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Abstract (248) 

 

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer 

worldwide. HPV-negative HNSCC, which arises in the upper airway mucosa, is particularly 

aggressive, with nearly half of patients succumbing to the disease within five years and 

limited response to immune checkpoint inhibitors compared to other cancers. There is a 

need to further explore the complex immune landscape in HPV-negative HNSCC to identify 

potential therapeutic targets. Here, we integrated two single-cell RNA sequencing datasets 

from 29 samples and nearly 300,000 immune cells to investigate immune cell dynamics 

across tumor progression and lymph node metastasis. Notable shifts toward adaptative 

immune cell populations were observed in the 14 distinct HNSCC-associated peripheral 

blood mononuclear (PBMCs) and 21 tumor-infiltrating immune cells (TICs) considering 

disease stages. All PBMCs and TICs revealed unique molecular signatures correlating with 

lymph node involvement; however, broadly, TICs increased ligand expression among 

effector cytokines, growth factors, and interferon-related genes. Pathway analysis comparing 

PBMCs and TICs further confirmed active cell signaling among Monocyte-Macrophage, 

Dendritic cell, Natural Killer (NK), and T cell populations. Receptor-ligand analysis revealed 

significant communication patterns shifts among TICs, between CD8+ T cells and NK cells, 

showing heightened immunosuppressive signaling that correlated with disease progression. 

In locally invasive HPV-negative HNSCC samples, highly multiplexed immunofluorescence 

assays highlighted peri-tumoral clustering of exhausted CD8+ T and NK cells, alongside 

their exclusion from intra-tumoral niches. These findings emphasize cytotoxic immune cells 

as valuable biomarkers and therapeutic targets, shedding light on the mechanisms by which 

the HNSCC sustainably evades immune responses.   
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Introduction (712) 

 

Head and neck squamous cell carcinoma (HNSCC) is the most prevalent malignancy in the 

head and neck region, driven by a complex interplay of genetic and environmental factors. 

Risk factors associated with HNSCC in the oral cavity and larynx include tobacco use, 

alcohol consumption, environmental pollutants, and human papillomavirus (HPV) infection.1–

3 These factors have led to the classification of HNSCC into two primary categories: HPV-

associated (HPV-positive; HPV+) and HPV-unassociated (HPV-negative; HPV−) disease. 

While HPV+ HNSCC generally has a more favorable prognosis, patients with HPV− HNSCC 

experience significantly poorer survival rates and face unique clinical challenges.
4 

 

HPV− HNSCC is marked by frequent mutations in key regulatory genes, including TP53, 

p16INK4a(CDKN2A), and CCND1, with alterations in 60–80% of cases.5 These mutations 

drive tumorigenesis through mechanisms that are independent of HPV, in contrast to HPV+ 

HNSCC, where the viral oncogenes promote cancer development by inactivating key tumor 

suppressor proteins: E6 targets TP53 degradation, while E7 targets the retinoblastoma 

protein (RB). This disruption of tumor suppressor function is a hallmark of HPV+ cancers.5–7 

Molecular distinctions extend to the tumor microenvironment (TME) and immune landscape, 

particularly in the behavior of tumor-infiltrating immune cells (TICs), which encompasses 

tumor-filtrating lymphocytes (TILs). HPV− HNSCC has been linked to a dysfunctional 

immune response, particularly involving CD8+ T cells, which are crucial for anti-tumor 

immunity.8–10 
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Lymph node (LN) metastasis, common in HNSCC, is associated with complex morphological 

adaptations in HPV− cases, including epithelial-to-mesenchymal transition, which results in 

subsequent tissue invasion influenced by immune evasion, altered cancer cell metabolism, 

and the upregulation of motility pathways, enabling tumor spread and immune resistance.11–

13 Standard treatments for HNSCC, including surgical excision followed by chemotherapy or 

chemoradiotherapy, provide limited efficacy, particularly for advanced HPV− HNSCC.
14–16 

Despite advances in immunotherapies, such as immune checkpoint inhibitors (ICIs) that 

target the PD-1/PD-L1 pathway, survival rates remain poor, and therapeutic resistance, 

including immune cell exclusion from the tumor core, poses significant barriers.17,18 

Pembrolizumab, an ICI approved for HNSCC, has demonstrated improved survival when 

combined with chemotherapy compared to cetuximab-chemotherapy regimens, yet 

outcomes remain suboptimal for metastatic HPV− HNSCC.19,20 

 

Given these challenges, elucidating the immunological mechanisms within the TME, is 

critical to improving therapeutic outcomes for HPV− HNSCC. In this study, we focus on 

HPV− HNSCC to investigate immune cell dynamics across immune compartments (i.e., 

peripheral blood mononuclear cells versus lesion-associated TICs), nodal involvement and 

tumor stage. By integrating two previously published single-cell RNA sequencing (scRNA-

seq) datasets,21,22 we analyzed a comprehensive cohort of 284,437 cells, comprising 

177,191 TICs and 107,246 peripheral blood mononuclear cells (PBMCs) from 29 samples. 
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While we observed key differences in cell and molecular profiles in PBMCs and TICs. The 

differences between PBMCs and TICs/TILs became more pronounced as the disease 

progressed to nodal involvement or further stage, with the latter showing heightened 

immunosuppressive features within the tumor microenvironment. 

