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Abstract: Background: The recent surge of next generation sequencing of breast cancer genomes
has enabled development of comprehensive catalogues of somatic mutations and expanded the
molecular classification of subtypes of breast cancer. However, somatic mutations and gene
expression data have not been leveraged and integrated with epigenomic data to unravel the
genomic-epigenomic interaction landscape of triple negative breast cancer (TNBC) and non-triple
negative breast cancer (non-TNBC). Methods: We performed integrative data analysis combining
somatic mutation, epigenomic and gene expression data from The Cancer Genome Atlas (TCGA) to
unravel the possible oncogenic interactions between genomic and epigenomic variation in TNBC and
non-TNBC. We hypothesized that within breast cancers, there are differences in somatic mutation,
DNA methylation and gene expression signatures between TNBC and non-TNBC. We further
hypothesized that genomic and epigenomic alterations affect gene regulatory networks and signaling
pathways driving the two types of breast cancer. Results: The investigation revealed somatic
mutated, epigenomic and gene expression signatures unique to TNBC and non-TNBC and signatures
distinguishing the two types of breast cancer. In addition, the investigation revealed molecular
networks and signaling pathways enriched for somatic mutations and epigenomic changes unique to
each type of breast cancer. The most significant pathways for TNBC were: retinal biosynthesis, BAG2,
LXR/RXR, EIF2 and P2Y purigenic receptor signaling pathways. The most significant pathways for
non-TNBC were: UVB-induced MAPK, PCP, Apelin endothelial, Endoplasmatic reticulum stress
and mechanisms of viral exit from host signaling Pathways. Conclusion: The investigation revealed
integrated genomic, epigenomic and gene expression signatures and signing pathways unique to
TNBC and non-TNBC, and a gene signature distinguishing the two types of breast cancer. The study
demonstrates that integrative analysis of multi-omics data is a powerful approach for unravelling the
genomic-epigenomic interaction landscape in TNBC and non-TNBC.
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1. Introduction

Despite remarkable progress in screening and patient management, breast cancer remains the
most commonly diagnosed non-skin cancer and the second leading cause of cancer related death
among women in the US [1]. In 2019, 268,600 women were newly diagnosed with breast cancer,
and 41,760 women died from the disease in the US [1]. Breast cancer is a heterogeneous disease
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encompassing many types and subtypes. A majority of breast cancers are non-triple negative breast
cancers (non-TNBC). These types of breast cancer are characterized by less aggressive clinical behavior,
good prognosis, low recurrence and higher survival rates [2,3]. Importantly, these cancers respond to
endocrine and targeted therapies [2,3].

However, a significant proportion of breast cancers ~15–20% are triple negative breast cancers
(TNBC), the most aggressive and lethal form of breast cancer [2,3]. TNBC are defined as tumors
that lack expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal
growth factor receptor (HER-2) amplification [2,3]. TNBC is characterized by poorer prognosis,
higher recurrence rates and worse overall survival rates than non-TNBC [2,3]. Most notably,
unlike non-TNBC, currently there are no effective targeted therapies for TNBC, cytotoxic chemotherapy
remains the only effective therapeutic modality [2,3]. Accumulating evidence from both epidemiologic
and clinical studies has revealed that TNBC has worse outcomes and survival rates than
non-TNBC [4–11]. However, the molecular mechanisms underlying the etiological and biological
differences between the two types of breast cancer have not been well characterized. Thus, a key
knowledge gap and critical unmet medical need pivot around: (i) understanding the molecular
mechanisms underlying the biological differences between TNBC and non-TNBC; (ii) the discovery of
clinically actionable molecular markers and potential targets for the development of novel therapeutics
unique to each type of breast; and (iii) the identification of biomarkers distinguishing the two types of
breast cancer that could be used to identify and stratify patients to guide treatment decisions.

Our understanding of the molecular mechanisms underlying the biological differences between
TNBC and non-TNBC and how best to treat them is hampered by the biological and etiological
complexity of the two diseases. Both types of breast cancer are heterogeneous diseases, each involving
many subtypes, and their development and progression involves a complex interplay between genomic
and epigenomic alterations and many environmental perturbations. These complex arrays of interacting
factors likely affect entire molecular networks and signaling pathways, which in turn drive the two
types of breast cancer. Integrative data analysis combining genomic, epigenomic and gene expression
data has the promise to increase our understanding of the biological mechanisms driving the two
types of breast cancer, and to identify clinically actionable molecular markers and targets to guide
therapeutic decisions.

Advances in microarray technology have enabled the molecular classification of types and subtypes
of breast cancer using transcription profiling [12–14]. Evidence from these primary studies have
revealed differences in the molecular portraits of TNBC and non-TNBC [12–14]. Transcription profiling
has enabled development of two prognostic signatures, the PAM50 [15,16] and the MammaPrint [17,18],
which have proven useful for prognostic purposes in the clinic [15–18]. However, although these
primary analyses have made great strides in deciphering the molecular basis of breast cancer and
enabled development of prognostic signatures, they have been unsuccessful in determining how
genomic and epigenomic factors interact and cooperate to drive each type of breast cancer.

Over the last decade, rapid development in next generation sequencing technologies has brought
considerable advances in large-scale sequencing of cancer genomes, including breast cancer [19–21].
These advances have enabled development of comprehensive catalogues of somatic mutations and
epigenomic signatures of breast cancer. In addition, these advances have led to an expanded molecular
classification and increased our understanding of the molecular taxonomy of breast cancer. Traditionally,
the analyses of somatic, epigenomic and gene expression data in different types of breast cancer have
been conducted as separate research endeavors. Recently, we reported a novel approach integrating
somatic mutation with DNA methylation information using gene expression data in TNBC [22].
This investigation showed that somatic mutated genes harbor epigenomic alterations, and that
epigenetic changes affect gene expression [22]. However, to date, information on somatic mutations
has not been leveraged and integrated with DNA methylation data to unravel the possible oncogenic
interactions between genomic and epigenomic alterations in TNBC and non-TNBC. The objectives of
this study were to: (i) define integrated genomic, epigenomic and gene expression profiling signatures
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unique to TNBC from non-TNBC; (ii) discover a signature distinguishing the two types of breast cancer;
and (iii) map the possible oncogenic interactions between genomic and epigenomic alterations in TNBC
and non-TNBC, using network and pathways analysis. Our working hypothesis was that within breast
cancers, there are differences in somatic mutation, DNA methylation and gene expression signatures
between TNBC and non-TNBC. We further hypothesized that genomic and epigenomic alterations affect
gene regulatory networks and signaling pathways driving the two types of breast cancer. We addressed
these hypotheses using an integrative genomics data analysis approach, combining information on
somatic, epigenomic and gene expression data on TNBC and non-TNBC from The Cancer Genome
Atlas (TCGA).

