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Summary

1. Growing interest in the structure and dynamics of animal social networks has stimulated efforts to develop

automated tracking technologies that can reliably record encounters in free-ranging subjects. A particularly

promising approach is the use of animal-attached ‘proximity loggers’, which collect data on the incidence, dura-

tion and proximity of spatial associations through inter-logger radio communication.While proximity logging is

based on a straightforward physical principle – the attenuation of propagating radio waves with distance – cali-
brating systems for field deployment is challenging, sincemost study species roamacross complex, heterogeneous

environments.

2. In this study, we calibrated a recently developed digital proximity-logging system (‘Encounternet’) for

deployment on a wild population of New Caledonian crows Corvus moneduloides. Our principal objective

was to establish a quantitative model that enables robust post hoc estimation of logger-to-logger (and, hence,

crow-to-crow) distances from logger-recorded signal-strength values. To achieve an accurate description of

the radio communication between crow-borne loggers, we conducted a calibration exercise that combines the-

oretical analyses, field experiments, statistical modelling, behavioural observations, and computer simulations.

3. We show that, using signal-strength information only, it is possible to assign crow encounters reliably to pre-

defined distance classes, enabling powerful analyses of social dynamics. For example, raw data sets from field-

deployed loggers can be filtered at the analysis stage to include predominantly encounters where crows would

have come to within a few metres of each other, and could therefore have socially learned new behaviours

through direct observation. One of the main challenges for improving data classification further is the fact that

crows – like most other study species – associate across a wide variety of habitats and behavioural contexts, with

different signal-attenuation properties.

4. Our study demonstrates that well-calibrated proximity-logging systems can be used to chart social associa-

tions of free-ranging animals over a range of biologically meaningful distances. At the same time, however, it

highlights that considerable efforts are required to conduct study-specific system calibrations that adequately

account for the biological and technological complexities of field deployments. Although we report results from

a particular case study, the basic rationale of our multi-step calibration exercise applies to many other tracking

systems and study species.

Key-words: animal social network, biologging, business card tag, contact network,Corvus monedu-

loides, direct and indirect encounter mapping, Encounternet, reality mining, transceiver tag, wireless

sensor network

Introduction

The structure of animal social networks has profound conse-

quences for a wide range of phenomena, including the trans-

mission of genes, pathogens and social information (reviews:

Croft, James & Krause 2008; Whitehead 2008; Kurvers et al.

2014; Pinter-Wollman et al. 2014). In the majority of cases,

researchers infer social networks from data on the spatial

grouping of study subjects. Two individuals are considered to

‘associate’ with or ‘encounter’ one another (and would there-

fore form an ‘edge’ in a network), if they were seen together

within a predefined distance, over which the biological process

of interest can operate (for an example, see below). In some

study systems, robust results can be obtained through repeated

resightings of naturally or artificially marked subjects. But, for

many other species, collecting even this most basic type of data

in the wild is impossible, because they avoid human observers

or range across inaccessible habitats. Furthermore, even when
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resightings are feasible, observation frequencies are usually

insufficient (once per day, week or month), to enable analyses

of fine-scale patterns. Much higher sampling rates are required

(in the order of once per hour or minute), to fully explore

the biological causes and consequences of dynamically chang-

ing network topologies (Blonder et al. 2012; Krause et al.

2013; Pinter-Wollman et al. 2014; Rands 2014; Sih & Wey

2014).

To overcome these methodological constraints, researchers

working on a wide range of study systems have started

exploring the use of automated tracking systems that collect

association data with the help of animal-attached devices

(for a comprehensive review, see Table 1 in Krause et al.

2013). A particularly promising approach is ‘proximity log-

ging’, which employs wireless sensor network (WSN) tech-

nology for data collection, and in some cases, remote data

transfer (mammals: e.g. Ji, White & Clout 2005; Douglas, Ji

& Clout 2006; Prange et al. 2006; B€ohm et al. 2008; Hamede

et al. 2009; Meise et al. 2013; Weber et al. 2013; birds: Rutz

et al. 2012). Animal-mounted proximity loggers (henceforth

also called ‘tags’, for simplicity) are miniature ‘transceivers’

that, unlike conventional radio beacons, act both as trans-

mitters and receivers of radio signals; thus, whenever two

animals come to within detection range, their tags exchange

radio signals and ‘log’ encounter information in their on-

board memory. As explored in detail in this paper, proximity

logging exploits the fact that radio waves attenuate predict-

ably with distance; all other things being equal, two animal-

mounted tags in close proximity will exchange stronger radio

signals than two tags that are farther apart (but see below).

Signal-strength values therefore contain information about

tag-to-tag distance, from which encounters between tagged

animals can be inferred. In some cases, proximity loggers

only record binary (yes/no) encounter data (e.g. tags from

Sirtrack Ltd., Hastings, New Zealand), where detection set-

tings can be tuned either by reducing the tags’ transmission

power or by programming them to ‘ignore’ signals below a

certain threshold signal strength. In others, they record all

received data, enabling post hoc filtering by signal strength at

the analysis stage (‘Encounternet’ tags from Encounternet

LLC, Washington, Seattle, USA). Whatever the particular

settings, all systems require careful calibration before field

deployment: only after a robust relationship has been estab-

lished between signal strength and tag-to-tag (and hence ani-

mal-to-animal) distance can proximity-logging data be used

to identify biologically relevant encounters, and ultimately,

to construct informative association networks.