 

Furthermore, we observed significant shifts in TIC subpopulation proportions as the disease 

advanced, with differential expressions of genes such as KLRG1 and FCRL6, associated 

with T cell costimulation and the PD-1/PD-L1 pathway, respectively. All PBMCs and TICs 

revealed unique molecular signatures correlating with lymph node involvement; however, 

broadly, TICs increased ligand expression among effector cytokines, growth factors, and 

interferon-related genes. Pathway analysis comparing PBMCs and TICs further confirmed 

active cell signaling among Monocyte/Macrophages, Dendritic cell, Natural Killer (NK), and T 

cell populations. Receptor-ligand analysis revealed significant communication patterns shifts 

among TICs, between CD8+ T cells and NK cells, showing heightened immunosuppressive 

signaling that correlated with disease progression. In locally invasive HPV-negative HNSCC 

samples, highly multiplexed immunofluorescence spatial assays highlighted peri-tumoral 

clustering of exhausted CD8+ T and NK cells, alongside their exclusion from intra-tumoral 

niches. These insights lay the foundation for developing tailored immunotherapy strategies 

aimed at overcoming immune resistance mechanisms in this aggressive cancer subtype. 
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Results (3156) 

 

Generating the First Integrated HNSCC Immune Cell Atlas 

 

Due to factors such as patient diversity and cellular heterogeneity, HNSCC is a complex and 

difficult to study disease. Therefore, we set out to create an integrated HNSCC immune atlas 

using data from existing scRNAseq datasets.21,22 Each dataset was chosen because of its 

inclusion of both TICs and PBMCs samples, which represent the local and systemic immune 

environment within patients. For this study, we focus exclusively on HPV- HNSCC samples 

that were sorted for CD45+ immune cells from immunotherapy naïve patients. The overall 

demographics for this study included both sexes (62% males); primarily Caucasians (58.6%, 

others, unreported); a wide age range between 30- and 90-years-old with nearly half of the 

subjects between 50-69); and most of the tobacco and/or alcohol users included (69.0% and 

51.7%, respectively; Table S1). The tumors, primarily T3/N0 tumors, were isolated from 

across the upper airways, with the majority isolated from the oral cavity. This diversity of 

demographic and disease data provided a foundation to explore immune cell diversity and 

states between peripheral and lesion-associated cell types as well as considering disease 

stage. 

 

Before creating the integrated atlas, we first annotated and examined the cellular diversity 

across samples and pathological node status (N0/N+) to ensure no significant differences 

would hinder study integration. Using CellTypist,23 we identified and annotated all 14 PBMC 

and 21 TIC immune populations based on gene expression (Figure 1, Figure S1). PBMCs 

and TICs were visualized individually through UMAPs and stacked bar graphs (Figure S2, 

S3). Both studies demonstrated similar cellular frequencies and annotations in PBMC and 

TIC samples. Cells initially annotated as alveolar macrophages in GSE164690, 

characterized by high TREM2 expression and specificity for lung tissue, were reclassified as 

TREM2+ Macrophages for this study. 

 

After study specific integration, 29 samples from both studies meeting the above criteria 
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were combined to create a HNSCC Immune Atlas using PBMC atlas consisting of 111,276 

cells and one using TICs consisting of 167,565 immune cells (Figure 1). For the PBMCs and 

TICs atlas, cell signatures were extracted and UMAPs were generated according to cell 

types, pathological node (N0/N+ status) and pathological stage (T1-T4). The integrated 

PBMC datasets varied in cellular proportions across nodal involvement and pathological 

stage. N+ samples displayed higher proportions of Tem/Temra cytotoxic T cells compared to 

N0 samples, while T3 and T4 samples displayed lower proportions of CD16+ NK cells 

compared to lower stage samples (Figure S4A and S4B, respectively). Differences in cell 

proportions were also observed across node involvement within TICs. Specifically, N+ 

samples showed lower proportions of Tem/Trm cytotoxic, regulatory T cells (Tregs) and 

gamma-delta T cells, (Figure S4C) compared to N0 samples. When evaluating cell 

populations relative to T status, we did not find any differences (Figure S4D). In both 

peripheral and centralized compartments, these integrated datasets reveal some distinct 

immune cell shifts comparing nodal involvement or pathological stage in both TICs and 

PBMCs. However, the altered cell proportions comparing nodal involvement or pathological 

stage found in the PBMC samples were different from those found in the TICs, suggesting 

that the changes found in the latter may be the result of the tumor microenvironment or the 

tumor itself. 

 

Single-cell Signatures of Nodal Metastasis and Tumor Stage 

 

The underlying biological cause of cancer metastasis in specific patients is elusive but 

hypothesized to be attributed to various signaling from the TME and circulating immune cell 

populations.24 While our analyses observed some differences in immune cell enrichment, we 

next wanted to explore molecular signatures of nodal involvement and pathologic stage 

(Figure 2, Figure S5). Broadly, major differences in gene expression signature were 

observed between N+ and N0 samples and T3/T4 versus T1/T2 stage, visualized using jitter 

plots (Table S2). Analyzing the TICs, the main DEGs upregulated in N+ when compared to 
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N0 are genes related to the response to interferon, the most frequent being IFIT3, IFIT2, 

IFIT1 and IFITM1 expressed mainly by cells of the myeloid lineage such as Intermediate 

Macrophages and Classic Monocytes.25,26 In contrast, the genes mostly upregulated in the 

lymphoid population such as, but not limited to, Cycling NK, CD16-NK cells, Gamma-Delta T 

cells, Tem/Trm Cytotoxic T cells and Tregs are genes associated with immunomodulation 

such as IL7R, KLRG1, KLRB1 and IL12RB2.27–31 In addition to genes associated with the 

response to interferon and immunomodulation, genes related to angiogenesis such as 

VEGFA and FN1, in DC2 and TREM2+ Macrophages, were found (Figure 2A).25,26,32–35  

 

Regarding the pathological stage, we again found that most of the upregulated DEGs in cells 

from individuals with tumors at a higher stage of progression (T3 or T4) are related to the 

response to interferon, with the most frequent being IFIT1, IFI44, IFI44L and IFIT3, however 

not mainly in cells of myeloid origin, but in lymphoid cells such as CD16- NK cells, CD16+ 

NK cells, Cycling T cells, Tregs, Helper T cells, Memory B cells and Plasma cells.25,26 In 

antigen-presenting cells such as Intermediate Macrophages, Naive B cells, pDC and 

TREM2+ Macrophages, overexpression of HLA-DQA2 was found, a gene that encodes the 

low polymorphic alpha allele of HLA-DQ incapable of dimerizing with HLA-DQB1 (Figure 

2B).36,37 However, when we compared the PBMC samples of individuals in relation to nodal 

involvement or pathological tumor stage, interferon response genes did not appear among 

the DEGs in the cell populations studied, with the exception of N+ Non-Classical Monocytes 

that overexpress IFIT3, IFI44 and IFI44L (Figure S5). Furthermore, we did not observe a 

molecular signature pattern inherent to the cell type between PBMCs and TICs, suggesting 

that there is a modulation induced by the TME or the tumor itself that could be producing 

Interferons.  

