
Relevance of Higher-Order Epistasis in Drug Resistance

Elena R. Lozovsky,1 Rachel F. Daniels ,2 Gavin D. Heffernan,3 David P. Jacobus,3 and Daniel L. Hartl*,1

1Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
2Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA
3Jacobus Pharmaceutical Company, Inc., Princeton, NJ

*Corresponding author: E-mail: dhartl@oeb.harvard.edu.

Associate editor: Stuart Newfeld

Abstract

We studied five chemically distinct but related 1,3,5-triazine antifolates with regard to their effects on growth of a set of
mutants in dihydrofolate reductase. The mutants comprise a combinatorially complete data set of all 16 possible
combinations of four amino acid replacements associated with resistance to pyrimethamine in the malaria parasite
Plasmodium falciparum. Pyrimethamine was a mainstay medication for malaria for many years, and it is still in use in
intermittent treatment during pregnancy or as a partner drug in artemisinin combination therapy. Our goal was to
investigate the extent to which the alleles yield similar adaptive topographies and patterns of epistasis across chemically
related drugs. We find that the adaptive topographies are indeed similar with the same or closely related alleles being
fixed in computer simulations of stepwise evolution. For all but one of the drugs the topography features at least one
suboptimal fitness peak. Our data are consistent with earlier results indicating that third order and higher epistatic
interactions appear to contribute only modestly to the overall adaptive topography, and they are largely conserved. In
regard to drug development, our data suggest that higher-order interactions are likely to be of little value as an advisory
tool in the choice of lead compounds.
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Introduction
The enzyme dihydrofolate reductase (DHFR) is a key target
for antibiotic, antimalaria, and anticancer drugs.
Trimethoprim is prescribed for many bacterial infections
and is also widely used in livestock feed. Pyrimethamine
was a mainstay medication for malaria for almost a decade,
and it is still in use in intermittent treatment during preg-
nancy or as a partner drug in artemisinin combination ther-
apy. Methotrexate is used against certain cancers and
autoimmune diseases. The efficacy of all three drugs has
been compromised by the evolution of drug resistance in
the population being treated, be it bacteria, malaria parasites,
or cancer cells.

DHFR is a favorable target for drugs because it is an essen-
tial enzyme and resistance mutants are in DHFR itself rather
than in drug import, export, detoxification, or other mecha-
nisms (Toprak et al. 2012). For this reason, DHFR has also
become a model for studying the molecular evolution of drug
resistance (Lozovsky et al. 2009; Costanzo and Hartl 2011;
Bershtein et al. 2015; Palmer et al. 2015; Rodrigues et al.
2016; Rodrigues et al. 2019).

Pyrimethamine resistance in the malaria parasite evolves
by the stepwise acquisition of four amino acid replacements
(Wang et al. 1997). The temporal order in which these are
acquired is constrained owing to interactions among the

replacements (Lozovsky et al. 2009). Such interactions consti-
tute epistasis, and for four mutant sites there are (in addition
to four main effects) 11 epistatic effects consisting of six
pairwise interactions, four three-way interactions, and one
four-way interaction. A quantitative analysis of these interac-
tions is made possible by analyzing a combinatorially com-
plete data set (Weinreich et al. 2006), which consists of the
phenotypes of all possible combinations of a set of mutations.
For n mutant nucleotide sites or genes, each with two possi-
ble states (mutant and wild type), there are 2n such
combinations.

Geneticists have recognized and studied pairwise interac-
tions since the beginning of modern genetics, but higher-
order interactions have usually been ignored, largely because
combinatorially complete data sets were unavailable and no
framework for interpretation was available. Modern methods
of gene and genome manipulation have made it possible to
create combinatorially complete data sets, and both geomet-
rical (Crona et al. 2013) and analytical (Weinreich et al. 2013)
methods have been developed to describe the adaptive top-
ographies. In this article, we adopt the analytical framework
using Fourier–Walsh transforms, which creates a set of linear
contrasts yielding an estimate of the contribution of each of
the epistatic terms to the overall adaptive topography
(Weinreich et al. 2018).
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Although studies of pairwise and higher-order epistasis
reveal gene-by-gene or gene-by-genome interactions, they
fail to address how environmental perturbations might
change these interactions (Hartl 2014). The key issue is
whether epistatic effects are largely conserved in similar envi-
ronments, or whether they are highly labile and unpredict-
able. It is known that major environmental changes, such as
different classes of antimicrobial drugs, can often change the
main effects of alleles (Hastings and Sibley 2002; Matsui and
Ehrenreich 2016; Wang et al. 2019), and it is likely that
changes in the main effects also alter higher-order interac-
tions. The effects of smaller perturbations are not known, but
they may be smaller than intuition might at first suggest. For
example, fitness exhibits diminishing-returns epistasis
(Kryazhimskiy et al. 2014), and this pattern may be conserved
even with changes in rank order of the main effects.