2. Materials and Methods

2.1. Overall Project Design and Execution Strategy

The overall project design and workflow for integrative analyses strategies, integrating somatic,
DNA methylation and gene expression data, is presented in Figure 1.
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Figure 1. Project design and integrated analysis workflow integrating somatic mutation, DNA methylation
and gene expression data leveraged with network, pathway and functional analysis to unravel
the genomic-epigenomic interaction landscape in triple negative breast cancer (TNBC) and
non-triple negative breast cancer (non-TNBC). DM indicates differentially methylated, DE indicates
differentially expressed.
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2.2. Sources of Genomic and Epigenomic Data

The TCGA data management team has assembled genomic, epigenomic and mutation data,
along with clinical information, and has made it available to the cancer research community [19,20]
via the Genomics Data Commons [23]. For this study, we used gene expression, DNA methylation
(array-based) and somatic mutation data from the TCGA [19]. The data sets were downloaded
from the Genomics Data Commons data portal using the data transfer tool [23]. The original gene
expression data set was generated using RNA-Seq and consisted of 828 samples, distributed as follows:
patients diagnosed with TNBC tumors n = 110 samples, patients diagnosed with non-TNBC tumors
n = 605 samples and controls n = 113 samples (Table 1). The original gene expression data matrix
included 60,484 probes (Table 1).

Table 1. Characteristics and distribution of samples, probes and gene symbols for the original data sets
on gene expression, somatic mutation and DNA methylation for triple negative breast cancer (TNBC)
and non-triple negative breast cancer (non-TNBC) used in this study.

Data Type
TNBC Non-TNBC Control

Genes or Probes Tumor Samples Genes or Probes Tumor Samples Samples

Gene
Expression 60,484 probes 110 60,484 probes 605 113

Methylation 485,578 probes 83 485,578 probes 597 83
Somatic
Mutated 7659 genes 110 16,752 genes 605 -

The original DNA methylation (array-based) data set consisted of 763 samples, distributed as
follows: patients diagnosed with TNBC tumors n = 83 samples, patients diagnosed with non-TNBC
tumors n = 597 samples and controls n = 83 samples (Table 1). DNA methylation data was generated
using Illumina HumanMethylation450 BeadChip (Illumina Inc. San Diego, CA, USA). This chip has
been widely used for quantifying DNA methylation and has been validated [24]. The DNA methylation
data matrix included 485,578 probes (Table 1). We processed and performed data quality control (QC)
using the HumanMethylation450 evaluation and processing methods [25,26], implemented in the DNA
methylation data analysis pipeline developed in our lab [22]. The data was further processed to remove
batch effects prior to analysis [22,26]. Considering the convolution of biological and technological
variability and the signal bias between the Infinium I and II probe design types, the data was further
quality controlled to correct for type of probe design [27], and to eliminate bias attributable to systematic
errors consistent with the Illumina data analysis protocol [25,26]. We used the quantile normalization
implemented in R software package [22,24–27] to normalize the data and calibrated for batch effects
consistent with the Illumina data analysis protocol [25–27].

The DNA methylation data was derived from the same patient population as gene expression
and somatic mutation data. Therefore, following processing and quality control of disparate data
sets, we optimized the data matrix for integrated analysis by identifying samples with all three pieces
of information. To address this issue, we used clinical information to link the methylation samples
with the gene expression samples. After this processing step, we used 83 patients diagnosed with
TNBC tumors, 597 patients diagnosed with non-TNBC tumors and 83 controls (Table 1) in the analysis.
We then used a barcode structure provided by TCGA to integrate patient-based clinical data with
sample-based somatic mutation data, and processed somatic mutation data to identify the number of
genes that contain somatic mutations and the number of somatic mutation events for each gene across
samples within the tumor and across tumors. In this processing step, we created a catalog of 7659
somatic mutant genes in TNBC and 16,752 somatic mutant genes in non-TNBC for analysis (Table 1).
Supplementary Table S1 presents a comprehensive list of TNBC and non-TNBC somatic mutation
genes and the number of somatic mutation events for each gene.
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2.3. Bioinformatics Analysis of Disparate Omics Data

Figure 1 shows the data processing and analysis workflow. In this analysis, we focused on gene
expression and DNA methylation data, analyzing them separately for each type of breast cancer.
Note that only samples with both gene expression and DNA methylation were used in these analyses.
We performed QC and noise reduction on the original gene expression data matrix to remove rows with
insufficient information or missing data. The filtering was imposed such that each row had at least≥30%
data. After this QC step, the data matrix for TNBC reduced to 166 samples (83 TNBC tumors samples
and 83 controls) with 28,084 probes used in the analysis. Likewise, using the same data processing
and QC for non-TNBC reduced the data matrix to 680 samples distributed as (597 non-TNBCs tumor
samples and 83 controls) with 27,218 probes used in the analysis. The quality-controlled data sets
were normalized using the LIMMA Bioconductor package implemented in R [28]. The probe IDs were
matched with gene symbols using the Ensemble database [29]. Gene expression data from RNA-Seq
was quantified in Transcripts Per Kilobase Million (TPM), and was first log2(TPM + 1) transformed
using the standard protocol for RNA sequence data normalization methods [30].

Using quality controlled normalized data sets, we compared gene expression levels between
TNBC tumors and control samples, to discover a signature of significantly differentially expressed
genes in TNBC. Likewise, we compared gene expression levels between non-TNBC tumors and
control samples, to discover a signature of significantly differentially expressed genes in non-TNBC.
Additionally, we performed supervised analysis comparing gene expression levels between TNBC and
non-TNBC, to identify a signature of significantly differentially expressed genes distinguishing the two
types of breast cancer. These robust and unbiased analyses enabled the discovery of all differentially
expressed genes, including somatic mutated ones. Gene expression analysis was performed using the
Bioconductor R-package LIMMA [28]. Throughout these analyses, we used the false discovery rate
(FDR) method [31] to adjust the p-value for multiple hypothesis testing. In addition, for each analysis,
we calculated the log2 Fold Change (Log2 FC), defined as the median of gene expressed minus the
gene expression value for each gene.

For each type of breast cancer, genes were ranked on adjusted p-value, FDR and LogFC,
and significantly (p < 0.05) differentially expressed genes were identified and selected. Note that
significant differential expression provides proof of association of these genes with the types of breast
cancer. The discovered significantly differentially expressed genes were evaluated for the presence of
somatic mutations to discover signatures of somatic mutated genes, which are significantly differentially
expressed in each type of breast cancer and a signature of somatic mutated genes distinguishing the
two types of breast cancer. Somatic mutated genes were further quantitatively assessed for the number
of mutation events. A gene was considered highly mutated if it contained at least ≥3 mutation events.
A gene was considered differentially mutated if it was mutated only in one type of breast cancer, or if
the mutations found in one type of breast cancer were not found in the other type.