  

Gene Set Enrichment Analysis of Immune Cells in HPV- HNSCC 

 

To assess whether genes differentially expressed between the N+ and N0 groups influence 

key biological pathways, we conducted a Gene Set Enrichment Analysis (GSEA) using the 
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MSigDB Hallmark library,38,39 which contains 50 pathway collections relevant to different cell 

types. As expected, differences in GSEA were observed between N+ and N0 samples and 

T3/T4 versus T1/T2 stage, visualized using bubble plots (Table S3 - Figure 3).  Regarding N 

status, in the TICs atlas, 112 pathways were found to be enriched. Of these, 61 pathways 

were positively enriched in cells from the N+ group, with DC2 cells showing the highest 

enrichment with 18 pathway sets, followed by migratory DCs with 10. In contrast, 51 

pathways were negatively enriched in the N+ group, with memory B cells having the most 

negative enrichments (nine pathways), followed by Tem/Effector Helper T cells with eight 

downregulated pathways. In PBMCs atlas, we found only 27 enriched pathways. Among 

these, six pathways were positively enriched in cells from the N+ group, with memory B cells 

showing three enriched pathway groups. On the other hand, 21 pathways were negatively 

enriched in cells from the N+ group, with MAIT cells having five negatively enriched pathway 

clusters. This analysis suggests that due proximity, the tumor resident immune cells are 

more modulated by the tumor than PBMCs, emphasizing the effect of the tumor on the 

surrounding environment, a concept being further defined as structural immunity in overall 

and even oral mucosal immunity research (Figure 3A).40–42  

 

Among the gene sets evaluated, three of them were those that showed enrichment across a 

wide variety of cell populations. TNFα signaling via NF-κB was enriched in 18 populations, 

11 cell populations in the TIC atlas and seven tin the PBMC atlas. Of the TICs, five cell 

populations showed positive enrichment and six showed negative enrichment. In PBMCs, 

this gene set was negative. Two of the most prevalent pathways were Interferon Gamma 

and Alpha Responses (IFNγ and IFNα). IFNγ was observed in 11 TIC immune cell 

populations and two PBMC immune cell populations, while IFNα was enriched 14 times, 13 

in TICs and once in PBMCs Regulatory T cells. 

 

When comparing higher progression stage (T3-T4) to lower stage, 56 pathways were 

positively enriched samples in TICs sample, with Migratory DC being the most enriched with 
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19 pathways followed by Cycling NK with 9 enriched pathways. On the other hand, 37 

pathways were negatively enriched in TIC T3-T4 group, with 10 negative enrichments in 

CD16+ NK cells. In the PBMC Atlas, only 3 pathways were positively enriched in T3-T4, all 

in pDC. In contrast, 67 pathways were negatively enriched, with Tem/Trm Cytotoxic T cells 

with 14 pathways and Tem/Temra Cytotoxic T cells with 13 pathways (Figure 3B). This 

analysis, once again, suggests tumor-proximal modulation is different from the modulation 

observed systemically.  Among these pathways, the most enriched were Interferon Alpha 

Response, positively enriched in 14 cell populations in TICs and in only 1 population in 

PBMCs, Interferon Gamma Response, positively enriched in 10 cell populations in TICs and 

only 1 in PBMCs and TNF-α signaling via NFκB, with negative enrichments in 8 cell 

populations in TICs and 11 in PBMCs. In combination with the DEG data, this analysis 

demonstrates that interferon pathways are highly activated in TIC, again emphasizing a 

modulation of the immune system dependent on interferon in TME.  

 

Receptor-Ligand Networks in TICs 

 

To investigate the communication dynamics within the TME, we focused on the TICs and 

analyzed the receptor-ligand signaling and predicted interaction networks between cell 

populations CellChat.43 The cell populations with the highest number of outgoing signals in 

the N0 group were Intermediate Macrophages and TREM2+ Macrophages (Figure 4A). A 

similar pattern was observed in the N+ group, where Intermediate Macrophages and 

TREM2+ Macrophages again showed the highest number of outgoing interactions (Figure 

4B). For incoming signals, the same two populations, TREM2+ Macrophages and 

Intermediate Macrophages, exhibited the highest number of interactions in both N0 and N+. 

However, the most significant change in incoming interactions was observed in Temra/Tem 

Cytotoxic T cells, which showed an increase of over 70% compared to N0, while Cycling NK 

cells exhibited a reduction of almost 30% (Figure 4B).  

 

Macrophages are known to interact with T lymphocytes through antigen presentation but 
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also have immunomodulatory roles.44 Given the increase in outgoing signals from 

macrophages and the rise in incoming interactions in Temra/Tem Cytotoxic T cells, we 

assessed which signaling pathways underwent the most notable changes. We focused on 

outgoing signals from TREM2+ Macrophages and Intermediate Macrophages, as well as 

incoming signals received by Temra/Tem Cytotoxic T cells and Trm/Tem Cytotoxic T cells. 

Our evaluation of the pathways related to outgoing signals from Intermediate Macrophages 

and TREM2+ Macrophages (Table S4) showed that the Transforming Growth Factor Beta 

(TGF-β) and IL-10 pathways demonstrated the largest signal increase in the N+ group 

compared to N0 (Figure 4C). For incoming signals in cytotoxic T lymphocytes, pathways 

associated with IL-2 and CD70, both linked to T lymphocyte activation, were elevated in 

Temra/Tem Cytotoxic T Cells and Trm/Tem Cytotoxic T Cells in N+ compared to N0 (Figure 

4D). These data point to an increase in interactions with immunosuppressive potential from 

macrophages, and in interactions related to activation in cytotoxic T lymphocyte populations.  