The relationship between distance and signal strength is

noisy in the real world, where internal, tag-related factors (such

as variation in transmission power due to current spikes), and

external, environmental ones (such as humidity; see Marfievici

et al. 2013), can cause considerable variation in radio transmis-

sion even between static tags; any attempt to infer inter-tag dis-

tance from signal strength must necessarily be probabilistic.

Several studies have reported calibration data for proximity-

logging tags with binary data recording and relatively short

detection ranges of up to a few metres (e.g. Drewe et al. 2012;

Boyland et al. 2013). Experiments have explored, among other

things, the effects of habitat (B€ohm, Hutchings &White 2009),

logger attachment (Hamede et al. 2009), antenna alignment

(Prange et al. 2006) and even subtle differences in tag perfor-

mance (Boyland et al. 2013). Here we describe a comprehen-

sive calibration for a novel proximity-logging technology

(‘Encounternet’) that, uniquely among commercially available

systems, is capable of recording raw signal-strength data for

animal encounters over a wide range of distances, up to several

tens of metres (Rutz et al. 2012; Meise et al. 2013) – features

that will greatly enhance researchers’ ability to investigate bio-

logical processes that can operate in the absence of physical

contact (e.g. disease transmission; Hamede et al. 2009), such

as the diffusion of social information. We specifically strove to

establish a calibration relationship – for the estimation of ani-

mal-to-animal distances from field-recorded signal-strength

values – that would, as much as possible, account for the tech-

nological and biological complexities of an actual field deploy-

ment. Thus, rather than conducting ‘open-field’ tests, with

radio transmission between tags measured under ‘ideal’ condi-

tions (e.g. open habitat and perfect antenna alignment), we

developed procedures that enabled us to assess explicitly some

of the inconvenient ‘noise’ that is caused by study subjects

ranging across a diversity of habitat types (cf. Ceriotti et al.

2010;Marfievici et al. 2013).

Table 1. Hypothetical encounter ‘logs’ of Encounternet proximity loggers. ‘this.ID’ and ‘enc.ID’ are the identities of the receiving and transmitting

tags, respectively; ‘first.time’ and ‘last.time’ are times (in 1/64 second ‘ticks’) of the first and last pulse received in a sequence; the following three

‘RSSI’ columns give signal-strength statistics for the pulse sequence making up the encounter; and ‘type’ codes distinguish, among other things, tag-

to-tag logs from error messages and masternode commands. Note that the first three rows show logs from tags programmed to record individual

radio pulses, so that values for minimum, maximum and mean RSSI are identical (as in our calibration field experiments of Step 1); the final three

rows, on the other hand, show logs from tags which were programmed to average across multiple consecutively received pulses (see main text), so

that all values differ.

this.ID enc.ID first.time last.time RSSI.max RSSI.min RSSI.mean type

61 42 1657379393 1657379393 7 7 7 1

22 42 1656954354 1656954354 �19 �19 �19 1

56 59 1654468502 1654468502 11 11 11 1

78 56 1657907367 1657927837 �14 �19 �15 1

10 61 1657315923 1657317204 8 1 4 1

38 54 1654582110 1654601313 17 �20 �4 1
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Following a brief introduction of our study system, tool-

using New Caledonian crows Corvus moneduloides, we present

in the following sections details of amulti-step calibration exer-

cise, comprising of: Step 1 – field experiments that measure

how signal strength is affected by inter-tag distance, as well as

by a set of nuisance parameters (habitat type, tag height above

ground and relative antenna orientation); Step 2 – a theoretical
model that describes how radio waves are expected to propa-

gate and attenuate under our set of experimental conditions;

Step 3 – a statistical model that builds on our theoretical analy-

ses, to estimate key parameters of our calibration relationship

from our experimental data; and Step 4 – computer simulations

that attempt a comprehensive system characterisation, by inte-

grating our calibration results, basic assumptions about our

study species’ behaviour and observations of wild, free-ranging

subjects. Although the reported analyses refer to a specific

study species and deployment context, our approach can be

applied to amultitude of other systems, providing a convenient

‘how to’ guide for future studies.

