied for various synthetic and real close range and satellite
images matching. Yu et al. [19] acquired the initial matches based on the MSER detector and calculated
the affine transformations between the initial matches. A small number of high-accuracy matches were
detected by combining the SIFT feature matching under the constraint of affine transformation and the
neighborhood supporting principle. Then the propagation is performed based on the global affine
transformation constraints to find more matches satisfying the accuracy registration of oblique images.

The weighted α-shape (WαSH) [20,21] algorithm has certain stability to the geometric and
radiometric distortion of images and can detect invariant local features with high uniqueness.
Compared with Hessian-Affine [12], MSER, medial feature detector (MFD) [22], edge foci (EF) [23],
and KAZE algorithms [24], Varytimidis et al. [20] found that the WαSH feature detection algorithm
performs among the best in all cases of image distortion through a comprehensive analysis of factors,
such as repeatability, matching score, and number of matches.

However, there also are some shortcomings of WαSH feature matching: (1) When there are large
geometric distortions between images, including affine changes and scale changes, WαSH feature
matching detects a few matches that contain a significant proportion of false matches and causes failure
in calculating the transformation model between image pairs; (2) Since the WαSH features are extracted
based on the image edge information, the repeatability and matching score will be greatly decreased if
there is significant noise in images. In order to deal with the problems above, we improve the WαSH
feature matching method based on 2D-DWT. This method firstly performs 2D-DWT decomposition
on the original image and obtains four sub-images: LL, LH, HL, and HH. We discard the HH layer
in which the noise in the original image is concentrated and transform the remaining sub-images to
the original image size. WαSH detector is then performed on the transformed images. Depending
on the descriptor construction methods for the WαSH features, three matching methods on the basis
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of wavelet transform WαSH feature (WWF), improved wavelet transform WαSH feature (IWWF),
and layered IWWF (LIWWF), respectively, are distinguished. The matches are finally determined by
using similarity matching. The procedure of improved WαSH feature matching based on 2D-DWT is
illustrated in Figure 1.
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Figure 1. Procedure of improved WαSH feature matching based on 2D-DWT. I1 and I2 are the reference
image and the image to be matched, respectively.

2. 2D-DWT

DWT of an image transforms the image data from the spatial domain to frequency domain by
using hierarchical decomposing functions [25]. A 2D decomposition is achieved by sequentially
applying 1D-DWT along horizontal and vertical directions, respectively [26]. In a 1D decomposition,
there are both low-(L) and high-pass (H) filters along each direction, which leads to one “L” and
one “H” sub-band, respectively. The “L” sub-band corresponds to low-frequency components in
the wavelet domain, while the “H” sub-band to high-frequency ones. After doing the first level 2D
decomposition, there are four sub-bands in the wavelet domain, which are labeled as LL, LH, HL,
and HH, respectively.

The LL sub-band is generated by convolving the low-pass wavelet filter along horizontal and
vertical directions on the image. It is an approximate representation of the original image. The LH
sub-band is generated by convolving a low-pass wavelet filter in the horizontal direction and then
convolving a high-pass wavelet filter in the vertical direction on the image. It represents a character in
the vertical direction of the original image. The HL sub-band is generated by convolving a low-pass
wavelet filter in the horizontal direction after a convolution of high-pass wavelet filter in the vertical
direction on the image. It represents the horizontal characteristic of the original image. The HH
sub-band is a wavelet coefficient generated by convolving high-pass wavelet filters in two directions
on the image. It represents the diagonal edge characteristics of the image. Therefore, the LL sub-band
contains most features of the original image, while the noise in the original image is concentrated in
the HH sub-band.
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3. WαSH Feature Detector

The WαSH detector exploits stable and distinctive dominant structural features in an image on
the basis of image edge and α shape. It can be divided into four parts, namely edge detecting, edge
sampling, WαSH constructing and feature extracting. The processes are as follows:

(1) Edge detecting: g is the normalized gradient image of the input image in [0, 1]. The binary edge
image e is acquired by applying the Canny detector on g.