 

Single-cell Trajectories of Cytotoxic Immune Cells 

 

To investigate the roles of cytotoxic innate and adaptive immune cells in tumor progression, 

we analyzed the expression of key genes that regulate the activity and modulation of NK 

cells and cytotoxic T lymphocytes across different nodal and pathological stages. This was 

done through pseudotime and gene trajectory analysis. For NK cells (including CD16+, 

CD16-, and cycling NK cells), we evaluated the expression of genes related with NK cell 

activation or inhibition roles: AREG, KLRG1, TCF7, GZMA, and KIR2DL4. While NK cells 

from N0 individuals were evenly distributed throughout the pseudotime progression, those 

from N+ individuals were predominantly observed in later stages, suggesting a progression 

from N0 to N+ for NK cells along the pseudotime (Figure 5A-E). Notably, we observed an 

increased expression of immunomodulatory genes AREG and KLRG1 over pseudotime, with 

higher levels in NK cells from N+ individuals shown by the line representing the trend. 

Similarly, TCF7, which is crucial for NK cell maintenance, showed greater expression in NK 
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cells from N+ individuals. However, when analyzing GZMA and KIR2DL4, genes associated 

with NK cell cytotoxicity and activation, we found the opposite trend. A reduction in 

expression as pseudotime progressed, with lower levels of these genes in NK cells from N+ 

individuals. These findings suggest a shift toward an immunomodulatory role for NK cells in 

N+ individuals, with diminished cytotoxic activity compared to those from N0 individuals. 

 

For cytotoxic T lymphocytes (including Temra/Tem and Trm/Tem cytotoxic T cells), we 

analyzed genes related to TCR downstream signaling: CHUK, HLA-DRB5, HLA-DQA1, HLA-

DQB1, CD3D, HLA-DRA, NFKBIA, HLA-DRB1, TRAC, and UBE2N. The trajectory analysis 

revealed a distinct separation in pseudotime, where one trajectory, occurring later in 

pseudotime, contained more cells from individuals with T4 pathological stage disease 

(Figure 5F-H). Additionally, when analyzing the expression of PDCD1 (PD-1), a critical 

marker of CD8 T cell exhaustion, we found that most cells expressing this marker were 

located along the same trajectory as the T4-stage cells. This suggests that as cytotoxic T 

cells progress toward the T4 stage, they adopt an exhausted phenotype, marked by high 

PD-1 expression. Together, these data highlight a shift in NK cells toward an 

immunosuppressive role in N+ individuals, alongside a trajectory toward T cell exhaustion in 

cytotoxic T lymphocytes, particularly in patients with advanced disease. This shift likely 

contributes to the diminished cytotoxic response observed in the tumor microenvironment of 

advanced-stage HNSCC. 

 

Comparison of results across scRNAseq and bulk RNAseq datasets 

 

To both validate and ascertain the clinical relevance of these findings, we attempted to 

explore another existing dataset, we used the data deposited in The Cancer Genome Atlas 

Head-Neck Squamous Cell Carcinoma (TCGA-HNSC) project. To make the cohort 

comparable, we selected only samples from HPV-negative individuals, Caucasians, and with 

tumors in the same oral cavity sites as our study (Table S1) Using their bulk RNAseq data, 

we first assessed whether tumor stage (T4 x T1), nodal involvement or any of the genes 
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examined in Figure 5 significantly increased. We did not observe statistical differences in the 

gene expression levels of the AREG, KLRG1, GZMA and KIR2DL4 genes when comparing 

the N0 and N+ samples, in the same way that we did not see any difference between the 

survival curves of both groups, although a better, non-statistically significant survival was 

observed in the N0 group (Figure S6A). Regarding the PDCD1 gene, when we compared its 

expression level between T1 and T4 individuals, no difference was observed, as in the 

survival curve, although again there was a trend towards better survival in individuals in the 

T1 group (Figure S6B).These results using bulk RNA reflect the lack of resolution of this 

approach, as compared with scRNAseq, for the identification of cell population-specific 

markers, suggesting the need for more in deep single and spatial analysis. We therefore 

attempted to validate our Single Cell RNAseq findings in Spatial Analysis by trying not only 

to validate the data, but to locate the tissue where these cells would be found in the tumor 

environment. 

 

Understanding the Spatial Enrichment of Cytotoxic Cell States in Situ 

 
We observed single cell heterogeneity in our cytotoxic immune cells within the TICs, which 

we hypothesized would be connected to the spatial position of the immune cell within the 

TME. This is critical because studies have found prognostic potential of individual immune 

types cells when considering their position at the border of the tumor (peri-tumoral) versus 

within the tumor (intra-tumoral).45 To further investigate the role of cytotoxic immune cells in 

HPV-negative HNSCC, we conducted a focused multiplexed immunofluorescence (Multi-IF) 

experiment using the Phenocycler-Fusion 2.0 (Akoya Biosciences) to profile specific 

cytotoxic immune cell states within the tumor microenvironment. We utilized tissues from a 

subset of subjects enrolled in a clinical trial (NCT0352942 with locally invasive HPV-negative 

HNSCC with metastases, closely matching the demographics and disease characteristics of 

the subjects in our scRNA-seq and bulk RNA-seq analyses (Table S1). This design 
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facilitated identifying cell-specific markers and immune states with high spatial and cellular 

resolution. 

 

We targeted six key markers to identify major immune cell types and tumor cells, including 

pan-CK (for tumor cells), CD68 (macrophages), CD56 (NK cells), CD45 (a pan-immune cell 

marker), CD3E (for T cells), and CD8 (for cytotoxic T cells) using a smaller panel from a 

larger validated one (Figure 6A).41,46 In addition, we selected four markers—CD107a 

(degranulation marker), PD-1, PD-L1, and ICOS—to capture states of immune activation 

and cytotoxic potential (Table 5S). This approach allowed us to assess both the localization 

and activation status of these immune populations, particularly focusing on NK cells and 

CD8+ T cells. To support our whole slide image analyses (WSI), we employed Cellpose 3.0 

for segmentation of the multiplexed immunofluorescence images.47 Segmentation objects 

were categorized into three architectural features—whole slide, intra-tumoral, and peri-

tumoral—based on a pathologist’s assessment of the tissue. We then utilized two algorithms 

as part of our AstroSuite package:42 1) TACIT (Threshold-based Assignment of Cell Types 

from Multiplexed Imaging DaTa) for cell identification and characterization of cell states, 

integrating these insights into our analysis of immune cell distribution and activation.48 

2)Astrograph for data visualization, allowing us to effectively present the spatial patterns and 

relationships among the different immune cell populations.  