Likewise for DNA methylation data, we performed QC to remove batch effects [22] and noise
reduction on the original data set to remove rows with insufficient information or missing data, using the
same filtering threshold of each row having at least ≥30% data. After this QC step, the data matrix for
TNBC reduced to 166 samples (83 TNBC tumors samples and 83 controls), with 383,119 probes used in
the analysis. Using the same data processing and QC for non-TNBC reduced the data matrix to 680
samples distributed as (597 non-TNBCs tumor samples and 83 controls), with 365,947 probes used in
the analysis. The quality-controlled data sets were normalized using quantile normalization applied to
the LIMMA Bioconductor package implemented in R [22,27,28].

Using the quality controlled normalized DNA methylation data set, we compared DNA
methylation profiles using beta-values between TNBC tumor and control samples and between
non-TNBC tumor and control samples, to discover signatures of significantly (p < 0.05) differentially
methylated genes associated with each type of breast cancer [22]. These analyses were accomplished
using the methods for analysis of DNA methylation data in the Illumina protocol [24–26], implemented
in our pipeline [22]. In addition, we performed supervised analysis comparing DNA methylation
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profiles between TNBC and non-TNBC, to identify a signature of significantly differentially methylated
genes between the two types of breast cancer. We used the LIMMA package to identify differential
methylated CpG sites [22,28]. For all the analyses we used the FDR [31] to control for multiple
hypothesis testing. Genes were ranked on adjusted p-values, FDR and LogFC. We used the Ensemble
Biomart database to link CpG sites with gene symbols [22,32]. Significantly differentially methylated
genes were further quantitatively evaluated for the number of differentially CpG sites. A gene
was considered highly differentially methylated if it contained ≥3 methylation events. A gene was
considered differentially methylated if it was aberrantly methylated only in one type of breast cancer,
or if the CpG sites found in one type of breast cancer were not found in the other type.

For each type of breast cancer, genes were ranked on adjusted differential methylation p-values,
number of CpG sites per gene, FDR and LogFC. The discovered significantly differentially methylated
genes were evaluated for the presence of somatic mutations, to discover the signatures of somatic
mutated genes that are significantly differentially methylated in each type of breast cancer, and a
signature of differentially methylated somatic mutated genes, distinguishing the two types of breast
cancer. Somatic mutated genes were further quantitatively assessed to determine the number of
mutation events. The same criteria as in gene expression was used for identifying highly mutated and
differentially mutated genes.

2.4. Integrative Analysis of Diverse Omics Data

We used a systems level integration to investigate potential oncogenic interactions between
genomic and epigenomic alterations in TNBC and non-TNBC. The interplay between genomic and
epigenomic alterations may happen both in cis and in trans, so we performed multiple levels of
integration. At level 1 integration, we integrated information on differentially expressed genes
with information on differentially methylated genes in TNBC and non-TNBC. Here, we sought to:
(i) discover the signatures of differentially expressed genes, which are also differentially methylated
(integrated signature) and uniquely associated with each type of breast cancer; and (ii) to discover a
signature of significantly differentially expressed genes which were also significantly differentially
methylated distinguishing the two types of breast cancer. At level 2 integration, we combined
information on differentially methylated, expressed and somatic mutated in TNBC and non-TNBC.
Here; we sought to: (i) discover the integrated signatures of differentially expressed genes, which are
also differentially methylated and differentially mutated, uniquely associated with each type of breast
cancer; and (ii) to discover an integrated signature of significantly differentially expressed genes,
which are also differentially methylated and differentially mutated, distinguishing the two types of
breast cancer. For each integrated signature, we conducted a quantitative assessment of somatic
mutations per gene, within and between the two types of breast cancer, to assess the uniqueness and
the differences in mutation burden between TNBC and non-TNBC.

The final levels of integrative analysis involved network (level 3), pathway (level 4) and functional
(level 5) analysis of genes containing somatic and epigenomic alterations. Here, we sought to unravel
the possible oncogenic interactions between genomic and epigenomic in TNBC and non-TNBC.
We performed network and pathway prediction using the Ingenuity Pathway Analysis (IPA) Software
(Qiagen Inc., Hilden, German) [33] to identify the molecular networks and signaling pathways
enriched for somatic and epigenomic alterations in each type of breast cancer. Somatic mutated genes,
which were differentially methylated and transcriptionally associated with each type of breast cancer
were mapped onto networks and canonical pathways using IPA. For network analysis, a Z-score
was computed, whereas for pathway prediction, the –log(p-values) were computed and used as the
metrics for correctly assigning the genes to the correct networks and pathways, respectively. The FDR
was used to correct for type I and type II errors, to ensure the reliability of correctly predicting the
pathways. We performed GO [34] analysis using the IPA database to functionally characterize the
discovered genes into the molecular functions, biological process and cellular components in which
they are involved.
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3. Results

3.1. Gene Expression and DNA Methylation Sigantures Associated with TNBC and Non-TNBC

We performed whole transcriptome and whole methylome analysis to identify gene expression and
DNA methylation profiling signatures uniquely associated with TNBC and non-TNBC and signatures
distinguishing the two types of breast cancer. We hypothesized that the molecular perturbation and
aberrant DNA methylation in tumors from patients diagnosed with TNBC or non-TNBC and control
samples could lead to measurable changes distinguishing patients diagnosed with TNBC tumors from
control samples, and patients diagnosed with non-TNBC tumors from control samples. To address
these hypotheses, we performed whole transcriptome and whole methylome analysis comparing gene
expression levels and DNA methylation profiles between tumor and control samples for TNBC and
non-TNBC separately.

Whole transcriptome analysis comparing gene expression levels between tumor and control
samples in TNBC produced a signature of 15,404 significantly (p < 0.05) differentially expressed genes.
Comparing gene expression levels between tumor samples and controls in non-TNBC tumors produced
a signature of 16,124 significantly (p < 0.05) differentially expressed genes. Complete lists of the 15,404
genes associated with TNBC and the 16,124 genes associated with non-TNBC along with estimates of
p-values, FC indicative of the level of association, as well as their direction of change (up or down
regulated) are presented in supplementary Table SE.

Whole methylome analysis comparing DNA methylation profiles between tumor and control
samples in TNBC produced a signature of 21,196 significantly (p < 0.05) differentially methylated
genes. Comparing DNA methylation profiles between patients diagnosed with non-TNBC and controls
revealed a signature of 21,415 significantly (p < 0.05) differentially methylated genes. Complete lists of
the 21,196 genes significantly differentially methylated in TNBC and the 21,415 genes significantly
differentially methylated in non-TNBC, along with estimates of p-values, FC indicative of the level
of association, as well as their direction of change (hyper or hypo methylated), are presented in
supplementary Table SM.