(2) Edge sampling: With a fixed sampling interval s, e is sampled uniformly along edges to obtain
a discrete set of edge points P ⊆ R2. For each point p ∈ P, the weight w(p) is defined to be
multiple of its gradient strength:

w(p) = g(p)
( s

2

)2
, (1)

where g(p) ∈ [0, 1] is the value of g at p.
(3) WαSH construction: Regular triangulation of P is calculated. The line segments and triangles of

triangulation are added into a collection K and are ordered by descending size, followed by the
weighted α-shape constructing. For more details, please see [19].

(4) Feature extracting: the neighbors of each triangle σT ∈ K are its three edges, while the neighbors
of each line segments σE ∈ K are the two adjacent triangles in the triangulation. Since the size of
an edge is not larger than that of its two adjacent triangles, and α is decreasing, the intuition is
that this edge can keep the two triangles disconnected until it is processed itself. Based on this
neighborhood system, each connected weighted α complex is called a component. Considering
that each element (line segment or triangle) of K in descending order of size is an independent
component, the components are joined with their neighbors that have already been processed.
Decreasing the value of α continuously, the strength of a component kU is calculated following
Equation (2) when it is joined to another component through its boundary element:

s(kU) =
a(kU)

ρT
, (2)

where a(kU) is the total area of kU (the area of the line segment is 0); ρT is the size of the boundary
element. If strength is greater than a fixed threshold τ, the component is determined to be
a WαSH feature which is consequently fitted to an ellipse. We assume the image coordinate
of the ellipse center is (x, y), and the ellipse parameter is (a, b, c), then the ellipse equation
is a(x− u)(x− u) + 2b(x− u)(y− v) + c(y− v)(y− v) = 1. The WαSH feature is denoted as
x = (x, y, a, b, c)T in this paper.

4. Algorithm

4.1. Feature Set Construction

Wavelet transform (the Haar wavelet base is used in this paper) is firstly performed on the
reference image and the image to be matched to obtain four sub-bands—LL, LH, HL, and HH. Since
the sub-bands are two-dimensional, we consider them as four images of the LL, LH, HL, and HH
layer. The LL layer image retains the original image content information, the LH layer, and the
HL layer, respectively, maintain the vertical and horizontal information on the original image after
wavelet transform. They are favorable for edge information and WαSH local features detecting.
The noise in the original image is concentrated in the HH layer. Therefore, we perform WαSH
detector on the images of LL layer, LH layer, and HL layer while discarding the HH layer. In order
to avoid inconsistent coordinates, we transform the sizes of three-layer images to be equal to the
original image. We perform the WαSH detection on the images of the LL layer, LH layer, and HL
layer, and obtain the WαSH feature sets SLL =

{
xLL

i

∣∣i = 0, 1, . . . , nLL}, SLH =
{

xLH
i

∣∣i = 0, 1, . . . , nLH},
SHL =

{
xHL

i

∣∣i = 0, 1, . . . , nHL}, respectively, as displayed in Figure 2.
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According to the normalization theory in [16], the WαSH feature, an elliptical region, can be
normalized into a circular one, on which the description of the feature is more robust to affine distortion.

A variety of feature describing operators were compared in [27], reaching the conclusion that
SIFT-based description operators have better robustness than others. Therefore, we use the SIFT
algorithm to calculate the descriptors for WαSH features.

Three feature sets—the wavelet transform WαSH feature (WWF) set, the improved wavelet
transform WαSH feature (IWWF) set, and the layered IWWF (LIWWF) set are constructed based on the
above-mentioned WαSH local invariant features detected on the images of LL layer, LH layer, and HL
layer in this paper. As the features consist of coordinates on the image x and the description vectors d,
we then denote the features using the representation of f = (x, d). In the following context, we use a
superscript to distinguish different feature sets constructing method and a subscript to distinguish the
original image for feature sets M containing descriptors.