Study system

PROXIMITY-LOGGING TECHNOLOGY

Encounternet consists of three hardware components (‘nodes’

in WSN jargon; Fig. 1a). The core component is a set of ani-

mal-mounted tags, which in our recent field deployment (Rutz

et al. 2012; St Clair et al. in press) weighed 9�57 � 0�05 g

(mean � SE; with a battery lifetime of several weeks), less than

the 5% of subject body mass widely recommended for short-

term tagging studies (Bridge et al. 2011). Tags transmit ID-

coded radio pulses at a preprogrammed interval (in our field

deployment, once every 20 s; see Rutz et al. 2012), while con-

tinuously receiving and logging pulses from nearby tags (range

usually several tens of metres). Data stored in tag memory

include (for a sample log, see Table 1): the ID codes of sending

and receiving tags, the time of the received pulse and the

‘received signal strength indicator’ (RSSI) value of the received

pulse, which is a measure of the power (in dB) of the received

signal (for details, see Step 2). In order to use their limited on-

board memory (ca. 4000 logs) more efficiently, Encounternet

tags can be programmed to average signal-strength values

across multiple consecutively received pulses, in which case a

log includes data on the minimum, maximum and mean RSSI

for the pulse sequence, as well as its beginning and end times

(Table 1; see Step 4). In the following sections, wewill first con-

centrate on estimating the relationship between RSSI and dis-

tance for single pulses, before discussing the consequences of

pulse averaging. The second hardware component consists of

larger receiver units (‘basestations’), which are placed at fixed

locations within the study area, and can be programmed to

both wirelessly receive and log radio pulses from nearby tags

(range usually ca. 100 m) (Mennill et al. 2012), and to remo-

tely download (and then clear) tags’ stored logs. These down-

loads are triggered when user-specified conditions – such as a

threshold number of logs held in tag memory – are met.

Finally, hand-held ‘masternodes’, which are operated with a

directional Yagi antenna and a portable computer, allow wire-

less communication with tags and basestations, to remotely

control their settings and retrieve any stored data.

Our work on tag-to-tag communication complements

results from an earlier study (Gal�apagos sea lions Zalophus

wollebaeki; Meise et al. 2013) and from another project that

reported a detailed calibration for the detection of tags by fixed

basestations (long-tailedmanakinsChiroxiphia linearis;Menn-

ill et al. 2012; see also Snijders et al. 2014). Although calibra-

tions were conducted for different species and habitats, taken

together, these three studies provide a comprehensive ‘road

map’ for how to prepare Encounternet systems for field

deployment.

STUDY SPECIES AND STUDY AREA

Our interest in the social structure of New Caledonian crows

is centred on the question of how, and from whom, birds can

potentially learn tool-related information. For the operation

of some social-learning mechanisms (see Hoppitt & Laland

2013), it would be sufficient if ‘observers’ can see ‘demonstra-

tors’ over relatively large distances, in the order of several

tens of metres; under such circumstances, for example, crows

(a)
(b)

Masternode 
with antenna 
and netbook

Logger Basestations

Fig. 1. The study system. (a) Hardware

components of an Encounternet proximity-

logging system: a logger; two basestations

(one opened); and a masternode with Yagi

antenna and netbook. For a basic descrip-

tion of system functionality, see main text.

(b) Back view of a wild New Caledonian

crow fitted with a harness-mounted Encoun-

ternet proximity logger. Note how the

antenna is projecting downwards from the

back of the bird (red arrow), at approx-

imately 45� against the horizontal (cf.

Fig. 2b). Both panels are adapted from fig-

ures in Rutz et al. (2012).
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may be attracted to profitable foraging patches or to particu-

lar plants from which tools can be made. In contrast, to

observe details of tool-manufacture and deployment behav-

iour directly, birds would need to be within a few body

lengths of each other or several metres at most. Our calibra-

tion aimed at differentiating between these two scenarios, to

enable investigations of how social dynamics might support

the spread and maintenance of tool-related (‘cultural’) infor-

mation in wild crow societies (see Rutz et al. 2012; St Clair

et al. in press).

We calibrated our Encounternet system for deployment in

one of our long-term study sites – a lowland section of Melal-

euca spp. dry forest (Taro and Tabou valleys, Gouaro-D�eva;

21°330 S, 165°190 E). The local crow population has been sub-

ject of investigation since 2005 (see Bluff et al. 2010; Rutz et al.

2010) and consists of several resident breeding pairs with

young and varying numbers of non-breeding ‘floaters’ and

short-term visitors; overall, the basic social organisation

appears comparable to that described for another study popu-

lation (Holzhaider et al. 2011).

Step 1 –Field experiments

The first step of our calibration exercise was to conduct field

experiments in our designated deployment site, to measure

tags’ radio transmission and reception under controlled, yet

naturalistic, conditions. New Caledonian crows – like most

other birds –move through complex 3D environments during

their daily lives: they visit different types of habitat (of varying

vegetation density; see above); use various vegetation strata

(from ground level to canopy; Rutz et al. 2007); and engage in

dynamic social interactions (so tags, and their antennae, will

align in a multitude of different ways and may sometimes be

shielded by their own bodies). Since all of these factors will

affect the transmission of radio signals between crow-mounted

proximity loggers (and hence recorded RSSI values), as for-

mally shown in Step 2 below, they were explicitly examined in

our field experiments.