The present study was designed to investigate the extent
to which small perturbations in the environment alter the
main and epistatic effects of mutations in DHFR. The pertur-
bations correspond to five chemically modified versions of a
1,3,5-triazine antifolate (Hunt et al. 2005), and the combina-
torially complete data set consists all 16 possible combina-
tions of four amino acid replacements in the DHFR of the
malaria parasite Plasmodium falciparum (Lozovsky et al.
2009). Levels of resistance to the antifolates were estimated
from experiments carried out using a system in budding yeast,
Saccharomyces cerevisiae, developed by Sibley and Macreadie
(2001) and Hastings and Sibley (2002). We find that the main

effects as well as all of the two-way and higher-order inter-
actions are largely conserved across the triazine antifolates,
despite rather large differences in their efficacy as DHFR inhib-
itors. The conserved patterns of main effects and epistasis
observed with the triazine antifolates contrast strongly with
those observed for pyrimethamine, a chemically dissimilar
aminopyrimidine.

Results

Antifolate Structures
Chemical structures of the five triazine antifolates and pyri-
methamine are illustrated in figure 1. The triazine molecules
denoted c57–c61 have various functional groups attached to
a 1,3,5-triazine ring. Pyrimethamine has a very different struc-
ture, being a chlorophenyl derivative of ethyl
diaminopyrimidine.

We tested the triazine antifolates against a combinatorially
complete data set consisting of all 16 possible combinations
of four amino acid replacements associated with pyrimeth-
amine resistance. This set of mutants was chosen because the
potential efficacy of any new antifolates must take into ac-
count preexisting polymorphisms selected for pyrimeth-
amine resistance. The 16 allele designations are decimal
equivalents of a binary code, with allele 0000 (decimal 0)
denoting the wildtype P. falciparum DHFR with amino acid
sites N51, C59, S108, and I164. The single mutants are I164L¼
0001 (decimal 1), S108N ¼ 0010 (decimal 2), C59R ¼ 0100

FIG. 1. Structures of triazine antifolates versus pyrimethamine.
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(decimal 4), and N51I ¼ 1000 (decimal 8). Double and triple
mutants consist of quadruples of 0 s and 1 s according to
whether each site of wildtype or mutant. The quadruple mu-
tant is 1111 (decimal 15). Supplementary table S1,
Supplementary Material online, lists the decimal and binary
allele designations along with the amino acid replacements
that each contains.

Adaptive Topographies
Figure 2 shows the levels of resistance of the 16 possible
genotypes against each of the triazine antifolates. The mea-
sure of resistance is IC50 (inhibitory concentration 50), that
concentration of drug that reduces the growth rate in the
absence of drug by 50%. Figure 2 is plotted as the logarithm of
IC50, where the drug concentration is in nanomoles per liter.
The untransformed IC50 estimates are tabulated in supple-
mentary table S1, Supplementary Material online. In figure 2,
in each panel the asterisk denotes the logarithm of the mean
IC50 across all alleles. These data define the adaptive topog-
raphy of the DHFR alleles for each of the drugs.

A number of features of the adaptive topographies are
noteworthy. First, the mean IC50 differs across the drugs by
a factor of nearly 8 (173 nM for c58 vs. 1,366 nM for c61).
Second, the ratio of maximum resistance to minimum resis-
tance (max/min) differs markedly among the drugs, from 32
for c61 to 2,044 for c58. Third, the S108N replacement is
consistently associated with greater drug sensitivity. Across
all of the drugs, alleles carrying the wildtype serine-108 are
above/below the median resistance in the ratio 27/12,
whereas the alleles carrying the mutant 108-asparagine are
above/below the median resistance in the ratio 10/27
(P¼ 0.0003, Fisher’s exact test). This finding is unexpected
in light of the fact that S108N is a major driver of resistance
against pyrimethamine (Lozovsky et al. 2009), but it is con-
sistent with earlier results with drug c57 (WR99210) (Hastings
and Sibley 2002). Note, however, that c61 is an exception in as
much as the S108N replacement is evenly distributed above
and below the median, although this may simply reflect the

degree to which all DHFR alleles are bunched together at the
higher levels of resistance.

There is a consistency of the DHFR alleles across the tri-
azine antifolates in that the rank of alleles across drugs is more
consistent than would be expected by chance. To quantify
this finding, we first ranked all 16 alleles across all five drugs
taking ties into account. A null distribution of variance across
drugs was obtained by analyzing 100,000 ranks randomly
sampled across the observed distributions. The variance
across drugs of alleles 0, 1, 5, 8, 9, 12, 13, 14, and 15 was
significantly smaller than that of the null distribution
(P< 0.05). Of these, only alleles 14 and 15 carry S108N. In
other words, 7/8 alleles with S108 have a variance across drugs
significantly smaller than the null distribution, but only 2/
8 alleles with 108N have this property. This difference is itself
statistically significant (P¼ 0.04, Fisher’s exact test). The dif-
ference in consistency across drugs between S108 and 108N is
largely due to alleles 5, 8, 9, 12, and 13, which consistently rank
among the most resistant alleles across all of the tiazine
antifolates.