 

In our analysis, we observed notable differences in the spatial distribution and activation 

states of immune cells both within the tumor core and at the peri-tumoral boundaries. The 

multi-IF data revealed heterogeneity within the tumor microenvironment, where distinct 

subsets of NK cells and CD8+ T cells displayed varying levels of cytotoxic and 

immunosuppressive markers (Figure 6A). In the intra-tumoral regions, a portion of CD8+ T 

cells exhibited increased expression of PD-1/PD-L1 (Z score = 0.37 and 0.83) compared to 

peri-tumoral, suggesting an immunosuppressive phenotype that may inhibit cytotoxic activity. 

In contrast, peri-tumoral areas demonstrated elevated levels of CD107a and ICOS (Figure 

6B), indicating active degranulation and potential immune activation among cytotoxic 
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immune cells. These patterns imply a dynamic balance between immune activation and 

suppression, likely influenced by spatial cues within the tumor microenvironment. The spatial 

distribution revealed enriched areas of PD-1 and PD-L1 within intra-tumoral regions, while 

CD107a was predominantly enriched in peri-tumoral areas (Figure 6C). Our findings suggest 

that the heterogeneity observed across intra-tumoral and peri-tumoral regions drives 

differential immune cell phenotypes we observed in TICs using scRNAseq.   
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Discussion (1419): 
 

The TME plays a critical role in cancer progression, therapeutic resistance, and overall 

patient outcomes. Diverse cell populations within the TME, including immune cells from 

myeloid and lymphoid lineages, significantly influence tumor behavior through their 

modulation of the immune response. TICs have been associated with better prognosis and 

enhanced efficacy of immunotherapy across various cancers, including HNSCC.49–52 

However, the inherent heterogeneity of the TME, coupled with inter-patient variability and 

differences between primary tumors and metastatic sites, presents significant challenges in 

improving treatment outcomes and increasing overall survival rates. Employing advanced 

techniques such as scRNA-seq and spatial multiomics is essential to gain a comprehensive 

understanding of tumor heterogeneity and immune dynamics.53 

 

Our study builds on the foundation laid by integrated meta-atlases and analyses, including 

the Human Cell Atlas Initiative/Oral & Craniofacial Bionetwork - Caetano et al. 2022, Easter 

et al., 2024, and Matuck, Huynh, and Pereira et. al. studies which are critical for 

understanding the cellular and molecular makeup of human oral and craniofacial tissues in 

health and disease. Their efforts to map cell type diversity and states using single-cell and 

spatial multiomics underscore the broader utility of these approaches in biomedical research. 

The comprehensive atlas developed by the Oral and Craniofacial Bionetwork, which includes 

factors such as age, sex, and ancestry, aligns with our focus on dissecting immune cell 

heterogeneity within the TME of HPV-negative HNSCC. Future iterations of these atlases 

should prioritize the addition of comparisons between healthy and diseased tissues, as 

observed in our study, to identify novel therapeutic targets and better understand immune 

dysregulation contributing to tumor progression and metastasis in HNSCC.41,42,54 

 

ScRNA-seq technology has increasingly been applied to analyze immune infiltration in the 

TME of various cancers, including HNSCC.55 Notably, Cillo et al. explored the role of CD45+ 

immune cells in both carcinogen-induced (HPV-negative) and HPV-positive HNSCC. Their 
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study revealed similarities in CD8+ T cell and CD4+ Treg populations between the two 

subtypes while identifying significant differences in other immune cell types, such as CD4+ T 

cells, B cells, and myeloid cells. The authors hypothesized that viral antigens in HPV-positive 

HNSCC may enhance the infiltration of innate immune cells, thereby activating adaptive 

immune responses, which could explain the observed differences in immune responses and 

tumor behavior between HPV-positive and HPV-negative HNSCC. Further extending this 

analysis, Kürten et al. investigated the inflammatory status of the TME in both HPV-positive 

and HPV-negative HNSCC, uncovering novel fibroblast subsets in the TME of HPV-positive 

patients. They also emphasized the role of PD-L1+ macrophages in creating an 

immunosuppressive TME, making these cells critical predictive markers for immunotherapy 

efficacy. Despite these advances, the specific roles of immune cell subsets during different 

pathological stages of disease progression and metastasis remain inadequately explored. 

Our study represents the first integration of scRNA-seq data from PBMCs and TICs in HPV-

negative HNSCC, establishing a foundational immunological atlas for this tumor type and 

evaluating the gene expression of immune cells as they transition from N0 to N+ and T1 to 

T4 stages. 

 

Our GSEA on the integrated atlases revealed enrichment of the IFN pathway in immune 

cells of individuals with node stage N+. Notably, no TIC population exhibited high IFN 

expression (data not shown), indicating TME-dependent modulation and suggesting that 

high IFN signaling may be primarily expressed by the tumor itself. High IFN signaling can 

lead to elevated IFI44 expression and immunosuppression, correlating with poorer 

progression-free survival in HNSCC.56 This was accompanied by an increase in cellular 

interactions predominantly driven by intermediate macrophages and TREM2+ macrophages, 

which release immunosuppressive signals through IL-10 and TGF-β pathway activation. IL-

10 signaling targets dendritic cells (DC2) and intermediate macrophages, both critical 

antigen-presenting cells (APCs) in activating T lymphocytes for the anti-tumor response. 

However, IL-10 can inhibit APC activity, facilitating tumor escape and progression.57,58 The 
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TGF-β pathway was also positively enriched due to increased expression of its main ligands 

(TGFB1, TGFB2, TGFB3), likely impacting Tem/Temra cytotoxic T cells via signaling through 

the TGFBR1-TGFBR2 heterodimer. This enrichment is associated with reduced CD8 T cell 

immunoscore and a high inflammatory signature, potentially mediated by IFN in HNSCC.59 

Concurrently, cytotoxic T lymphocytes emerged as primary receptors for signals like IL-2 and 

CD70, both of which may contribute to the exhaustion phenotype observed in N+ patients. 