4.1.1. WWF Set Constructing

Set SLL, SLH, and SHL are combined into set SW =
{

xW
i

∣∣i = 0, 1, . . . , nW}, where nW = nLL +

nLH + nHL is the number of features in WWF. The description vector of feature xW
i is calculated by

using SIFT algorithm on original image. Then the set of WWF is acquired and denoted as MW ={
fW
i

∣∣∣i = 0, 1, . . . , nW
}

, where fW
i = (xW

i , dW
i ). The process is demonstrated in Figure 3a.
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4.1.2. IWWF Set Constructing

For xLL
i , the features on the image of LL layer, the description vector is calculated on the image of

LL layer, while the description vectors of xLH
i and xHL

i are calculated on the original image due to the

lack of image information on LH and HL layers. We acquired three sets MLL =
{

fLL
i

∣∣∣i = 0, 1, . . . , nLL
}

,

MLH =
{

fLH
i

∣∣∣i = 0, 1, . . . , nLH
}

and MHL =
{

fHL
i

∣∣∣i = 0, 1, . . . , nHL
}

, where fLL
i = (xLL

i , dLL
i ), fLH

i =

(xLH
i , dLH

i ) and fHL
i = (xHL

i , dHL
i ) respectively. Merging sets MLL, MLH, and MHL, the set of IWWF is

obtained and denoted as MI =
{

fI
i

∣∣∣i = 0, 1, . . . , nI
}

, where nI = nLL + nLH + nHL is the number of
features in IWWF. The process is demonstrated in Figure 3b.

4.1.3. LIWWF Set Constructing

Similar to IWWF set constructing method, the description vectors of features in SLL are calculated
on the image of LL layer, the descriptor vectors of features in SLH and SHL are calculated on
the original image. The difference with IWWF set constructing method is that a variable F is
introduced to distinguish the layer to which the features belong in LIWWF. Therefore, we obtain
sets MLL =

{
(fLL

i , F)
∣∣∣i = 0, 1, . . . , nLL, F = 1

}
, MLH =

{
(fLH

i , F)
∣∣∣i = 0, 1, . . . , nLH, F = 2

}
, and MHL ={

(fHL
i , F)

∣∣∣i = 0, 1, . . . , nHL, F = 3
}

, respectively. Merging sets MLL, MLH, and MHL, the set of LIWWF

is obtained and denoted as ML =
{
(fL

i , F)
∣∣∣i = 0, 1, . . . , nL, F = 1, 2, 3

}
, where nL = nLL + nLH + nHL

is the number of features in LIWWF. The process is demonstrated in Figure 3c.

4.2. Similarly Matching

The WWF sets MW
1 and MW

2 are constructed separately for the reference image I1 and the image
to be matched I2, and the number of features are nW

1 and nW
2 . For each element in MW

1 , the Euclidean
distance between the feature description vector di and all of the feature description vector dj in MW

2 are
calculated. If the nearest distance to nearest neighbor distance ratio (NNDR) between the di and dj is
less than 0.8, the corresponding features with the minimum distance in MW

1 and MW
2 are determined as

a match. For sets IWWF of I1 and I2, the matches are determined in the same process with that in WWF.
For sets LIWWF of I1 and I2, we first compare the values of F. If the values of F are equal, the Euclidean
distance is calculated of the two description vectors in MW

1 and MW
2 . If not, we set the distance to

infinity and skip the distance calculation. Finally, the corresponding features are determined under the
same criteria as that of WWF.
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5. Experiments and Analysis

5.1. Performance Compared to WαSH for Different Distortion

Six representative image sequences in the Krystian Mikolajczyk’s personal homepage [28] with
affine distortion, scale distortion, and illumination change, and a group of UAV image pairs with
different levels of noise are employed to test the performance of WαSH, WWF, IWWF, and LIWWF.
The test images are shown in Figure 4 in which each sequence contains six images.
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Figure 4. Test image sequences with affine distortion, scale distortion, illumination change and noise
change in images. (a) graffti: the image affine distortion increasing from left to right; (b) wall: the
image affine distortion increasing from left to right; (c) bikes: the image scale distortion increasing from
left to right; (d) mosaic: the image illumination increasing from left to right; (e) Leuven: the image
illumination decreasing from left to right; (f) library: the image noise increasing from left to right.