Despite the number of cases in which pairs of alleles have a
resistances values within one standard error of the mean
(SEM) (these are denoted “ties” and are grouped together
in the same bin in fig. 2), each triazine antifolate has one
and only one most-resistant allele. For the drugs c57, c58,
c59, and c61 this allele is 9 (allele 1001 in binary), and for
drug c60 it is allele 8 (1000), which differs from allele 9 only in
having I164 instead of 164L.

Simulated Evolution in Sequence Space
To understand the evolutionary implications of figure 2, we
carried out computer simulations to track the trajectories of
DHFR evolution under drug pressure in a large population
initially fixed for allele 0 (binary 0000), as the contemporary
effective population size of African populations has been es-
timated a 107–108 (Chang et al. 2012). Evolution was simu-
lated 10,000 times for each drug, and the trajectories recorded

FIG. 2. IC50 values of the triazine antifolates. Alleles are numbered 0 (binary 0000, wildtype) to 15 (binary 1111, which carries all four mutations).
Those in red include S108N. The asterisk denotes the position of the arithmetic mean IC50 on the logarithmic scale.
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from allele 0 to each intermediate state to some final equi-
librium allele that could no longer be replaced.

The simulations are based on a weak mutation-strong se-
lection model of evolution, in which mutations take place
infrequently and selection is sufficiently strong that the fixa-
tion or loss of each new mutation occurs before the next
mutation enters the population. The population size is as-
sumed to be sufficiently large and drug pressure sufficiently
intense that mutations that decrease resistance cannot be-
come fixed by chance. A flow chart summarizing the weak
mutation-strong selection algorithm used in the simulations
is included in supplementary figure S1 in Lozovsky et al.
(2009).

The simulations include three sources of randomness. The
first is a random choice of adaptive landscape. Although the
alleles in figure 2 are binned, the estimated resistance of each
allele has its own SEM (supplementary table S2,
Supplementary Material online). The estimated SEMs average
�0.047 times the magnitude of the mean, hence they are
small relative to the size of the bins. But for alleles within bins
the uncertainty in the estimates is important. Because of the
uncertainty, each panel of figure 2 defines an ensemble of
adaptive landscapes, each differing slightly from one to an-
other. To take the uncertainty into account, we used the fact
that the distribution of means is Gaussian with a mean equal
to the true mean and a standard deviation equal to the SEM.
The first step in each simulation was therefore to obtain a
resistance value for each allele by randomly choosing a num-
ber from a normal distribution of resistances with mean equal
to the mean of the allele and standard deviation equal to the
SEM. The SEM is sufficiently large to resolve ties within each
bin, but not so large as to switch an allele from one resistance
bin to another. For each drug, a random allocation of resis-
tance to each of the 16 alleles defines one member of the
ensemble of adaptive topographies for the drug.

The second source of randomness in the simulations is
mutation bias. Because the DHFR alleles are those from
P. falciparum, it is appropriate to use the rather large muta-
tion bias observed in this organism (supplementary table S3
in Lozovsky et al. 2009). These mutation biases are as follows:

• N51I forward mutation 0.137, reverse 0.154
• C59R forward mutation 0.112, reverse 0.195
• S108N forward mutation 0.162, reverse 0.120
• I164L forward mutation 0.051, reverse 0.069

Any currently fixed allele can mutate in any of four ways. In
the simulations, the probabilities of these mutations are based
on the relative magnitudes of the values above, normalized to
sum to 1, for each of the four possibilities.

The third source of randomness in the simulations is the
probability of fixation of a new mutation, given its resistance
(fitness) relative to the currently prevailing allele. For this
purpose, we use a model of Fisher (1922) that assumes a
Poisson distribution of offspring number in an infinite popu-
lation. Given a new mutation with fitness 1þ s relative to a
value of 1 for the prevailing allele, Fisher’s model implies that
the probability that the new mutation ultimately survives
equals 1 – d where d is the smallest positive solution of d
¼ Exp[(1þ s)(1 – d)].

Evolutionary Trajectories
Table 1 lists the principal evolutionary trajectories for all five
triazine antifolates and also pyrimethamine. The allele sub-
stitutions are listed as they occur, and the list terminates
when an allele can no longer be replaced. The table list the
percentage of each path observed in the simulations, and
includes only those pathways that account for at least 5%
of the simulations. (A complete list is included as supplemen-
tary table S3, Supplementary Material online.) The paths are
all relatively short with few intermediate steps. Except for the

Table 1. Ensemble of Adaptive Landscapes: Paths with P� 0.05 for At Least One Drug.