Prior studies have shown that CD70 can induce TIC exhaustion in renal cell carcinoma and 

TGF-β has been demonstrated to promote CD70 overexpression via the IL-2 pathway in 

non-Hodgkin lymphomas, leading to an exhausted TIC phenotype characterized by high PD-

1 expression.60,61 

 

Based on this data, we hypothesized that N+ tumors had an immune suppressed 

environment and selected genes associated with NK and cytotoxic T cell activity and 

modulation to investigate in further detail using pseudotime analysis. We discovered a 

noticeable increase in the expression of immunomodulatory molecules and a reduction in 

effector and activating molecules in the tumor, signaling immune suppression. In the NK cell 

population, we found an increase in the expression of KLRG1, a co-inhibitory receptor that 

regulates NK cell activity, during progression to N+ and AREG, a factor which correlates with 

an unfavorable outcome in the cytotoxic response and is responsible for limiting the 

expression of Granzymes.27,62–66 Consistently, we found reduced GZMA expression levels in 

N+ samples in NK cells. Additionally, the levels of KIR2DL4, a receptor which has been 

described as having a fair prognosis in melanoma, are also reduced in N+ individuals.67  

 

Recognizing the significance of the immune environment within the tumor, immunotherapies 

such as anti-PD1 (Nivolumab) have been approved for treating HNSCC in patients with 

recurrent or metastatic disease after traditional therapies fail. Nivolumab has demonstrated 

improved overall survival in individuals with PD-L1 positivity exceeding 1%.68 Similarly, 

Pembrolizumab, another anti-PD1 therapy, has shown improved overall survival compared 

to chemotherapy with anti-EGFR Cetuximab.19,20 Our findings support this, as progression to 
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T4 was marked by increased PDCD1 (PD-1) expression in cytotoxic T lymphocytes. 

However, the efficacy of these treatments often hinges on the tumor's PD-L1 expression, 

with some tumors exhibiting resistance despite PD-L1 positivity.69 Thus, exploring alternative 

therapies is crucial. Greenberg et al. found minimal co-expression of PD-1 and KLRG1 in 

TICs across various tumor types and demonstrated that administering anti-KLRG1, either 

alone or with anti-PD1, in murine models of breast, colon, and melanoma led to reductions in 

tumor volume and metastases.70 

 However, there are currently no clinical trials addressing the use of anti-KLRG1 ABC008 in 

HNSCC, either alone or in conjunction with anti-PD1. Our data reveal that KLRG1 is 

upregulated in N+ HNSCC patients, suggesting a mechanism for immune suppression and 

indicating that metastatic patients could benefit from anti-KLRG1 therapy. 

 

Future investigations should also consider the potential of utilizing two- and three-cell 

biomarker combinations to enhance the precision of targeted therapies in HNSCC. By 

identifying specific interactions among immune cell subsets, such as CD8+ T cells, NK cells, 

and various myeloid cells, we can gain insights into how these cells collaborate or compete 

in the TME. For example, the presence of a specific combination of immune cell markers 

could indicate a more effective anti-tumor response or highlight potential resistance 

mechanisms. This approach not only allows for the identification of more nuanced 

biomarkers that can predict patient responses to immunotherapy but also facilitates the 

development of therapies designed to specifically enhance the activity of beneficial immune 

cells while mitigating the effects of immunosuppressive populations. 

 

Moreover, exploring therapies that simultaneously target both immune and structural cell 

types within the TME presents a promising avenue for a holistic approach to 

immunoregulation. By integrating strategies that address the interactions between immune 

cells and stromal components, such as fibroblasts and extracellular matrix elements, we can 

create a more favorable environment for immune activation. For instance, therapies that 
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target TGF-β signaling in the stroma may not only reduce immune suppression but also 

enhance the infiltration and efficacy of cytotoxic T cells and NK cells. Such combinatorial 

strategies could lead to synergistic effects, improving the overall therapeutic response and 

reducing tumor progression. Ultimately, a comprehensive understanding of the cellular 

dynamics within the TME, facilitated by two- and three-cell biomarker profiling, will be 

instrumental in devising innovative therapeutic approaches that effectively harness the 

immune system while addressing the structural challenges posed by the tumor 

microenvironment. In conclusion, embracing this multifaceted strategy may significantly 

advance the field of immunotherapy and improve outcomes for patients with HPV-negative 

HNSCC. 
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Methods 

 

Data acquisition and patient characteristics. We integrated two publicly available single-

cell RNA sequencing datasets, namely GSE139324 and GSE164690.21,22 Clinical metadata 

and sequencing data were downloaded from the NCBI Gene Expression Omnibus (GEO) 

repository.71 Only HPV negative (HPV-) samples were selected for analysis. Disease staging 

had been carried out previously in the original publications, following the tumor, node, 

metastasis (TNM) staging system for HNSCC.72 For the dataset GSE139324, we included a 

total of 17 patients, who were grouped based on tumor staging: T1 (n=1), T2 (n=2), T3 

(n=8), and T4 (n=6). Patients with at least one site of lymph node (LN) metastasis were 

classified as N+ (n=10), whereas patients without LN metastasis were classified as N0 

(n=7). For this dataset a total of 34 samples were included for investigation (17 PBMC 

samples and 17 tissue samples for TICs analysis). Regarding the dataset GSE164690, we 

included 12 patients who were also allocated to groups based on tumor staging and LN 

status: T1 (n=1), T2 (n=2), T3 (n=7), and T4 (n=2); N0 (n=7) and N+ (n=5), resulting in a 

total of 24 samples (12 PBMC samples and 12 tissue samples). All patient information was 

recovered according to the original publications and is shown in Table S1.21,22  

 

Initial data processing and quality control. The raw FASTQ files for the datasets 

GSE139324 and GSE164690 were obtained from the NCBI GEO database. The initial 

transcriptome data were processed using CellRanger version 7.1.0 (10x Genomics),73 and 

sequences were aligned with the human reference genome GRCh38, which FASTA and 

index files were obtained from the 10x Genomics web page. The output gene-count matrix 

files were analyzed using the Seurat R package version 5.0.3.74,75 Ambient RNA was 

corrected using SoupX package version 1.6.2 and Doublets were identified using the 

scDblFinder package version 1.16.0, and a remove.doublet file was generated.76,77 The cells 

in the remove.doublet file were removed from the dataset using Seurat with the command 

“subset()”. Cells with fewer than 200 genes, with an UMIs above 5 MADs from the median of 
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their sequencing batch, and with more than 10% of mitochondrial RNA genes were 

excluded.  