3.2. Discovery of Integrated DNA Methylation and Gene Expression Signatures

To discover the signatures of significantly (p < 0.05) differentially expressed genes, which were
also significantly (p < 0.05) differentially methylated (herein called integrated signatures) unique
to TNBC and non-TNBC, or genomically and epigenomically altered in both types of breast cancer,
we performed analysis combining information on significantly (p < 0.05) differentially expressed genes
and significantly (p < 0.05) differentially methylated genes in each type of breast cancer, compared to
controls. For TNBC, we combined the 15,404 significantly (p < 0.05) differentially expressed genes with
the 21,196 significantly (p < 0.05) differentially methylated genes. Similarly, for non-TNBC, we combined
the 16,124 significantly (p < 0.05) differentially expressed genes with the 21,415 significantly (p < 0.05)
differentially methylated genes. Genes were then sorted by gene symbols to identify the integrated
DNA methylation and gene expression signatures unique to each type of breast cancer, and signatures
that overlapped the two types of breast cancer.

The results of these analyses are summarized in Figure 2. For TNBC, we discovered an integrated
DNA methylation and gene expression signature of 12,816 genes. In addition, 2588 genes were
significantly (p < 0.05) differentially expressed, but not differentially methylated, whereas 8380 genes
were significantly (p < 0.05) differentially methylated, but not differentially expressed (Figure 2A).
For non-TNBC, we discovered an integrated DNA methylation and gene expression signature of
13,460 genes. In addition, we discovered a signature of 2664 significantly (p < 0.05) differentially
expressed genes, which were not aberrantly methylated and a signature of 7955 significantly (p < 0.05)
differentially methylated genes, which were not differentially expressed (Figure 2B). These findings
confirmed our hypothesis that, within each type of breast cancer, there were genes that were significantly
altered in both the transcriptome and the methylome. Supplementary Table S2A,B shows complete lists
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of all the 12,816 genes in TNBC and 13,460 genes in non-TNBC, respectively, which were significantly
(p < 0.05) altered in both the transcriptome and the methylome.
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Having discovered the signatures of genes altered in both the transcriptome and the methylome
in each type of breast cancer (Figure 2A,B intersections), we performed an additional investigation
to discover the signatures of genes unique to each type of breast cancer, and a signature of genes
genomically and epigenomically altered in both types of breast cancer. We addressed this question by
combining the 12,816 genes from TNBC (Figure 2A) with the 13,460 genes from non-TNBC (Figure 2B)
with both alterations, and sorted them by gene symbol, expression and methylation p-values. The results
of this investigation are presented in Figure 2C. The analysis revealed a signature of 10,365 genes
genomically and epigenomically altered in TNBC and non-TNBC. In addition, the analysis revealed a
signature of 2451 genes genomically and epigenomically altered in TNBC only, and a signature of 3095
genes altered in non-TNBC only (Figure 2C). A complete list of all the 10,365 significantly (p < 0.05)
differentially expressed genes, which were also significantly (p < 0.05) differentially methylated in
TNBC and non-TNBC, is presented in supplementary Table S2C. These analyses suggest that for a
subset of genes, molecular perturbation and epigenomic changes occur in both types of breast cancer,
but at different rates.

3.3. Discovery of Epigenomic and Gene Expression Signatures Distinguishing TNBC from Non-TNBC

A critical need in understanding the biology of breast cancer is characterizing the molecular
differences between TNBC and non-TNBC tumors. We addressed this issue by testing the hypothesis
that genomic and epigenomic (or a combination thereof) alterations differ between TNBC and
non-TNBC. Here, we reasoned that, because of the etiological and biological differences between TNBC
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and non-TNBC, the genomic and epigenomic mechanisms driving the two types of breast cancer
may be different. To test this hypothesis, we created and used a new data set containing the 10,365
genes genomically and epigenomically altered in both TNBC and non-TNBC derived from (Figure 2C).
We compered their expression levels and DNA methylation profiles between TNBC and non-TNBC.

The results of this investigation are shown in a Venn diagrams in Figure 3. We discovered a
signature of 4675 significantly (p < 0.05) differentially altered genes, and a signature of 5388 significantly
(p < 0.05) differentially methylated genes distinguishing the two types of breast cancer. Interestingly,
we also discovered a signature of 4400 genes significantly (p < 0.05) differentially in the transcriptome,
which were also significantly (p < 0.05) differentially methylated, distinguishing TNBC from non-TNBC
(Figure 3, intersection). In addition, the analysis revealed a signature of 275 significantly (p < 0.05)
differentially expressed genes without DNA methylation, and a signature of 988 significantly (p < 0.05)
differentially methylated genes not differentially expressed (Figure 3) between the two types of breast
cancer. This confirmed our hypothesis that an integrative analysis of genomic and epigenomic data
could lead to the discovery of a signature of genes altered both in the transcriptome and the methylome,
and distinguishing the two types of breast cancer.
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Figure 3. Venn diagram showing the distribution of genes containing both differentially expressed (DE)
and differentially methylated (DM), showing the 4400 genes distinguishing TNBC from non-TNBC (in
the interaction), 275 differentially expressed (DE) only, and the 988 differentially methylated (DM) only
between TNBC and non-TNBC.

To further explore the patterns of gene expression and DNA methylation, we evaluated the 4400
genes (Figure 3). The results showing the distribution of DNA methylation for the top list of genes that
were highly significantly differentially altered in the transcriptome and the methylome between TNBC
and non-TNBC are presented in Table 2. Only the genes with a high frequency of DNA methylation
(DM) sites per gene are presented in the Table. A full list of all the 4400 genes significantly differentially
altered in both the transcriptome and the methylome distinguishing the two types of breast cancer is
presented in supplementary Table S3A. A full list of all the 5663 genes with a binary pattern of presence
and absence is presented in supplementary Table S3B.

Overall, there was significant variation in patterns of DNA methylation, as measured by the
distribution of significantly differentially methylated CpG sites and gene expression levels within and
between the two subtypes of breast cancer. The observed variation in patterns of gene expression and
DNA methylation profiles can be explained partially by the heterogeneity of these diseases. Both TNBC
and non-TNBC are inherently heterogeneous types of breast cancer, each comprised of many subtypes
of breast cancer. Under such conditions, the observed outcome should be expected. Due to the lack of
information on the subtypes of breast cancer in the data sets used in this investigation, we did not
address the issue of subtypes, as it was beyond the scope of this study.
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Table 2. List of top 30 most highly significantly differentially expressed genes, which were also
significantly differentially methylated distinguishing TNBC from non-TNBC, along with number
of DNA methylation (DM) sites per gene and estimates of differential expression and differential
methylation p-values. All p-values were adjusted for the false discovery rates.