Percent among 10,000 Simulated Adaptive Topographies

Path c57 c58 c59 c60 c61 PYR

0 fi 8 fi 9 33 47 100 — 12 —
0 fi 8 — — — 34 — —
0 fi 4 fi 12 fi 8 fi 9 13 32 — — — —
0 fi 4 fi 12 fi 8 — — — 29 — —
0 fi 4 fi 5 12 16 — 13 — —
0 fi 4 fi 5 fi 13 fi 9 12 — — — — —
0 fi 4 fi 12 fi 13 fi 9 7 — — — — —
0 fi 1 fi 9 6 — — — — —
0 fi 1 fi 5 — — — 7 — —
0 fi 1fi 9 fi 8 — — — 5 — —
0 fi 2 fi 3 — — — — 6 —
0 fi 2 fi 3 fi 7 — — — — 5 —
0 fi 4 fi 6 fi 14 fi 15 — — — — — 12
0 fi 4 fi 12 fi 14 fi 15 — — — — — 12
0 fi 2 fi 6 fi 14 fi 15 — — — — — 11
0 fi 2 fi 10 fi 14 fi 15 — — — — — 10
0 fi 8fi 12 fi 14 fi 15 — — — — — 7
0 fi 8 fi 10 fi 14 fi 15 — — — — — 6
Percent paths with P� 0.05 83 95 100 88 23 58
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antifolate c59, for which the path allele 0–8–9 is followed
without exception, the other inhibitors show a variety of
outcomes. The paths for c57 and c58 are similar to each other
and quite predictable, with the principal paths accounting for
83% and 95% of all outcomes, respectively. The paths for c60
are also quite predictable but usually end at allele 8 instead of
allele 9. (Alleles 8 and 9 differ only in the absence or presence
of I164L.) By contrast the paths for c61 are highly variable
owing to the close clustering of the resistance values (fig. 2)
and the many ties. For c60, the principal paths in the ensem-
ble account for only 23% of the outcomes. Table 1 also indi-
cates that the evolutionary trajectories for resistance to the
triazine antifolates are very different from those for resistance
to pyrimethamine.

The evolutionary pathways in table 1 pertain to the en-
semble of adaptive topographies that take the uncertainty of
estimates of the resistance levels into account. Simulations
were also carried out based on the binned resistance levels, in
which the only sources of variation are those due to biased
mutation and the probability of survival of a new favored
mutation. The results are shown in supplementary table S4,
Supplementary Material online. They are similar to those in
table 1 for c57–c60 and also pyrimethamine, but differ sub-
stantially for c61. Simulating evolution for c61 using only the
means results in only three evolutionary pathways (alleles 0–
8–9 at 56%, alleles 0–2–3 at 37%, and alleles 0–1–9 at 7%).
Although the pathways for c61 are more predicable using the
single-adaptive topography based on the means, nevertheless
only 63% of the outcomes converge to the allele with the
highest level or resistance.

Ultimate Allele Fixations: Optimal and Suboptimal
Fitness Peaks
For each of the drugs in figure 2, there is a single allele that
yields the maximum level of resistance. The data in table 2
show the percentages of simulations for each drug in which
the evolutionary pathway ultimately converges on the max-
imally resistant allele (italic font). Except for c59, some of the
pathways end with submaximal alleles, with the number of
such alternative pathways ranging from 1 (c57 and PYR) to 4
(c61), and total percentages from 15.19 (PYR) to 57.35 (c61).

How do such submaximal pathways arise? A submaximal
fitness peak exists if there is at least one path to an allele with
submaximal fitness, but the allele cannot be displaced be-
cause all mutationally accessible alleles have lower fitness.

These situations arise owing to certain patterns of higher-
order epistasis. In general, epistasis refers to situations in
which the effect of a mutation depends on the presence or
absence of other mutations. Sign epistasis occurs when the
beneficial effect of a mutation is magnified by the presence of
an otherwise deleterious mutation. An extreme case of epis-
tasis is reciprocal sign epistasis, in which two mutations, each
deleterious on its own, are beneficial in combination (Poelwijk
et al. 2007). In the context of multiple sites across a gene or
genome, reciprocal sign epistasis can result in populations
evolving to a suboptimal fitness peak, which means a fitness
peak that is a local maximum but not a global maximum.