The number of total matches (Nt), the number of correct matches (Nc) and correct matching rate
(Cr) are employed to evaluate the performances of the four methods. The matching results are shown
in Figure 5, of which the 1, 2, 3, 4, 5 of the horizontal axis are different image pairs representing image
2 to 1, 3 to 1, 4 to 1, 5 to 1, and 6 to 1, respectively. Cr is calculated as the ratio percentage of Nc to Nt.
According to [16], a pair of matches was determined to be the correct one when the overlap error is
less than 50%.



Sensors 2018, 18, 3494 8 of 13
Sensors 2018, 18, x FOR PEER REVIEW  8 of 13 

 

 

  

 

 

0

20

40

60

80

100

1 2 3 4 5

N t

image pairs of graffti

0

20

40

60

80

1 2 3 4 5

N c

image pairs of graffti

50

60

70

80

90

100

1 2 3 4 5

C r
(%

)

image pairs of graffti

0

20

40

60

80

100

1 2 3 4 5

N t
 

image pairs of wall

0

20

40

60

80

100

1 2 3 4 5

N c

image pairs of wall

20

40

60

80

100

1 2 3 4 5

C r
(%

)

image pairs of wall

0
20
40
60
80

100
120
140

1 2 3 4 5

N t
 

image pairs of bikes

0
20
40
60
80

100
120

1 2 3 4 5

N c

image pairs of bikes

40

50

60

70

80

90

1 2 3 4 5

C r
(%

)

image pairs of bikes

10
20
30
40
50
60
70
80
90

1 2 3 4 5

N t

image pairs of mosaic

10
20

30
40
50
60
70

1 2 3 4 5

N c

image pairs of mosaic

70

75

80

85

90

95

100

1 2 3 4 5

C r
(%

)

image pairs of mosaic

Figure 5. Cont.



Sensors 2018, 18, 3494 9 of 13
Sensors 2018, 18, x FOR PEER REVIEW  9 of 13 

 

 
Figure 5. Results of different matching methods for the test data. Nt: number of total matches; Nc: the 
number of correct matches; and Cr: correct matching rate (%). 

According to the above experimental results, the analysis is as follow: 
From Figure 5, we can find that the similar orders and changes occurred in the plots of the 

number of total matches and correct matches. WWF, IWWF, and LIWWF offered higher Nt and Cr than 
WαSH for most image pairs. That is because the improved methods use features on images of LL 
layer, LH layer, and HL layer which contain obvious image structure characteristics. Combining the 
features on all of three sub-images, WWF, IWWF, and LIWWF achieved more matches than the 
original WαSH method. 

Take the 5th image pair of Leuven in Figure 5 for example. The results of WαSH, WWF, IWWF, 
and LIWWF for this image pair are shown in Figure 6, and the repeatability and correct matching 
rate are displayed in Table 1. The repeatability measures how large proportion of the detected 
features is the corresponding scene region. The correct matching rate assesses the distinctiveness of 
the detected features. 

 
(a) Nt = 34; Cr = 64.71% (b) Nt = 49; Cr = 77.55% 

 
(c) Nt = 55; Cr = 81.82% (d) Nt = 60; Cr = 80% 

Figure 6. Results of (a) WαSH, (b) WWF, (c) IWWF, and (d) LIWWF for the 5th image pair of Leuven. 
The red lines indicate correct matches while the blue lines are incorrect matches. 