Gene_Symbol Chromosome Position EXP-Value DM_Sites DM p-Value

PTPRN2 7q36.3 1.08 × 10−15 487 1.69 × 10−19

PCDHGA1 5q31 4.49 × 10−2 242 1.36 × 10−22

MSLN 16p13.3 2.86 × 10−8 165 1.50 × 10−24

CBFA2T3 16q24.3 8.05 × 10−12 146 4.07 × 10−25

CUX1 7q22.1 1.01 × 10−3 120 8.13 × 10−28

ANKRD11 16q24.3 2.92 × 10−5 114 3.40 × 10−21

NCOR2 12q24.31 1.97 × 10−2 112 1.07 × 10−27

LMF1 16p13.3 1.62 × 10−14 111 9.23 × 10−27

ABR 17p13.3 1.32 × 10−3 103 1.39 × 10−24

SLC45A4 8q24.3 1.12 × 10−4 103 3.29 × 10−31

SYNGAP1 6p21.32 5.78 × 10−6 99 2.34 × 10−20

TP73 1p36.32 2.26 × 10−6 96 2.27 × 10−25

PRKAR1B 7p22.3 9.45 × 10−3 95 3.32 × 10−27

ADAMTS2 5q35.3 1.47 × 10−2 86 1.07 × 10−28

PRRT1 6p21.32 3.99 × 10−7 86 1.63 × 10−26

PCDHA2 5q31.3 1.09 × 10−3 83 2.04 × 10−10

ANK1 8p11.21 5.84 × 10−3 82 1.75 × 10−25

TBC1D16 17q25.3 5.65 × 10−3 81 3.31 × 10−31

HOOK2 19p13.13 1.31 × 10−4 79 3.86 × 10−23

COL23A1 5q35.3 2.15 × 10−5 75 1.10 × 10−34

NFATC1 18q23 1.38 × 10−2 75 9.25 × 10−33

FOXK1 7p22.1 2.74 × 10−5 73 4.24 × 10−33

BCOR Xp11.4 1.09 × 10−7 72 2.95 × 10−21

COL4A2 13q34 3.03 × 10−2 72 5.02 × 10−25

PCDHA4 5q31.3 2.16 × 10−5 72 2.04 × 10−10

RGS12 4p16.3 3.48 × 10−8 71 1.21 × 10−31

RGL2 6p21.32 1.31 × 10−14 69 4.34 × 10−29

DNAH17 17q25.3 1.22 × 10−4 68 1.74 × 10−26

CTBP2 10q26.13 1.51 × 10−4 67 6.16 × 10−26

HOXC4 12q13.13 1.60 × 10−9 67 3.63 × 10−11

3.4. Integration of Somatic and Epigenomic Variation

Having discovered an integrated signature of genes altered both in the transcriptome and the
methylome distinguishing TNBC from non-TNBC, we conducted further investigations to integrate
somatic mutation information. We hypothesized that genes differentially altered in the transcriptome
and the methylome harbor somatic mutations. We further hypothesized that there are differences in
somatic mutation burden and epigenetic alterations between the two types of breast cancer. Here,
we sought to discover the somatic, epigenomic and gene expression signatures unique to TNBC and
non-TNBC, and a signature distinguishing the two types of breast cancer. We addressed this issue
as follows: first, we evaluated differentially expressed and differentially methylated genes for the
presence of somatic mutations, using the 7659 somatic mutated genes in TNBC and the 16,752 genes
somatic mutated genes in non-TNBC. We also evaluated the 4400 genes altered in the transcriptome
and the methylome distinguishing TNBC from non-TNBC for the presence of mutations, and for
differences in mutation burden between the two types of breast cancer. Finally, we performed a
quantitative assessment of the differences in somatic mutations and epigenomic alterations between
TNBC and non-TNBC.

The results of these analyses are summarized in a Venn diagram in Figure 4. Out of the 7659
genes somatic mutated in TNBC, 444 genes contained somatic mutations in TNBC only, and were
neither differentially methylated nor differentially expressed between the two types of breast cancer
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(Figure 4). Out of the 16,752 genes somatic mutated in non-TNBC, 7642 contained somatic mutations
in non-TNBC only, and were neither differentially methylated nor differentially expressed between the
two types of breast cancer (Figure 4). However, a complete evaluation of all somatic mutated genes for
genomic and epigenomic alterations revealed a total of 5551 genes containing somatic mutations in
both types of breast cancer, and were neither differentially methylated nor differentially expressed
between the two types of breast cancer (Figure 4).
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Figure 4. Somatic and epigenomic altered gene signatures unique to TNBC and non-TNBC,
signatures common to both types of breast cancer and signatures distinguishing them.

Quantitative evaluation of the somatic mutated genes against the 4400 genes altered in both the
transcriptome and the methylome distinguishing TNBC from non-TNBC revealed three gene signatures.
Among them were the 117 gene signature containing both somatic and epigenomic alterations unique to
TNBC, the 2012 gene signature containing both somatic and epigenomic alterations unique to non-TNBC
and the 1547 gene signature containing both somatic and epigenomic alterations, which overlapped
the two types of breast cancer (Figure 4). In addition, we discovered a 724 gene signature containing
epigenomic alterations without somatic mutations (Figure 4). There was significant variation in both
somatic mutation and DNA methylation profiles within and between the two types of breast cancer.
As noted earlier in this report, this was expected, because breast cancer is inherently a heterogeneous
disease, thus, the observed outcome was expected.

To further assess the patterns of gene expression, DNA methylation and somatic mutation
profiles, we evaluated the genes containing all the three variations. Table 3 shows subsets of the top
somatic mutated and epigenomically altered genes from the 117 genes unique to TNBC and the 2012
genes unique to non-TNBC, which distinguished the two types of breast cancer. The distributions
of methylation sites, somatic mutation evens and adjusted estimates of differential expression and
differential methylation p-values are also presented in Table 3. Among the 117 genes unique to TNBC,
the number of somatic mutation events per gene ranged from one to three, whereas the number of DNA
methylation sites or CpG sites ranged from one to 63. Among the 2012 genes unique to non-TNBC,
the number of somatic mutation events per gene ranged from one to 33, whereas the number of DNA
methylation sites or CpG sites ranged from one to 165. There were significant differences and variation
in the number of somatic mutation and DNA methylation events in the same gene in each type of breast
cancer. A list of the top most highly somatic mutated and aberrantly methylated genes is presented
in Table 3. A full list of somatic mutated genes, which were significantly differentially altered in the
transcriptome (DE) and differentially altered in the methylome between TNBC and non-TNBC are
presented in Supplementary Table S4. There were significantly differences in somatic, DNA methylation
and gene expression variation between TNBC and non-TNBC. The significant differences in DNA
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methylation and somatic mutation profiles suggest that TNBC and non-TNBC may be amenable for
somatic mutation-based and methylation-based classification, or a combination thereof.

Table 3. List of 30 somatic mutated genes significantly differentially expressed (DE), and also
significantly differentially methylated (DM), between TNBC and non-TNBC.