The results in table 2 indicate that, with the exception of
c61, the ensemble of adaptive topographies yields a pattern of
reciprocal-sign epistasis leading to a submaximal fitness peak
with likelihoods similar to those obtained using the mean
resistances (supplementary table S4, Supplementary
Material online). The drug c61 is very different in this respect,
as the ensemble of adaptive landscapes can lead to submax-
imal fitness peaks with alleles 5, 7, and 15 although these are
not observed based on the adaptive topography of mean
resistances. The many submaximal fitness peaks for c61 result
from the multiple alleles bunched in the bins in figure 2 and
the patterns of mutational interaccessibility of the alleles
within the bins.

Main Effects and Their Pairwise and Higher-Order
Interactions
Additional insight into the resistance patterns in figure 2
comes from partitioning the resistance phenotypes into
main effects of the individual mutations and their pairwise
and higher-order interactions. A convenient framework for
such partitioning makes use of the Walsh transform that
transforms a vector W of phenotypes in a combinatorially
complete data set of alleles into another vector E whose
elements are called Walsh coefficients that measure the
main and interaction effects of the individual mutations con-
stituting the alleles. The elements of W are in natural order (0,
1, 2, 3, . . .). The transformation is of the form (1/2n)� W �
W¼ E, where W and E are the vectors just described, n is the
number of mutations in the alleles constituting the data set
(in the present instance, n¼ 4), and W is the Hadamard
matrix required for estimating the main fitness effects and
their epistatic interactions. The Hadamard matrix is an or-
thogonal 2n � 2n matrix consisting of elements þ1 or �1.

Table 2. Ultimate Allele Fixed in Simulations (percent).

Antifolate

c57 c58 c59 c60 c61 PYR

Allele with maximum fitness 9 9 9 8 9 15
Allele at equilibrium
3 — — — 1.7 12.18 —
5 18.5 18.12 — 22 10.63 —
7 — — — — 13.85 —
8 — — — 75 — —
9 81.5 81.35 100 — 48.65 15.19
15 — 0.53 — 1 14.69 84.81
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First used in the analysis of epistasis by Weinreich et al. (2013),
the approach is described in detail in Weinreich et al. (2018).

With four biallelic sites, there are four main effects, six
pairwise interactions, four three-way interactions, and one
four-way interaction. The Walsh coefficients for these com-
ponents and their 95% confidence intervals are listed in ta-
ble 3; these are also shown graphically in supplementary
figure S1, Supplementary Material online. Following
Weinreich et al. (2006), we first carried out a nonparametric
Kendall tau test of whether the absolute values of the Walsh
coefficients conform to the naı̈ve expectation that the relative
magnitudes of the coefficients should be according to the
epistatic order: first-order the largest, second-order second
largest, and so forth. For c57–c61 and PYR the P values are
all significant or nearly significant (P¼ 0.048, 0.026, 0.048,
0.075, 0.043, and 0.007, respectively). With only 16 coefficients
the power of the test is weak; however, an omnibus test
including all the data yields P¼ 6� 10�8.

Although the Kendall tau tests indicate that the absolute
magnitudes of the Walsh coefficients differ significantly from
naı̈ve expectation, they do tend to decline as a function of
epistatic order. The P values of the regression coefficients of
the absolute magnitudes against the natural numbers 1–16
for c57–c61 and PYR are 0.013, 0.025, 0.016, 0.023, 0.020, and
0.051. The P value for PYR is somewhat misleading because,
except for the large synergistic Walsh coefficient associated
with the interaction 0110, the squares of the 2-fold and
higher-order interactions are close to 0 (table 3).

The squares of the Walsh coefficients are of interest be-
cause squared magnitude of the coefficients are monotonic in
their effects on landscape topology (Weinreich et al. 2006).
For each of the drugs c57–c61 and PYR, table 4 shows the
proportion of the total sums of squares of all the Walsh
coefficients of order 1–4 that is attributable to each order
of epistasis. The first and second-order terms clearly dominate
across the board. This result underscores the conclusion of
Weinreich et al. (2006) that higher-order epistasis contributes
only modestly to landscape topology.

We now consider the extent to which patterns of epistasis
are conserved across small chemical perturbations exempli-
fied by the triazine antifolates. For ease of interpretation, the
patterns of epistasis are shown in the heat map in figure 3,
where the drugs are listed across the top. On the right are the
single or multiple mutant sites that each Walsh coefficient
refers. In the heat map, red indicates increased resistance of
the main effect or a synergistic interaction in the epistatic
effect, and blue indicates increased sensitivity of the main
effect or an antagonistic interaction in the epistatic effect.
To improve contrast, for each drug, the Walsh coefficients
in the heat map have been normalized with respect to the
absolute value of the coefficient with the largest absolute
value.

Note first the pattern of epistasis in the aminopyrimidine
antifolate pyrimethamine. The main effects are all positive,
and there is virtually no second- or higher-order epistasis
except for the large synergistic interaction between C59R
and S108N (0110).