We set up ‘arrays’ of 12 (and later 18) Encounternet tags that

allowed us to assess simultaneously the radio communication

of tags over 27 (59) different distances (ranging from 0�93 to

25�07 m) and relative antenna orientations (ranging from 0 to

180�) (see Fig. 2a). Tags were packaged in epoxy resin as if for

field deployment, and taped to the back of proxy ‘crow’ bodies,

consisting of shop-bought, kitchen-ready quails that had their

body cavities stuffed with fresh chicken gizzards, before being

sealed in rubber balloons to prevent dehydration. All tagged

quails were mounted in an upright posture onto PVC poles, so

that the tags’ antennae projected downwards at an angle of ca.

45� against the horizontal (Fig. 2b), as theywould (on average)
for harness-mounted tags on perched or ground-foraging New

Caledonian crows (Fig. 1b). The position of individual tags

within arrays was regularly changed between ‘trials’ (see

below). Quails were discarded at the end of each test day at the

latest, andEncounternet tags were replacedwhenevermastern-

ode communication suggested amalfunction (see below).

We conducted a total of 24 trials, with each trial consist-

ing of the deployment of an array in one of 5 different

X

Y
(b)(a)

(c)

25·0 m

13·0 m

7·5 m

4·0 m

1·0 m

0·0 m

0·0 m 1·90 m0·93 m

Crossbar

Logger body

Logger antenna

Parallel

Perpendicular

Fig. 2. Field calibration experiments (Step 1).

(a) Schematic top-view of an ‘array’ of En-

counternet proximity loggers, for assessing

tag-to-tag radio communication in a variety of

New Caledonian crow habitats. Three loggers

are attached per 1�9-m-long PVC pole (‘cross-

bar’), with the orientation of loggers and the

spacing of poles generating a large number of

inter-tag distances and relative antenna orien-

tations (examples of parallel and perpendicu-

lar antennae shown; for further details, see

main text). Poles at 1�0 m and 7�5 m distance

(y) were only present in later trials. Note that

dimensions are not to scale. (b) AnEncounter-

net proximity logger attached to a ‘proxy’

crow (wrapped quail body), which is mounted

as if ‘perched’ (red arrow shows antenna; cf.

Fig. 1b). In this case, the array was deployed

in the ‘ground’ condition in paperbark forest

(0�1 m above ground, to mimic ground-forag-

ing crows). (c) An array deployed in the ele-

vated (‘arboreal’) treatment condition in

mixed gallery forest (4 m above ground, to

mimic crows perched in the canopy).
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habitats in our study site (see Table 2), for 15 min elevated

to ca. 4 m above the ground using hand-held PVC poles (to

mimic crows perching in the canopy; Fig. 2c), and (either

before or after the ‘arboreal’ trial) placed for a further

15 min at ca. 0�1 m above ground on wooden support forks

(to mimic ground-foraging crows; Fig. 2b). Tags were pro-

grammed to transmit radio pulses once every 20 s and to

store received data as single-pulse log files. Hand-held mas-

ternodes were used to send ‘start’ and ‘stop’ commands to

all tags in the array and to download their data remotely

after each trial.

After field work, we quality-checked and cleaned the raw

data as follows: we filtered out all logs (1�02%) that did not

result from communication between tags, including those

flagged up by system errormessages; we retained only logs that

were based on single pulses; and we discarded data that were

recorded outside our 15-min time window (so only data were

used that had actually been recorded from a stationary array

in a particular location, and not during array set-up or trans-

portation). The final data set comprised 91807 RSSI logs

recorded across all trials (see data deposited in Dryad; Rutz

et al. 2015).

Step 2 –Theoreticalmodel

To inform the statistical analysis of our empirical calibration

data from Step 1, we develop a simple analytical model, from

basic physical principles. Themodel takes into account proper-

ties of the tags and of the habitat between them.

PROPAGATION OF RADIO WAVES

To begin with, we consider the propagation of radio waves

from tag-A to tag-B, a distance r (in metres, m) apart. As the

waves move through a particular habitat, treated as a homoge-

neous, isotropic medium, they lose intensity through two

mechanisms: spherical spreading, leading to an inverse-square

dependence of received power Pr on distance r; and wave scat-

tering and/or absorption, which produces an exponential

decay in power. It is customary to relate the power Pr received

by tag-B to some (unspecified) reference powerP0:

Pr

P0
¼ C

10br=10

r2
: eqn 1

The absorption coefficient b (≤0) and the multiplicative

factor C are functions of both the habitat h in which sig-

nals are being transmitted and the tags’ height above

ground level (in our case: z = 0�1 m; z = 4 m). The RSSI

recorded by tag-B is the power ratio Pr/P0 (expressed in

decibels, dB):

RSSI � 10 log10
Pr

P0

� �
¼ Kþ br� 20 log10 r eqn 2

where K = 10log10C. Figure 3a illustrates that RSSI is a

monotonically decreasing function of distance; more negative

values of b, indicating a medium that absorbs or scatters more

of the radiation, will produce more rapid decay of RSSI with

increasing distance, while an increase in K will shift the graph

vertically. Importantly, for any pair of parameters (K, b), the
rate of change of RSSI is greatest at small inter-tag distances r,

a property that fundamentally affects researchers’ ability to

estimate, for any proximity-logging system, animal-to-animal

distances from field-recorded RSSI values. In addition to habi-

tat and height, tag power and orientation will influence param-

eterK, as explored in detail in the following sections.