Gene Symbol Chromosome DE p-Value DM p-Value DM Sites TNBC Somatic
Events

Non-TNBC
Somatic Events

RBM22 5q33.1 2.21 × 10−10 5.04 × 10−10 7 3
CRIP1 14q32.33 2.75 × 10−22 4.17 × 10−27 17 2

CYP51A1 7q21.2 8.95 × 10−5 1.39 × 10−11 16 2
FAM227A 22q13.1 3.39 × 10−3 5.00 × 10−4 5 2

FHL3 1p34.3 3.32 × 10−5 1.11 × 10−15 9 2
GFI1 1p22.1 7.77 × 10−5 4.41 × 10−30 63 2
HCP5 6p21.33 2.04 × 10−3 6.76 × 10−10 39 2

HOXD13 2q31.1 6.69 × 10−7 5.98 × 10−21 9 2
IGSF21 1p36.13 2.82 × 10−7 6.04 × 10−28 50 2
P2RY2 11q13.4 3.33 × 10−12 1.59 × 10−19 15 2
PCBP3 21q22.3 1.64 × 10−8 9.13 × 10−24 42 2
RBM17 10p15.1 3.11 × 10−15 3.98 × 10−8 6 2
RNF26 11q23 1.99 × 10−3 1.28 × 10−4 4 2

SCAMP2 15q24.1 8.94 × 10−9 1.15 × 10−9 4 2
SCNN1B 16p12.2 3.39 × 10−2 4.08 × 10−17 9 2
MAP2K4 17p12 1.66 × 10−8 2.73 × 10−12 7 33
ZSWIM8 10q22.2 1.19 × 10−4 3.34 × 10−9 4 18
MALAT1 11q13.1 2.28 × 10−11 3.79 × 10−5 4 16
MED23 6q23.2 1.13 × 10−3 8.65 × 10−6 9 16
NRCAM 7q31.1 3.22 × 10−4 1.08 × 10−29 17 16

RAB3GAP2 1q41 3.04 × 10−3 9.49 × 10−15 8 16
KIAA0100 17q11.2 1.13 × 10−6 3.46 × 10−7 5 15

ABCC4 13q32.1 8.68 × 10−8 1.04 × 10−18 17 13
MED13L 12q24.21 1.46 × 10−13 7.41 × 10−23 12 13

RIPK1 6p25.2 1.87 × 10−6 3.25 × 10−14 10 13
TIAM2 6q25.2-q25.3 1.83 × 10−4 1.67 × 10−23 36 13

ADAMTS16 5p15.32 2.51 × 10−4 6.92 × 10−17 32 12
ADGB 6q24.3 5.90 × 10−12 1.05 × 10−3 5 12
PHF8 Xp11.22 7.01 × 10−7 4.42 × 10−8 6 12
RGS7 1q43 1.30 × 10−4 2.95 × 10−18 26 12

Further evaluation of the frequency of somatic mutations in each type of breast cancer revealed
higher mutation occurrence in non-TNBC, compared to TNBC (Table 3). In addition, there was an
uneven distribution of somatic mutation and epigenomic events. This suggests that somatic and
epigenomic alterations are likely to occur at different times during the course of each disease. The results
confirm our hypothesis that, for a selected set of genes, there were significant differences in somatic
mutation burden, DNA methylation and gene expression levels between TNBC and non-TNBC (Table 3).
As noted earlier in this report, the significant variation in somatic mutations, DNA methylation and
gene expression levels can partially be explained by the heterogeneous nature of the two types of
breast cancer.

3.5. Discovery of Gene Regulatory Networks and Biological Pathways

The development and progression of TNBC and non-TNBC involve both genomic and epigenomic
alterations. Therefore, to address the hypothesis that somatic mutations and epigenetic alterations
regulate and impact gene regulatory networks and biological pathways driving TNBC and non-TNBC,
we conducted pathway prediction and network analysis, focusing on genes harboring somatic mutations
and epigenetic alterations unique to each type of breast cancer. Here we sought to: (i) unravel the
genomic-epigenomic interaction landscape in TNBC and non-TNBC; (ii) gain insights about the broader
biological context in which genomic and epigenomic factors operate; and (iii) to establish putative
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functional bridges between somatic mutations and epigenomic alterations and the pathways they
affect. Such pathways could be potential therapeutic targets.

The results of network and pathway analysis for the top most significant networks for
TNBC are presented in Figure 5. The highest scoring networks included the genes predicted
to be involved in: hereditary diseases, organismal injury and abnormalities (Z-score = 35);
cellular development, cellular growth, proliferation, protein synthesis (Z-score = 30); cell-to-cell
signaling and interaction, immune cell trafficking, cellular development, cellular growth and
proliferation, embryonic development (Z-Score = 28); cellular assembly and organization,
cellular compromise, DNA replication, recombination, and repair (Z-Score = 25); and cell cycle,
cellular assembly and organization, molecular transport (Z-Score = 21). Network analysis revealed
functional relationships and interactions among aberrantly methylated genes containing somatic
mutations in gene regulatory networks (see symbols in red fonts) for TNBC (Figure 5). Network analysis
also revealed functional relationships and interactions with other genes (see black fonts) (Figure 5).
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Note that, because the analysis involved merging the top networks containing genes with overlapping
functions, the colors of the lines (vertices) are also overlapping to reflect this. Pink and back lines
represent interactions among somatic and epigenetic altered genes (red fonts), and with predicted
genes in black fonts.

The somatic mutated genes that were also aberrantly methylated and interacting in gene regulatory
networks included the genes CCL2, PTEN, ESR1, IFNG, P2RY2, INF2, CD44, SERPINB2, PRKC1,
RPB18 and KAT5 (Figure 5). Pathway analysis revealed important pathways implicated in TNBC.
The top five most significant pathways enriched for somatic and epigenetic variation included
the retinal biosynthesis, BAG2, LXR/RXR, EIF2 and P2Y purigenic receptor signaling pathways.
The results of network and pathway analysis for the topmost significant networks for non-TNBC are
presented in Figure 6. The highest scoring networks included the genes predicted to be involved in:
cellular assembly and organization and cellular compromise (Z-Score 59); cancer, organismal injury and
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abnormalities (Z-Score = 51); cell morphology and embryonic development, (Z-Score = 48); connective
tissue disorders, organismal injury and abnormalities and organ development (Z-Score = 46); cellular
compromise, cellular function and maintenance, cancer, (Z-Score 32); cancer and immunological disease
(Z-Score = 28); cancer, cell death and survival, cellular development (Z-Score = 26). Network analysis
revealed functional relationships and interactions among aberrantly methylated genes containing
somatic mutations in gene regulatory networks (see symbols in red fonts) for non-TNBC (Figure 6).
Network analysis also revealed functional relationships and interactions with other genes, including
histone H3 and H4, which are epigenetically altered (see black fonts) (Figure 6).
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Figure 6. Molecular networks enriched for somatic and epigenetic variation in non-TNBC. Genes are
shown in nodes, and vertices represent functional relationships. The gene symbols in blue fonts
represent genes containing somatic and epigenetic alterations in non-TNBC only. Note that the use of
blue fonts for somatic and epigenomic altered genes here was designed to provide a contrast between
the two types of breast cancer. Genes in black fonts are other genes predicted to interact with genes
containing somatic and epigenetic alterations. Note that, because the analysis involved merging the
top networks containing genes with overlapping functions, the colors of the lines (vertices) are also
overlapping to reflect this. Pink and back lines represent interactions among somatic and epigenetic
altered genes (blue fonts) and with predicted genes in black fonts.