Table 4. Epistatic Order of Walsh Coefficients versus Contribution to Total Sum of Squares.

Drug

Order c57 c58 c59 c60 c61 PYR

1 0.433 0.4 0.426 0.336 0.456 0.653
2 0.378 0.391 0.381 0.406 0.347 0.317
3 0.173 0.186 0.171 0.226 0.184 0.029
4 0.016 0.023 0.022 0.032 0.013 0.001

Table 3. Walsh Coefficients and Their 95% Confidence Intervals.

Drug

Order c57 c58 c59 c60 c61 PYR

1000 0.783 6 0.012 0.825 6 0.012 0.698 6 0.015 0.784 6 0.012 0.429 6 0.020 0.378 6 0.026
0100 20.593 6 0.020 20.720 6 0.016 20.651 6 0.017 20.646 6 0.018 20.268 6 0.023 0.643 6 0.016
0010 20.858 6 0.008 20.929 6 0.004 20.845 6 0.008 20.838 6 0.009 20.250 6 0.023 0.701 6 0.015
0001 0.391 6 0.034 0.361 6 0.038 0.318 6 0.034 20.464 6 0.030 0.464 6 0.021 0.236 6 0.029
1100 20.684 6 0.016 20.858 6 0.008 20.647 6 0.015 20.744 6 0.014 20.375 6 0.021 0.055 6 0.029
1010 20.711 6 0.015 20.777 6 0.014 20.682 6 0.016 20.759 6 0.013 20.393 6 0.020 0.113 6 0.028
1001 0.245 6 0.037 0.223 6 0.041 0.170 6 0.037 20.523 6 0.028 0.107 6 0.026 0.160 6 0.029
0110 0.664 6 0.000 0.768 6 0.000 0.667 6 0.000 0.720 6 0.000 0.304 6 0.022 0.700 6 0.013
0101 20.150 6 0.038 20.214 6 0.041 20.217 6 0.036 0.464 6 0.030 20.054 6 0.026 0.044 6 0.029
0011 20.344 6 0.035 20.344 6 0.039 20.328 6 0.034 0.469 6 0.030 20.071 6 0.026 20.037 6 0.030
1110 0.779 6 0.013 0.903 6 0.006 0.736 6 0.013 0.798 6 0.011 0.410 6 0.020 0.143 6 0.028
1101 20.233 6 0.037 20.335 6 0.039 20.271 6 0.035 0.444 6 0.031 20.161 6 0.025 20.065 6 0.030
1011 20.221 6 0.037 20.205 6 0.041 20.186 6 0.036 0.508 6 0.028 20.143 6 0.027 20.094 6 0.030
0111 0.174 6 0.038 0.223 6 0.041 0.201 6 0.036 20.469 6 0.030 0.018 6 0.027 0.123 6 0.029
1111 0.264 6 0.036 0.357 6 0.038 0.302 6 0.035 20.430 6 0.031 0.125 6 0.026 0.032 6 0.029
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Among the triazine antifolates, the pattern of epistasis is
conserved quantitatively across the drugs c57, c58, and c59.
The pattern is conserved qualitatively but not quantitatively
in c61. For c60 the pattern of epistasis is not conserved. There
is a difference in sign among one of the main effects (0001),
three of the two-way interactions (1001, 0101, and 1001), one
of the three-way effects (0111), and the four-way interaction
(1111). Among this sample of five modified triazine antifo-
lates, the main effects and epistatic effects are largely con-
served in four (c57, c58, c59, and c61).

Discussion
Transgenic yeast expressing Plasmodium DHFR has been a
model for studies of antimalarial antifolates for >20 years
(Wooden et al. 1997; Sibley and Macreadie 2001; Hastings
and Sibley 2002). It is a suitable model because DHFR plays
the same essential role in metabolism in both organisms,
Plasmodium DHFR can substitute for the endogenous yeast
enzyme, and inhibitors of Plasmodium DHFR that impair the
growth of the parasite also inhibit the growth of transgenic
yeast. The relevance of the yeast model is exemplified by its
ability to recapitulate the stepwise evolution of pyrimeth-
amine resistance that took place in the field (Lozovsky et al.
2009).

Our study was motivated by the question as to whether
the main effects of mutations and their patterns of pairwise
and higher-order epistasis are conserved across a set of tri-
azine antifolates differing only in the nature and position of
certain functional groups. The answer is usually but not al-
ways. We find that four of the triazine derivatives have very
similar main effects and patterns of epistasis, but that one
(c60) alters one of the main effects in such a way as to change
the sign of many of the epistatic components. Furthermore,

we find that most of the compounds (c59 is the exception)
feature an adaptive topography with 1–4 suboptimal fitness
peaks due to reciprocal sign epistasis, and that populations
often (20–50% of simulations) converge to a suboptimal
peak.