Table 1 shows the WαSH features on LL and LH layer had a relative high repeatability. The 
reason is that the image of LL and LH layer contains obvious image structure characteristics. In 
addition, the matching accuracy of features described on LL layer was higher than the matching 
accuracy of features described on the original image. That means the image context of the LL layer is 

20

70

120

170

1 2 3 4 5

N t
 

image pair of leuven

0

50

100

150

1 2 3 4 5

N c

image pair of leuven

60

65

70

75

80

85

90

1 2 3 4 5

C r
(%

)

image pair of leuven

0

50

100

150

200

1 2 3 4 5

N t
 

image pair of library

0

40

80

120

160

1 2 3 4 5

N c

image pair of library

0

20

40

60

80

100

1 2 3 4 5

C r
(%

)

image pair of library

Figure 5. Results of different matching methods for the test data. Nt: number of total matches; Nc: the
number of correct matches; and Cr: correct matching rate (%).

According to the above experimental results, the analysis is as follow:
From Figure 5, we can find that the similar orders and changes occurred in the plots of the

number of total matches and correct matches. WWF, IWWF, and LIWWF offered higher Nt and Cr

than WαSH for most image pairs. That is because the improved methods use features on images of
LL layer, LH layer, and HL layer which contain obvious image structure characteristics. Combining
the features on all of three sub-images, WWF, IWWF, and LIWWF achieved more matches than the
original WαSH method.

Take the 5th image pair of Leuven in Figure 5 for example. The results of WαSH, WWF, IWWF,
and LIWWF for this image pair are shown in Figure 6, and the repeatability and correct matching rate
are displayed in Table 1. The repeatability measures how large proportion of the detected features
is the corresponding scene region. The correct matching rate assesses the distinctiveness of the
detected features.
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The red lines indicate correct matches while the blue lines are incorrect matches.
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Table 1. Repeatability and correct matching rate of WαSH features on different image layer of the 5th
image pair of Leuven.

WαSH Features on Repeatability Cr

Original image 53.719% 67.68% (described on original image)

LL layer 48.7395%
79% (described on original image)

88.36% (described on LL layer)
LH layer 52.5424% 62.5% (described on LH layer)
HL layer 38.2022% 84.62% (described on HL layer)

Table 1 shows the WαSH features on LL and LH layer had a relative high repeatability. The reason
is that the image of LL and LH layer contains obvious image structure characteristics. In addition,
the matching accuracy of features described on LL layer was higher than the matching accuracy
of features described on the original image. That means the image context of the LL layer is more
distinctive than the image context of the original image in this case. Therefore, the Cr scores of IWWF
and LIWWF are higher than the Cr scores of WαSH and WWF.

5.2. Application for Stereo Remote Sensing Images Matching

In order to perform a comprehensive analysis of the proposed methods, we selected four pairs
of stereo remote sensing images obtained by UAV to the experimental analysis. Seeing in Figure 7,
these UAV images contain different distortion including affine distortion, rotation, blur, and noise.
The MSER+SIFT matching algorithm (abbreviated as MSER), DWT-MSER, which applies DWT to
smooth images before MSER detecting, the WαSH + SIFT matching algorithm (abbreviated as WαSH),
DWT-WαSH, and KAZE [24] are compared in this experiment. KAZE is a multiscale feature detection
and description algorithm in nonlinear scale spaces [24]. It is similar to SIFT, but more robust than
SIFT. In the MSER/WαSH method, the MSER/WαSH detector is applied to extract local features,
which are consequently described by the SIFT-describing algorithm. All of the comparison methods
determine matches by using NNDR. The threshold value is set to 0.8, which is equal to that of the
proposed method. The matches of the proposed methods are depicted in Figure 7.

The matching results are presented in Table 2. Nt is the number of total matches; Nc is the number
of correct matches which have overlap error lower than 50%; Cr is the correct matching rate that is
equal to the percentage of Nc and Nt.

Table 2. Results of matching for stereo remote sensing image pairs.