The somatic mutated aberrantly methylated genes interacting in gene regulatory networks
included the genes USP7, ZC3H14, CD2AP, MYO6, JUP, PTPRK, GOLGA2, PHF8, MAML1, RBM39,
KRT18, PKP4, DHCR24, WDR26, NEFH, C16orf70, OCRL, SEC24C, AFP, TSG101, BCAS3, CCND3,
ZMYND8, VPS41, CENPJ, SUPT16H, PLK2, AP1G1, PPP6R2 and MYO1D, which are represented
in blue fonts (Figure 6). Pathway analysis revealed important signaling pathways implicated in
non-TNBC. The most significant pathways included the UVB-Induced MAPK, PCP, Apelin endothelial,
Endoplasmatic reticulum stress and mechanisms of viral exit from host signaling pathways. Overall,
integrative analysis revealed gene regulatory networks and signaling pathways enriched for somatic
mutations and epigenomic alterations, unique to each type of breast cancer. The analysis also
demonstrated that a subset of genes altered in the tumor genome, transcriptome and the methylome
distinguished TNBC from non-TNBC. Both within type of breast cancer and comparison analysis of
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gene expression and DNA methylation between the two types of breast cancer showed that DNA
methylation affects gene expression in TNBC and non-TNBC, and that these effects differ between the
two types of breast cancers, consistent with our previous report [22].

4. Discussion

Since the completion of TCGA [19], large omics data sets have been made available. With the
use of these data resources, we are now well-positioned to understand the molecular mechanisms
underlying the etiological and biological differences and drivers of the two types of cancers. Here,
we performed integrative data analysis combining multi-omics data for the discovery of integrated
genomic, epigenomic and gene expression profiling signatures, networks and signaling pathways
unique to TNBC and non-TNBC, and to discover signatures distinguishing the two types of breast
cancer. The discovery of somatic mutated genes, which are also aberrantly methylated, suggests that
genes driving tumorigenesis in TNBC and non-TNBC are under both genomic and epigenomic control.
Here, we discuss the potential translational impact and clinical significance of the results of this
investigation below.

4.1. Novelty and Innovation of the Study

Our approach combined somatic, DNA methylation and gene expression data for the discovery
of gene, somatic mutation and DNA methylation signatures unique to TNBC and non-TNBC and
signatures, distinguishing the two types of breast cancer. Our approach represents a novel and unified
approach to the discovery of potential clinically actionable biomarkers and targets for TNBC and
non-TNBC, using multi-omics data. Discovery of integrated somatic mutation and DNA methylation
signatures distinguishing the two types of breast cancer suggests that TNBC and non-TNBC may
be amenable to mutation and DNA methylation-based classification. The discovery of signatures
unique to TNBC and non-TNBC suggests that different biological mechanisms may be controlling
the development and progression of each type of cancer. To our knowledge, this is the first study to
combine three pieces of information (somatic, epigenetic and gene expression data) for the discovery
of gene signatures unique to TNBC and non-TNBC, and signatures distinguishing the two types of
breast cancer. Gene expression profiling to identify key differentially expressed genes and predict
clinical outcomes and analysis of differences in serum protein mass spectrometry between TNBC and
non-TNBC have been reported [35,36]. Breast cancer subtype identification using somatic mutations
and DNA methylation have also been reported [37,38]. The novel and innovative aspect of this
investigation is that it combined three types of omics data (somatic, epigenomic and gene expression
variation) to identify signatures unique to TNBC and non-TNBC, and signatures distinguishing the
two types of breast. This novel integrated genomics approach to discovery of potential clinically
actionable molecular markers and potential targets for the development of novel therapeutics in TNBC
and non-TNBC has not been previously reported.

4.2. Complementing Omics Data with Standard Clinical Protocols

Traditionally, there have been several widely accepted methods for clinical classification of types
of breast cancer. These include classification based on: (i) histology using morphological characteristics;
(ii) immunohistochemical (IHC) markers, also used here to guide data analysis; and (iii) more recently,
using gene expression profiles as the standard [8,10,35]. The significance of our investigation is that
these traditional protocols could be complemented by the results in this investigation. Integrating
somatic, epigenomic and gene expression data with traditional protocols holds promise not only for
defining the types of breast cancer, but also for causally associating such types with the molecular
mechanisms driving and distinguishing them. Moreover, integrating omics with standard protocols
may help to eliminate errors associated with traditional protocols, such as IHC [8,10] and improve
patient classification.
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4.3. Clinical Significance of Integrating Gene and Epigenomic Signatures in TNBC and Non-TNBC

Over the last decade, gene expression has gained prominence as the standard protocol in
breast cancer [15–18]. Clinically validated prognostic gene signatures, such as PAM50 [15,16] and
MammaPrint [17,18], are poised to improve clinical outcomes via precision medicine. One limitation
and critical unmet need in the use of such assays is that they lack information on molecular drivers of the
disease and biological factors regulating the tumor microenvironment. Given that somatic mutations
drive tumorigenesis, enduring epigenetic landmarks define the tumor microenvironment [39], and DNA
methylation affects gene expression [22], integrating information on gene expression, somatic mutation
and DNA methylation, as demonstrated in this study, which provides an avenue for addressing this
limitation. Although we did not explore the therapeutic potential of the discovered epigenomic markers
in this study, several studies have reported the therapeutic potential and prognostic value of DNA
methylation markers in breast cancer, specifically TNBC [40–43]. This is significant, because currently
there are no effective targeted therapies for TNBC.

4.4. Somatic Mutation Signatures in TNBC and Non-TNBC

The discovery of somatic mutation signatures unique to TNBC and non-TNBC and the differences in
somatic mutation burden between the two types of breast cancer is of particular interest, because somatic
driver mutations confer selective clonal growth advantage to tumor cells. Importantly, the discovery
of a signature of somatic mutated genes distinguishing TNBC from non-TNBC suggests that the
two types of breast cancer may be amenable to mutation-based classification. This could enable the
identification of patients at high risk of developing aggressive tumors, such as TNBC, who could be
prioritized for treatment. In this study, we did not investigate the mutation-based classification of the
two subtypes of breast cancer. However, cancer subtype identification using somatic mutation data
has been reported [37], though our study focuses on TNBC and non-TNBC, a problem which has not
been addressed.