The model of evolution is one of weak mutation and
strong selection in a large population, in which the fixation
or loss of each new mutation is resolved before the next
mutation occurs. We assume constant drug pressure for in-
creased resistance. Mutations that increase resistance have an
ultimate probability of survival calculated from Fisher’s (1922)
formula, which assumes an infinite population and a Poisson
distribution of progeny number. The population is always
nearly fixed for one allele or another, and there are no per-
sistent polymorphisms. One limitation is that the analysis is
based on the IC50 phenotype, the drug concentration that
reduces growth rate by half; however, it has been shown that
adaptive landscapes including fitness optima are affected by
drug concentration (Mira et al. 2015). Another limitation is
that the model does not include intermittent selection for
drug resistance offset by differences in growth rate in the
absence of drug. Allowing for changes in drug concentration
or for intermittent selection opens up an infinity of models
differing in the strength and spatial or temporal pattern of
drug pressure. In view of the multiplicity of outcomes in even
the simplest model, little additional insight is likely to be
gained from models of increased complexity.

The selection model stipulates a specific, constant adaptive
topography. This would be simple, were it not that the range
of resistances for some of the drugs is sufficiently narrow that
the estimate of mean resistance for two or more alleles is
within experimental error. In such a case the true resistances
are unknown, and the “ties” need somehow to be resolved.

FIG. 3. Heat map of main effects and epistatic interactions of the amino acid replacements for each of the antifolates. Red indicates greater
resistance or a synergistic interaction, blue greater sensitivity or an antagonistic interaction. Color opacity is scaled in proportion to the relative
numerical value.
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We resolve them by choosing, for each allele, a resistance
value based on a random sample from a normal distribution
with standard deviation equal to the empirically determined
SEM. Each independent resolution of the ties results in a
slightly different adaptive topography, hence when there
are tries, “the” adaptive topography is actually an ensemble
of adaptive topographies, and it is this ensemble that the
simulation explores.

In the simulations, some of the drugs yield large numbers
of evolutionary pathways, each corresponding to a subset of
the ensemble of topographies. For example, simulations for
c61 yield �100 distinct trajectories (supplementary table S2,
Supplementary Material online). Most of these are rare (each
<5%), but cumulatively they account for nearly three-fourths
of the outcomes (table 1).

Nevertheless, most ensembles of pathways finally settle on
one of a relatively small number of possible states. The most
common pathways invariably lead to the most resistant allele,
but there are also many suboptimal fitness peaks (table 2).

Among the triazine antifolates, the patterns of epistasis are
largely conserved, with the exception of c60. Relative to the
others, the epistatic components of c60 show many changes
of sign including 1/4 for main effects and 7/11 for pairwise
and higher-order effects (table 3). The predominant evolu-
tionary pathways for c60 converge on the allele 1000 (table 1),
which differs from the maximally resistant allele 1001 for the
other triazines. The differences between c60 and the other
triazines must somehow be related to the different interac-
tions of c60 with the active site of DHFR; however, this issue is
beyond the scope of the present study.

For all of the drugs tested, third order and higher epistatic
interactions appear to contribute modestly if at all to the
overall adaptive topography (table 4). This finding is consis-
tent with the results of Weinreich et al. (2018), who analyzed
16 published adaptive landscapes for fitness.

Relative to the triazine antifolates, pyrimethamine shows
very little 2-fold or higher-order epistasis with the exception
of the interaction between C59R and S108N (0110). This
probably reflects the fact that all four amino acid replace-
ments took place in nature under selection for pyrimeth-
amine resistance. Furthermore, natural populations can be
polymorphic for various combinations of the replacements
(Lozovsky et al. 2009), which means that they have had to
perform well together in combinations. With such coevolu-
tion, the substitutions would hardly occur together were they
to have large antagonistic interactions. In this context it is
noteworthy that the one large epistatic term (0110) is
synergistic.

In contrast to pyrimethamine, these same amino acid
replacements did not coevolve in the presence of triazine
antifolates. With the triazines, some of the main effects are
deleterious to resistance, and there are also many large an-
tagonistic interactions (table 3, 3). This contrast bears on the
interpretation of experiments examining epistasis among nu-
cleotide or amino acid polymorphisms present in divergent
lineages or among laboratory mutations. Because these poly-
morphisms or mutations have not coevolved, their interac-
tions may be much larger and more antagonistic than would

be found among coevolved polymorphisms segregating in the
same population. Such experiments may tell one what might
happen in nature, but not necessarily what does happen.