VARIATION IN TAGS’ POWER OUTPUT

Any inherent variability in tag power – for example, due to

subtle differences in transmitter components, antenna configu-

rations or both – will affect the recorded RSSI (cf. Boyland

et al. 2013). We used a large number of tags in our calibration

experiment (see Step 1), but did not measure their power out-

put directly. Data from another study using Encounternet

technology (Mennill et al. 2012), however, suggest a range in

between-tag power differences of 1–2 dB, which should there-

fore be regarded as the best resolution we can achieve for K in

ourmodel.

RELATIVE ORIENTATION OF COMMUNICATING TAG

PAIRS

Each tag antenna acts both as a transmitter and as a receiver of

radio waves (see Introduction), in an entirely reciprocal fash-

ion. The antenna has an anisotropic radiation pattern, radiat-

ing (and receiving) more power to (and from) some directions

than others. By design, a mounted tag acts as a dipole antenna,

with a ‘doughnut’-shaped power radiation pattern (Kenward

2001; Fig. 3b) – no radiation is produced (or received) along

the axis of the antenna, and the direction of maximum power

is perpendicular to this axis.

In the deployment of tags on wild birds, the relative

orientation of the transmitter and receiver tags may con-

found an attempt to convert RSSI values into tag-to-tag

distances; we return to this issue below. In our calibration

experiment, the antenna orientations are known and can

therefore be accounted for. To do this, we take the sim-

plest model for the radiation pattern of a dipole antenna

Table 2. Habitat preferences of wild New Caledonian crows, as esti-

mated from video footage recorded by crow-mounted, miniature video

cameras. Cell entries are estimates of the time (%) spent by 10 tagged

crows in particular habitat and height combinations in the core study

area (data fromRutz&Troscianko 2013). Crow position was scored in

video footage as either ‘arboreal’ or on the ‘ground’, to correspond to

the 4-m and 0�1-m categories used in the field experiments of Step 1.

Habitat type Arboreal (%) Ground (%)

Casuarina spp. 3�0 0�4
fig trees (Ficus spp.) 13�4 1�7
mixed gallery forest (incl.

Aleurites moluccana)

11�1 1�4

paperbark (Melaleuca spp.) 50�3 6�3
shrubs (incl.Cordia dichotoma) 11�1 1�4
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where the power radiated (received) at an angle a to the

antenna axis is proportional to sin2a, with 0° ≤ a ≤ 180°.
This model assumes that the antenna pattern is unaffected

by the proximity of the bird on which it is mounted. In

each calibration measurement, tag-A and tag-B are posi-

tioned at the same height z, mounted at 45° to the hori-

zontal (see Step 1), so the only relevant part of the

radiation pattern is the curve formed by the intersection

of the horizontal plane and the tilted doughnut (Fig. 3b).

Mathematically, this curve is described by cosa ¼ 1ffiffi
2

p sin h,
where h is the angle shown in Figure 3c. Rearranging, we

find that the in-plane radiation pattern is I(h) = ½(1 +
cos2 h) (Fig. 3d). The maximum power, I(0) = 1, is radiated

to the sides and is twice as much as the power radiated to the

front and back; note that any absorption of radiation by the

bird would diminish I(h) in the ‘forward’ direction, centred on

h = 90°.
The receiving tag antenna will have an identical in-plane

radiation pattern, rotated an angle φ about the line-of-sight

bearing from tag-A to tag-B (Fig. 3c). The effect on the

received power Pr of the relative orientation of the two anten-

nae is given by a simple product of their in-plane radiation

patterns, D(h,φ) = ¼(1 + cos2h)(1 + sin2φ), which has an

additive effect on theRSSI signal (in dB) of d(h,φ) = 10 log10D

(h,φ). The function d(h,φ) has a maximum of 0 dB (corre-

sponding toD = 1) when tags are side by side (so, for example,

h = 0°, φ = 90°), a minimum of �6 dB (D = ¼) when tags

are aligned parallel (e.g. h = 90°, φ = 0°) or antiparallel (e.g.
h = 90°, φ = 180°), and an average value of �2�5 dB, taken

over all possible combinations of relative antenna orientations

(Fig. 3e).

Given that we know the angles h and φ for every cali-

bration measurement, we can compute d(h,φ). We rewrite

the parameter K in eqn (2) as K = j + d(h,φ), where j rep-

resents variation in the received power due only to height

and habitat. Our physical model of the calibration experi-

ment is then:

RSSI ¼ jðh; zÞ þ bðh; zÞr� 20 log10 rþ dðh;uÞ: eqn 3
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Fig. 3. Features of the physical model (Step

2). (a) RSSI as a function of inter-tag distance

(see eqn (3) in the main text) for K = 20 dB

(blue) and K = 30 dB (red). For each K, b
takes values of�0�2 (top) to�1�0 (bottom) in

decrements of 0�2. (b) Theoretical radiation

pattern of a dipole antenna. The antenna axis

(blue) is tilted at 45� to the horizontal, as it

was for tags in our calibration experiment

(Fig. 2b), and as it would be, on average, for

tags mounted on wild crows (Fig. 1b). The

radiation transmitted (and received) in a hori-

zontal plane cutting through the centre of the

antenna pattern at (0,0,0) is highlighted in red.