 

Data normalization, dimensionality reduction and clustering. Prior to the clustering and 

data visualization steps, data were normalized using the NormalizeData function from 

Seurat, considering default settings, resulting in a log-transformed transcript output per 

10,000 reads. The normalized gene/barcode matrix was used to perform dimensionality 

reduction. Highly variable genes were used to account for the level of variance to perform a 

principal component analysis (PCA). When performing PCA, we aimed to solely use high 

quality cells, and therefore sources of sample-specific and cell-specific variation were 

regressed out. MALAT1, NEAT1, MTRNR, Hemoglobin, ribosomal and mitochondrial genes 

were removed from the highly variable gene input. PCA was performed using the centered 

and scaled highly variable gene accordingly by using the “RunPCA” function within Seurat. 

To visualize the data in a low dimension, uniform manifold approximation and projection 

(UMAP) was performed, using UMAP-learn python implementation with metric set at 

“correlation”, for FindNeighbors, nearest neighbor parameter k was set at 10. For Both 

RunUMAP and findNeighbors functions, the dims parameter was set with several PCs 

chosen to account for 90% of the variation, 29 for PBMCs and 32 for TICs. Clusters were 

then identified using the “FindClusters” function from Seurat, the resolution parameter was 

set at different values to ultimately retrieve a comprehensive clustering based on resolution 2 

and visualized on a UMAP plot. 

 

Cell type identification and annotation. To infer cell types independently to specific 

clusters, we used CellTypist version 1.6.2, a comprehensive reference database for human 

immune cells.23 Cell types were annotated using the CellTypist model Immune_All_Low 

version 2, which at the moment of the analysis included 98 different cell types and states 

from 16 different tissues. This model predicts query cells to be allocated to specific cell type 

labels using the low-hierarchy classification, which is indicative of a high-resolution 
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prediction. The most probable cell labels were matched with the cell clusters (generated by 

FindClusters) in our dataset and all other cell type labels from the chosen model were 

removed. As cell types and states were defined by specific markers, we utilized the ‘Curated 

markers’ and “Top Model Markers” definitions from CellTypist as a guide to classify each of 

the cell types and their corresponding possible states, which was followed by the manual 

selection of the representative markers identified with wilcoxauc() function from presto 

package version 1.0.0 for each cell type and its corresponding lineage from PBMCs and 

TICs. Cell types were annotated by joining both datasets and subsequently splitting in TICs 

and PBMCs, starting from raw counts, but importing to Scanpy the cell clusters, UMAP and 

PCA embeddings from Seurat analysis, lognormalization in Scanpy was applied before use 

CellTypist; alternatively, cell annotation of each dataset alone was performed. 

 

Differential gene expression and gene set enrichment analysis (GSEA). To identify 

genes that were differentially expressed between groups, we performed the analysis for 

each dataset (GSE139324 and GSE164690) using the FindMarkers function in Seurat. 

Significant differences were identified using the non-parametric Wilcoxon rank sum test. 

Briefly, observed gene expression values were ranked and the distribution of gene ranks of 

the N0 group were tested for significance compared to those of the N+ group. Hence, top 

genes from each cell type in group N0 were compared to the same cell type of group N+. To 

incorporate solely significant differentially expressed genes (DEGs) in our plot, we set an 

adjusted p-value threshold at <0.05. To exclude genes with low Log2FC, a default cutoff 

threshold was set at 0.25 according to Seurat default. All DEGs were then displayed in a 

jitterplot where those with defined immunological functions among the 20 highest Log2FC in 

N+ relative to N0 were highlighted. To identify a possible correlation between the functional 

gene terms in particular groups or clusters and an underlying biological importance of 

cellular processes, we performed a gene set enrichment analysis (GSEA), that is a 

computational method that assesses whether a predefined set of genes exhibits statistically 

significant and concordant differences between biological states, using fgsea R package 
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version 1.28., considering the h.all.v2023.2.Hs.symbols from MSigDB database as reference 

GMT file.78 All genes present in the dataset were ranked using the multiplication product of 

Log2FC and p-value from the differential gene expression analysis, to get their correlation 

with the conditions. A threshold was set at an adjusted e-value < 0.05 to include only 

significantly enriched gene sets.    

 

Cell-cell communication. To identify intercellular interactions and receptor-ligand signaling 

networks, we employed the CellChat R package,43 a computational tool that infers and 

visualizes intercellular communication networks from single-cell transcriptomic data. For 

comparison between N0- and N+ groups, we use the expression data from TICs/PBMCs 

datasets and generate the analysis for each group per dataset. First, we create a CellChat 

object from Seurat objects and set “CellChatDB.human” as the database for interactions and 

reduce the database for keep interactions involved in "Secreted Signaling". Subsequently, to 

reduce computational costs subsetData() function was used to keep only signaling genes, 

and overexpressed genes and interactions are identified for being projected over a human 

protein-protein interaction network. Finally, CellChat computes the communication 

probability at the signaling pathway level with computeCommunProbPathway() function and 

calculates the aggregated cell-cell communication network for all cell groups using the 

aggregateNet() function. 

 

Gene trajectories. To investigate the pseudotime trajectory ordering of single cells and 

corresponding genes relevant to each cell type in TICs, we used Monocle 2 v2.30.0,79,80 a 

robust tool designed for single-cell RNA-seq data analysis, that employs a reversed graph 

embedding (RGE) algorithm to order cells along a pseudotime axis, reflecting their 

progression through a biological process. Initially, we transform data from Seurat objects, 

extracting already normalized expression data and metadata for cells and genes. 