MSER DWT-MSER WαSH DWT-WαSH KAZE WWF IWWF LIWWF

Figure 7a
Nt 9 1 7 10 28 15 14 18
Nc 4 0 6 6 10 7 10 10
Cr 44.44 0.00 85.71 60.00 35.71 46.67 71.43 55.56
Nt 34 11 13 16 206 21 22 28
Nc 7 3 6 7 111 5 11 14Figure 7b
Cr 20.59 27.27 46.15 43.75 53.88 23.81 50.00 50.00

Figure 7c
Nt 66 55 15 34 1236 18 34 40
Nc 46 38 13 27 1114 18 33 36
Cr 69.70 69.09 88.67 79.41 90.13 100.00 97.06 90.00
Nt 19 9 14 30 199 28 36 42
Nc 8 4 7 12 82 13 19 20Figure 7d
Cr 42.11 44.44 50.00 40.00 46.23 46.43 52.78 47.62

Based on the results displayed in Table 1, the analysis is as follow:
Comparing Nt of MSER and DWT-MSER, we can find that the number of total matches decreased

when DWT was paired to MSER. Nevertheless, when DWT was paired to WαSH, it increased.
The reason is that MSER detected much fewer features on the smoothed images than on the original
images, while WαSH detected a similar number due to edge detecting process. The values of Nt
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and Nc of WWF, IWWF, and LIWWF were improved relative to WαSH, which is consistent with
the result in Section 5.1. This is because WWF, IWWF, and LIWWF detect WαSH features on three
images, which increase the number of features. Among the WαSH-based methods (i.e., WαSH,
DWT-WαSH, WWF, IWWF, and LIWWF), LIWWF achieved the largest number of total matches and
correct matches, followed by IWWF. Cr values of IWWF and LIWWF were relatively stable. For images
in Figure 7b, which contain simple texture and large rotation distortion, the correct matching rate of
MSER, DWT-MSER, WαSH, DWT-WαSH, and WWF were less than 50% with a low Nt that is difficult
to estimate the homography matrix between image pairs, while IWWF and LIWWF obtained relatively
reliable matches. For images in Figure 7c containing affine distortion and slight noise, Cr values of
KAZE and proposed methods were all above 90%, and the correct matching rate of WWF reached to
100%. KAZE obtained the largest value of Nt than other methods. However, KAZE obtained a 35.71%
correct matching rate, which is extremely low, in Figure 7a that may cause failure in calculating the
homography matrix between the image pairs. IWWF was the only method that achieved the correct
matching rate no less than 50% for all of the test images. Therefore, IWWF is the most stable to different
kinds of distortion among these comparative methods.
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Figure 7. Results of proposed methods for remote sensing images obtained by UAV. The red lines
indicate correct matches while the blue lines are incorrect matches. (a-1), (b-1), (c-1) and (d-1) display
result of WWF; (a-2), (b-2), (c-2) and (d-2) display result of IWWF; (a-3), (b-3), (c-3) and (d-3) display
result of LIWWF.

6. Conclusions

The WαSH local invariant feature has advantages in distinctiveness and robustness. However,
image matching based on WαSH features performs a small number of matches and noise sensitivity.
Focusing on addressing these problems, this paper improved WαSH based on 2D-DWT and proposed
three methods of WWF, IWWF, and LIWWF for image matching. Experiments on sequences of affine
distortion, scale distortion, illumination change images, and a sequence of simulated noise images
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showed that the WWF, IWWF, and LIWWF acquired more matches and better performance than
WαSH. For remote sensing images with less affine distortion and slight noise, the correct matching
rate of KAZE and proposed methods were higher than MSER and WαSH, and the correct matching
rate of WWF reached to 100%. Nevertheless, for images containing severe distortion, KAZE obtained
extremely low correct matching rate which is unacceptable for the homography matrix calculating,
while IWWF achieved 71.42% correct matching rate. IWWF was the only method that achieved the
correct matching rate no less than 50% for all of the test images and was the most stable comparing
with MSER, DWT-MSER, WαSH, DWT-WαSH, KAZE, WWF, and LIWWF.

The proposed methods are 2–3 times slower than WαSH because they detected WαSH features on
three sub-images. In addition, the normalizing and resampling processes make the proposed methods
moderate increase in computational cost. The proposed methods improved the number of matches
and the stability at the expense of computational efficiency. We are going to focus on speeding up the
proposed method in future work.
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