(c) Angles used to describe the in-plane radia-

tion pattern between two communicating tags

(arrows pointing in the ‘forward’ direction).

(d) The in-plane radiation pattern of a single

tag, taken from the toric section highlighted in

panel (b). (e) The in-plane directivity function

d (in dB) as a function of the orientations (h,φ)
of two communicating tags (cf. panel c).
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Step 3 –Statisticalmodel

MODEL STRUCTURE AND FITT ING PROCESS

Equation (3) provides the basic structure for a statistical model

that can be fitted to our empirical data from Step 1, to obtain

estimates of, and levels of confidence in, our parameters j and

b for different habitats h and heights z. Since for each tag pulse

(labelled with index i), the distance ri between tags in the cali-

bration array is known, we can construct our response variable

as yi = RSSIi + 20log10 ri without incurring problems of model

endogeneity. Our final statistical model is:

yi ¼ jðhi;ziÞþbðhi;ziÞrþcdðh;uÞiþ sendiþ receivei

þ exchangeðhi;ziÞiþ replicateiþ ei
eqn 4

where j is the model intercept and b the effect of distance r on

y. Although antenna angles (h,φ)i were known for our experi-

mental data, the functional form of d(h,φ) contains assump-

tions (see Step 2) which we can test by including the fixed term

cd(h,φ)i; if our assumptions were sound, we would expect

c = 1 in the fittedmodel.

The remaining terms are random effects that account for

sources of variation over and above the effects of distance and

relative tag orientation. The effect on RSSI of possible varia-

tion in the ability of individual tags to send and receive signals

is modelled by sendi and receivei, respectively. The exchange(hi,

zi)i term is the effect of pairs of tags, with the variances in RSSI

estimated separately for each habitat and height combination.

replicatei is the effect of replicate measurements of RSSI for tag

pairs, that is, separately for the data where one tag was the

transmitter and the other was the receiver and vice versa.

Finally, ei are model residuals, or within-replicate variance,

accounting for all other effects. All random effects are assumed

to be drawn from normal distributions with zero mean and

estimated variances.

Themodelwas implemented in theRpackageMCMCglmm

(Hadfield 2010) and was run with default priors. We iterated

the model for 130000 Gibbs sampling iterations, discarding

thefirst30000 iterationsasa ‘burn-in’ period.Wesubsequently

retained every twentiethposterior sample, toobtain 5000near-

independent samples of the joint posterior distribution of the

model parameters (reportedby summary.MCMCglmm()).

MODEL RESULTS

Figure 4 showsmodel fits for our experimental data from Step

1, illustrating the (combined) effects of habitat type (rows) and

tag height above ground (columns) on RSSI. Overall, our

physical model provided a good fit to the data, and as

expected, c was estimated to be close to 1 (1�099, with a 95%

credible interval of 1�001–1�236), suggesting our simple dipole

assumptions for the tag radiation pattern, excluding direc-

tional effects due to the presence of the bird (quail) body, were

reasonable. Tags that were relatively good transmitters were

also good receivers (correlation coefficient, 0�412, 0�062–
0�637), which is likely a reflection of their antenna properties.

Model parameters j and b varied considerably with habitat

and height. Not surprisingly, relatively open habitats (mixed

gallery forest) had higher b values (i.e. less pronounced signal

attenuationwith distance) than denser ones (fig trees or shrubs)

(Fig. 4; Table S1), and for all habitats investigated, both j and

b values for the arboreal condition exceeded those estimated

for the ground condition (compare Figs 3a and 4). It is clear

from our statistical analyses that, for animals using a variety of

habitats, there is no single function that relates RSSI reliably

to inter-animal distance, and that even within a particular hab-

itat type, there is considerable variation in RSSI for any given

distance. This unfavourable signal-to-noise ratio has implica-

tions for our ultimate goal of estimating inter-bird distances

fromfield-recordedRSSI data (see Step 4).

Step 4 –Computer simulations

In the final step of our calibration exercise, we need to pursue

two objectives. First, since proximity loggers are (so far) unable

to record contextual information for animal encounters, and

thus measured RSSI values, it is necessary to establish a ‘mas-

ter’ calibration relationship that ‘integrates’ information in a

meaningful way across all relevant transmission scenarios

(such as the 10 habitat–height combinations illustrated in

Fig. 4). Second, we need to ‘invert’ this master calibration, in

which distance (predictor) is related to RSSI (response), to

enable conversion of field-recorded RSSI (predictor) values

into distance (response) estimates, or rather probability distri-

butions of distances. While these two problems are difficult to

tackle in a parametric statistical framework, it is reasonably

straightforward to simulate the distribution of RSSI values

one would expect to be generated by tags on a population of

wild, free-ranging crows, using: outputs from our statistical

model (Step 3); additional information about our study sys-

tem; and some basic assumptions.