4.5. Signaling Pathways as Potential Therapeutic Targets

Our investigation revealed biological pathways dysregulated by somatic mutations and aberrant
DNA methylation, including retinal biosynthesis, BAG2, LXR/RXR signaling pathways in TNBC,
which have the potential to serve as therapeutic targets if validated. The discovery of retinal biosynthesis
signaling pathway is significant. This is because a major obstacle in the use of retinoid therapy in
cancer treatment is tumor resistance to this agent [44]. One approach to overcoming the resistance
of tumor cells to retinoic acid may be genomic and epigenomic reprogramming, targeting and
suppressing this pathway using markers that have been shown to restore sensitivity to retinoic acid [44].
For example, curcumin has been shown to restore sensitivity to retinoic acid in TNBC cells [44],
and to induce retinoic mediated apoptosis in retinoic acid resistant breast cancer cells [45]. Moreover,
DNA methylation investigated here has been shown to predict the response of TNBC to all-trans
retinoic acid [40]. This is particularly important, because retinoid signaling regulates breast cancer
stem cell differentiation—a critical biological process in tumor development and progression [46].

Another pathway implicated in breast cancer discovered here was BAG2. The significance of this
finding is that the Bcl-2-associated athanogene 2 (BAG2) has been shown to regulate the oncogenic
functions of pro-cathepsin B in metastatic TNBC [47]. This makes the BAG2 discovered here a
potential therapeutic target, which may reduce the burden of metastatic TNBC. We also discovered
the LXL/RXR signaling pathway, which has been implicated in TNBC [48,49]. This is particularly
interesting, because while our study was based on TCGA data, which is almost exclusively derived
from women of European ancestry, the LXR/RXR signaling pathway has also been associated with
TNBC in African American women using a different data set [49]. The significance of this finding is
that African American women tend to have higher incidences and higher mortality rates from TNBC,
and are affected at younger age—before the recommended age of 50 for screening [49].
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We discovered signaling pathways associated with non-TNBC, notably the UVB-induced MAPK
and apelin endothelial signaling pathways. The clinical significance of these findings is that the
UVB-induced MAPK signaling pathway has been associated with estrogenic chemicals, most of
which are considered carcinogenic [50]. Another pathway of clinical significance that we discovered
in non-TNBC is the apelin signaling pathway [51–53]. This pathway was recently patented as
a therapeutic target for breast cancer [51–53]. Taken together, these observations suggest that if
confirmed, the discovered signaling pathways have therapeutic potential in TNBC and non-TNBC.

Apart from the discovered pathways, we also discovered a genomically and epigenomically
altered ESR1 gene—a critical biomarker to both TNBC and non-TNBC. A negative ESR1, along with
negative PR and lack amplification of HER-2, define TNBC. However, ESR1 also plays a major role
in non-TNBC. Perhaps one of the most distinguishing features relevant to this investigation is that
patients with estrogen receptor or hormone receptor-positive tumors (herein defined as non-TNBC)
receive endocrine and targeted therapies [54], whereas TNBC is non-responsive, and there are currently
no Food and Drug Administration [FDA] targeted therapies for TNBC. In a comprehensive review of
the factors predictive of response to hormone therapy in breast cancer, Rastelli and Crispino confirmed
the role of estrogen receptor content as a predictor of response to endocrine treatment [55]. They found
that the benefits from endocrine treatment were directly proportional to estrogen receptor levels in
non-TNBC [55]. Taken together, the discovery of a somatic mutated and epigenetic altered ESR1 in this
study suggests that it could have potential therapeutic implications.

In sum, this investigation revealed that TNBC and non-TNBC are complex diseases,
whose development and progression involve oncogenic interactions between somatic and epigenomic
alterations, unique to each type of breast cancer. Our investigation further reveals that oncogenic
interactions between these biological factors likely lead to the dysregulation of the gene regulatory
networks and signaling pathways that drive TNBC and non-TNBC. We argue that integrating large-scale,
high-dimensional somatic mutation, DNA methylation and gene expression data holds promise,
not only for unraveling the genomic-epigenomic interaction landscape of TNBC and non-TNBC,
but also provides the avenue for uncovering the molecular mechanisms characterizing the biological
differences and the drivers of the two types of breast cancer.

Limitations: We have shown that integrative data analysis, combing information on somatic
mutations, DNA methylation and gene expression, has the promise to unravel the genomic-epigenomic
interaction landscape of TNBC and non-TNBC. However, the limitations of the study must be
acknowledged. We used TCGA data, which is unique and optimal for integrative data analysis using
disparate omics data from the same patient cohort. One key limitation worth mentioning here is that
we did not use only driver somatic mutations in this investigation. Therefore, some of the somatic
mutations used here may be passenger mutations, which do not contribute to TNBC or non-TNBC
development. However, while passenger mutations may not contribute to disease development,
they bear the imprints of the mutational mechanisms that have generated them by the process of
natural selection. Therefore, they provide insights into the etiology and pathogenesis of TNBC and
non-TNBC. Moreover, passenger mutations have been shown to accurately classify human tumors [56].

Another limitation worth noting here is that, in this study, we focused on TNBC and non-TNBC.
Both types of breast cancer are inherently heterogeneous, each comprising of many subtypes not
investigated here. Subtyping mapping was beyond the scope of this investigation, but is worth
pursuing in future.

5. Conclusions

We discovered somatic, DNA methylation and gene expression signatures unique to TNBC and
non-TNBC, and signatures distinguishing the two types of breast cancer. In addition, we discovered
gene regulatory networks and signaling pathways enriched for somatic and epigenetic alterations
in TNBC and non-TNBC. There were significant variations in patterns of mutation, DNA and
gene expression profiles, reflecting the heterogeneity inherent in the two types of breast cancer.
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The study demonstrates that integrative analysis of multi-omics data is a powerful approach to
unravelling the genomic-epigenomic interaction landscape, and for the discovery of potential clinically
actionable biomarkers, and targets for the development of therapeutic targets for TNBC and non-TNBC.
Further research is recommended to map the genomic and epigenomic interactions in the subtypes of
the two types of breast cancers to facilitate precision medicine.

Data Sharing: Availability of data and materials used in this study. The data that support the
findings of this study are provided in supplementary tables as documented below, and original data
sets are also made available in the TCGA, and are downloadable via the Genomics Data Commons
https://gdc.cancer.gov/.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/6/1559/s1,
Table S1: A complete list of somatic mutated genes and somatic mutations in TNBC and non-TNBC, Table SE:
A complete list of genes significantly differentially expressed between TNBC and controls and between non-TNBC
and controls along with their estimates of p-values, Table SM: A complete list of genes significantly differentially
methylated between TNBC and controls and between non-TNBC and controls along with their estimates of
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genes which were also differentially methylated in non-TNBC, Table S2C: A complete list of all the 10,365
genes significantly differentially expressed also significantly differentially methylated in TNBC and non-TNBC,
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