Although the subject is not quite germane, we should
emphasize that the epistasis we have been discussing is phys-
iological epistasis as distinguished from statistical epistasis
(Sackton and Hartl 2016). The latter relates to the effects of
interactions on allele-frequency change in polymorphic pop-
ulations and depends on allele frequencies, recombination
rates, and in diploids also on the degree of dominance at
heterozygous sites. As far as we know there has been no
analysis of statistical epistasis in terms of Walsh coefficients,
but suffice it to say here that the magnitude of statistical
epistasis is usually smaller, and typically much smaller, than
that of physiological epistasis (Hill et al. 2008; M€aki-Tanila and
Hill 2014; Sackton and Hartl 2016).

Conclusions
In summary, all of the triazine antifolates tested yield similar
adaptive topographies with the same or closely related alleles
being fixed in computer simulations of stepwise evolution. All
but one of the topographies feature at least one suboptimal
fitness peak. In regard to epistasis among the amino acid
replacements, our data are consistent with earlier results in-
dicating that third order and higher epistatic interactions
appear to contribute modestly if at all to the overall adaptive
topography (Weinreich et al. 2018). In addition, we find that
epistatic interactions across related drugs are largely con-
served except for c60. To the extent that our findings with
regard to triazine antifolates will generalize to other classes of
drugs, then they suggest that higher-order interactions will
add little value as an advisory tool in the choice of lead
compounds.

Materials and Methods

Yeast Strain Construction
Using the QuikChange Site-Directed Mutagenesis Kit
(Stratagene, Cedar Creek, TX), we constructed all 16 possible
combinations of point mutations at four amino acid coding
sites (N51I, C59R, S108N, I164L) in the P. falciparum dhfr gene
in the yeast shuttle vector GR7. The dhfr locus on each muta-
genized plasmid was sequenced to verify the presence of the
engineered mutations (Brown et al. 2010). GR7 is a derivative
of the pRS314 shuttle vector (Sikorski and Hieter 1989;
Wooden et al. 1997) and was generously provided by Carol
Sibley of the University of Washington. GR7 contains the
wildtype P. falciparum dhfr allele regulated upstream by 600
base pairs from the promoter region of the S. cerevisiae DFR1
gene and downstream by the 400 base pairs 30 DFR1 tran-
scription and translation terminators. DFR1 is the yeast ortho-
log of the dhfr gene in P. falciparum. GR7 also includes the
TRP1 yeast biosynthetic marker, and a yeast centromere se-
quence that maintains the plasmid at about one copy per cell
(Hunt et al. 2005).

The S. cerevisiae strain TH5 (MATa leu2-3,112 trp1 ura3-52
dfr1::URA3 tup1, also provided by Carol Sibley) was used to
assay the level of resistance by each of 16 DHFR alleles to five
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chemically related 1,3,5-triazine antifolates (Hunt et al. 2005).
TH5 lacks a functional DFR1, the yeast ortholog of the dhfr
gene. When not transformed with a functional DFR1 ortho-
log, the strain requires media supplemented with 100 lg/ml
deoxythymidine monophosphate (dTMP; Sigma-Aldrich, St.
Louis, MO) for growth. The tup1 mutation increases cellular
permeability to dTMP (Wooden et al. 1997). We transformed
TH5 with each of the 16 alleles using the EZ Yeast
Transformation Kit (Zymo, Orange, CA), selecting for the
presence of the GR7 vector on tryptophan dropout media
(SC trp–) supplemented with 100mg/ml dTMP (Brown et al.
2010).

Growth-Rate Measurements
Five chemically related 1,3,5-triazine antifolates (table 1) were
tested against yeast strains expressing the 16 dhfr alleles from
P. falciparum. For each strain, we picked two to five colonies
from a solid media plate and inoculated the appropriate liq-
uid medium culture with our transformed yeast strains. After
overnight growth, cultures were diluted to an OD600 of 0.01
(or �6 � 104 cells/ml) in a series of concentrations of each
compound in minimal medium, and then dispensed into
microtiter plates. These plates were transferred to a
Bioscreen C microbiological workstation (Thermo
Labsystems), which recorded OD600 readings every 15 min
for 2 days. The strains were cultured at 30�C. Growth rate was
calculated by taking a least squares linear regression of log
absorbance versus time for a 3 h sliding window over the
length of the growth curve (Joseph and Hall 2004; Brown
et al. 2010). Growth rates represent the maximum regression
coefficient among all sliding windows.

IC50 Calculations
We calculated the resistance of each strain using inhibitory
concentration 50 (IC50) measurements, which represent the
compound concentration at which growth rate is reduced by
50% relative to growth in the absence of the compound.
Calculations of IC50 values were obtained as described else-
where (Brown et al. 2010).

Analytical Methods
Analytical methods and simulations were carried out as de-
scribed in the Results using custom scripts written in
Mathematica. The null distribution for ranks across all triazine
compounds was obtained using the RandomSample func-
tion, and the variance of ranks across all compounds calcu-
lated and compared with the observed variance of ranks.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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