PARAMETERISATION AND ASSUMPTIONS

The basic rationale of our simulations is to place ‘crows’ (36

individuals) in a ‘study area’ (4000 9 4000 m) (numbers based

on estimates for our population; see Rutz et al. 2010) and to

note the RSSI values their ‘tags’ would record. For generating

these RSSI values, we used the coefficients and variance esti-

mates from our statistical model (Table S1), with the following

additional assumptions about our study system. First, we

assumed that the relative antenna orientation of tag pairs was

unbiased, that is, in each simulated tag-to-tag pulse, we made

each angle h and φ equally likely. Second, we assumed that

pairs of birds occupy the 10 habitat–height combinations with

a frequency proportional to crows’ actual habitat preferences

(Table 2), as estimated from footage obtained with crow-

borne video cameras in our study site in 2009–2010 (for details,
see Troscianko 2012; Rutz & Troscianko 2013). This process

of ‘weighting’ data according to independently observed crow

behaviourminimises the impact of the variation of j and b and
is clearly preferable to an assumption that all habitats and

heights are sampled uniformly.
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Finally, we have to make assumptions about the spatial

distribution of crows in the study area, which determines tag-

to-tag distances, and thus RSSI values. This may seem like a

circular problem – after all, the point of deploying proximity

loggers is to learn something about spatial distributions – but

to remain indifferent to this issue is effectively to assume a uni-

form random distribution, in which any given inter-animal dis-

tance is as likely to occur as any other. While it is useful to

explore this default scenario (see left-hand panels in Fig. 5),

this is of course an implausible situation in nature; importantly

for our purposes, it will tend to underestimate the proportion

of large inter-individual distances and may thus lead to

overestimates of the frequency of relatively close associations.

This limitation can be addressed by simulating random loca-

tions of individuals in two-dimensional space (see middle pan-

els in Fig. 5). For populations that are expected to have a

clumped distribution – which includes the vast majority of

social animals, and those which exploit patchy resources – this
approach has the disadvantage that the proportion of rela-

tively short inter-individual distances will be underestimated,

leading us to underestimate the occurrence of relatively close

associations in the real world. Further refinements can be

achieved by allocating simulated individuals to groups, where

within-group distances are on average smaller than between-

group distances (see right-hand panels in Fig. 5). For our study

system, this scenario best approximates biological reality, as it

acknowledges the fact that New Caledonian crows move

around in social groups, with the core social unit being the

family (Rutz & St Clair 2012); as the group size for our simula-

tions, we used 3 individuals as estimated by an independent ra-
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dio-tracking study (see Holzhaider et al. 2011), and the aver-

age ‘diameter’ of groups was set at 10 m, based on our own

field observations. Having such prior knowledge of the study

species’ spatial ecology is a distinct advantage; without this, it

is advisable to explore how sensitive conversions are to varying

prior estimates (i.e. distributions of inter-individual distances),

as illustrated in Figure 5.

INTERPRETING REAL-WORLD DATA

Our simulations allow us to estimate the proportion of pulses

at, or above, a given RSSI value that we would expect to occur

over a given distance or less (see Fig. 5). In our simplistic ‘ran-

dom uniform’ scenario, we estimate that 50% of pulses of an

RSSI of 15 or greater will result from an inter-tag distance of

3�51 m or less, while 95% of pulses will originate from within

14�51 m, with the corresponding values for our ‘individuals in

2D’ scenario being 6�51 m and 23�50 m, respectively. Finally,

the ‘groups in 2D’ scenario, which represents the best charac-

terisation of our study system we can achieve to date (see

above), produces estimates of 4�74 m and 11�29 m, respec-

tively. While the choice of the RSSI value used for post hoc fil-

tering of field data sets is of course arbitrary, our analyses have

shown that Encounternet enables reliable distance-binning in
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our application; the value used here (RSSI ≥15) achieves our
original goal of identifying ‘short-range’ associations between

crows, and distinguishing them frommore distant encounters.

USE OF MULTI -PULSE AVERAGES

In systems where animals could potentially associate for pro-

tracted periods away from basestations, there is a danger that

thousands of accumulated logs will eventually fill up the on-

board memory of tags; depending on settings, this will force

them to either overwrite data or to cease logging, until once

more within basestation reception range. To address this prob-

lem, Encounternet tags have an option to automatically aver-

age RSSI values across sequences of received pulses,

generating RSSImean values (see Study system and Table 1).

The maximum number of pulses which are averaged, and the

time between pulses, are both programmable, allowing

researchers to optimise the trade-off between the danger of fill-

ing tagmemory and the resolution of logged data.

Averaged values contain more information than single

pulses, so they should in principle lead to better distance esti-

mates; in fact, the large variance component for the exchange

random effect in our statistical model of Step 3 suggests that

there is considerable scope for such an ‘averaging’ effect (Table

S1). In practice, RSSImean values should be interpreted slightly

differently to single-pulse RSSI values. First, because animals

tend to move around relative to one another during encoun-

ters, their distance of closest approach will generally be much

closer than the RSSImean indicates. This can be tested by inves-

tigating RSSImean and RSSImax simultaneously (see St Clair

et al. in press). Second, short encounters (those with a duration

less than the programmed pulse intervalmultiplied by the num-

ber of pulses to be averaged) will tend to have low RSSImean

values, because the pulses received as the birds come together

at the beginning of the encounter, and move apart at its end,

will tend to drag the mean downwards. This makes the use of

RSSImean inherently conservative. Consequently, applying a

filter of RSSImean ≥ 15 to field data (see St Clair et al. in press)

will identify crow associations that were substantially closer

than suggested by our single-pulse estimates reported above.

Conclusions

We have presented a calibration for a long-range proximity-

logging system that takes into account the movement of

tagged animals across heterogeneous environments. Our

analyses confirm that, in our crow study system, it is possible

to assign field-recorded signal-strength values reliably to pre-

defined distance classes, which is key for probing the role of

different social-learning mechanisms (Rutz et al. 2012; St

Clair et al. in press). We hope that our multi-step procedure

provides a generalisable guide to those working on other spe-

cies. We can think of a range of refinements that would fur-

ther increase classification accuracy; for example, future work

could: expand the range of contexts from which calibration

data are acquired, which for birds might include associations

between pairs of tags where one is on the ground and the

other in the canopy (?Step 1); measure the tags’ radiation

pattern in an anechoic chamber (?Step 2); quantify experi-

mentally the ground-plane and shielding effects of animal

bodies, allowing inter-individual variation in body mass to be

accounted for (?Step 2; see Naef-Daenzer et al. 2005); refine

the description of subjects’ movement patterns and habitat

use to improve simulation results (?Step 4); conduct sensitiv-

ity analyses to determine the likely importance of relative

antenna orientation, spatial distributions and habitat use (?
Step 4); explicitly measure the performance of every tag

before field deployment, for tag-level corrections at the data

analysis stage (?Step 4; cf. Boyland et al. 2013); integrate

additional sensors into proximity loggers (such as GPS; Cagn-

acci et al. 2010), to enable context-specific data conversion

(?Step 4); and provide direct validation by attempting to

observe tagged subjects during some of their encounters (?
Step 4; Meise et al. 2013; cf. Shamoun-Baranes et al. 2012),

which would also allow quantitative assessment of the influ-

ence of subjects’ movements on RSSI, particularly when mul-

ti-pulse averaging is used.

Although proximity logging has clear utility in some sys-

tems, it is important to acknowledge its limitations. Our

study demonstrates that it would be a dubious exercise

indeed to attempt converting individual RSSI values into

precise individual distance estimates. As a general rule of

thumb, the reliability of distance estimates will decrease with

increasing habitat variability (i.e. if subjects use a wide range

of habitats that differ in their signal-attenuation properties),

and distance ranges (i.e. if data need to be interpreted in the

shallow, ‘fat’ tail of the calibration relationship; cf. Figs 4

and 5). These considerations are important, as they can

inform decisions about whether proximity logging is the best

tracking technology for a particular project (as opposed to,

for example, GPS or PIT/RFID technology; see Krause

et al. 2013), and if so, with which settings a given system

should be deployed. The latter point refers to the distinction

we made in the Introduction between short-range systems

with binary data recording and long-range systems with post

hoc filtering (as used here); the former may be somewhat eas-

ier to set up and operate, but only the latter are suitable for

applications where researchers wish to map associations over

a wider range of encounter distances. As in any biologging

project, hardware and software settings should be chosen to

optimise data quality and quantity given the constraints of

battery life, memory size and tag mass. This optimisation is

highly species and question specific: for example, when brief

encounters are of interest, pulse rate may be maximised at

the expense of battery life; when the species’ ecology hampers

data retrieval, sampling rates and/or data compression may

be adjusted at the expense of resolution; and when subjects’

behaviour is likely to be influenced by tagging, device mass

can be reduced at the expense of both. In whatever form

proximity logging is used, it is clear from our study, and ear-

lier work (for Encounternet: Mennill et al. 2012; Meise et al.

2013; other WSNs: Ceriotti et al. 2010; Marfievici et al.

2013), that systems need to be calibrated specifically for each

planned deployment.
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While proximity-logging systems require considerable

resources for calibration, field deployment and operation,

they enable fully automated, near-real-time collection of asso-

ciation data for entire animal populations, at unprecedented

spatio-temporal resolutions. These advances bring researchers

tantalisingly close to mapping the ‘real’ social networks under

investigation – one of the premises of the emerging field of

‘reality mining’ (Krause et al. 2013). At least in terrestrial

applications, proximity logging is quickly becoming the

method of choice for studying fine-scale intra- and inter-spe-

cific association patterns, in systems where direct observation

orGPS tracking are not feasible.
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