Subsequently, genes that are expressed in at least one cell with a minimum expression of 

0.1 (default value) were detected and selected to construct the cell trajectory, using 

DDRTree method (a RGE algorithm) for dimensionality reduction and orderCells() function 
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for pseudotime values estimation. A newer version, Monocle 3 exists but the authors 

replaced their representation of pseudotime with a UMAP one that is faster to compute and 

uses less resource, but it’s more complicated to interpret with our type of data. 

 

Multiplex Protein Immunofluorescence. Samples for this study were selected from the 

trial NCT0352942 at the University of North Carolina School of Medicine with input from one 

trained oral pathologist - BFM. FFPE blocks were cut into sequential 5-micron sections and 

mounted on SuperFrost Plus slides (Thermo Fisher) for subsequent Phenocycler-Fusion 2.0, 

H&E, and additional staining. y. All slide preparations used RNA-free water and followed an 

RNAse-free protocol on the Leica autostainer system. For multiplex immunofluorescence 

(Multi-IF), we used Akoya Biosciences PhenoCycler Fusion 2.0. Samples were first 

deparaffinized by a graded ethanol series from 100% to 30%. Antigen retrieval employed 

AR9 (EDTA) buffer from Akoya Biosciences in a low-pressure cooker for 15 minutes, 

followed by a 1-hour cooling period. Next, the samples were rehydrated in ethanol for 2 

minutes and incubated in staining buffer for 20 minutes. The antibody cocktail buffer was 

prepared following the Phenocycler Fusion guidelines, with four blockers and nuclease-free 

water added to the staining buffer. Primary antibodies were diluted at a ratio of 1:200 in this 

cocktail. The combined antibody solution was applied to slides, which were incubated 

overnight at 4°C in a Sigma-Aldrich humidity chamber.  Post-primary incubation, slides were 

rinsed in staining buffer for 2 minutes, treated with a post-stain fixative solution (10% PFA in 

staining buffer) for 10 minutes, and then washed three times in 1X PBS for 2 minutes each. 

Slides were subsequently immersed in ice-cold methanol for 5 minutes. The final fixative 

solution (FFS) was prepared as directed in the Phenocycler manual. Slides were incubated 

with FFS at room temperature for 20 minutes, rinsed with PBS, and transferred to the FCAD 

machine (Akoya Biosciences) for flow cell mounting. Flow cells were securely affixed to the 

slides with a 30-second application of high pressure, followed by immersion in PCF buffer for 

10 minutes before placement in the Phenocycler Fusion. 
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Reporters for each antibody were prepared using a Reporter Stock solution combined with 

5490 µL of nuclease-free water, 675 µL of 10X PCF buffer, 450 µL of PCF assay reagent, 

and 27 µL of in-house concentrated DAPI to achieve a 1:1000 DAPI dilution per cycle. This 

process was applied across two slides at a time, with reporters diluted to 1:50 for each cycle 

and specific channels. Each report solution was aliquoted (250 µL) into a 96-well plate, 

sealed with Akoya-provided aluminum foil. Two slides at a time were loaded into the 

Phenocycler Fusion 2.0 fluidic equipment. Manual area mapping was employed for scanning 

via the PhenoImager in brightfield mode. Low and high DMSO solutions were prepared as 

outlined in Index B of the Phenocycler Fusion 2.0 manual. 

 

AstroSuite. AstroSuite features algorithms for spatial biology analysis, including TACIT and 

Astrograph, previously published tools. TACIT (Threshold-based Assignment of Cell Types 

from Multiplexed Imaging Data) annotates cell types in spatial omics datasets. This 

unsupervised algorithm uses a CELLxFEATURE matrix, derived from Cellpose 3.0 

segmentation, along with a TYPExMARKER matrix informed by expert marker relevance for 

cell types. TACIT's process has two stages: First, cells are grouped into homogeneous 

Microclusters (MCs) with the Louvain algorithm. Cell Type Relevance (CTR) scores are then 

calculated, correlating marker intensity with cell type signatures, with higher scores 

indicating stronger associations. Segmental regression divides CTR scores into relevance 

clusters, setting a threshold to minimize inconsistent assignments. Cells above this threshold 

are labeled positive for a cell type. In cases of multiple labels, TACIT uses k-nearest 

neighbors (k-NN) to resolve ambiguity through deconvolution. 

 

Code Availability: Analysis notebooks and CELLxFEATURE matrices for Phenocycler-

Fusion 2.0 data are available at: https://github.com/Loci-lab  
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Main Figures: 

 

Figure 1 – Integrated Atlas of PBMCs and TICs in HNSCC samples. UMAPs colored by 

Cell Types (A), Pathological Node (B) and Pathologic Stage (C) in PBMCs. Bar graphs show 

average proportions of cell types across Pathological Node (D) and Pathologic Stage (E). 

UMAPs colored by Cell Types (F), Pathological Node (G) and Pathologic Stage (H) in TICs. 

Bar graphs show average proportions of cell types across Pathological Node (I) and 

Pathologic Stage (J). HNSCC – Head and Neck Squamous Cell Carcinoma; PBMC – 

Peripheral Blood Mononuclear Cells; NK – Natural Killer; pDC – Plasmacytoid Dendritic Cell; 

Tcm – T Central Memory; Tem – T Effector Memory; Trm – T Resident Memory; Temra – T 

Effector Memory expressing CD45RA; DC – Dendritic Cell; MAIT – Mucosal Associated 

Invariant T Cell; UMAP – Uniform Manifold Approximation and Projection; TIC – Tumor 

Infiltrating Cells;  

 

Figure 2 - Differentially expressed genes at the single cell level in TICs. Jitterplots 

indicating differentially expressed genes between N status (A) and Pathological Stages (B). 

The size of each dot represents the percentage of cells expressing the gene. Cell types have 

been highlighted by color. Genes were ranked based on the average Log2FC. Highlighted 

genes are those that showed the highest differential expression with known immunological 

function among the 20 genes with highest Log2FC in each cell annotation. The black line 

represents Log2FC of zero. The dotted line represents the Log2HR threshold of 0.25.  

HNSCC – Head and Neck Squamous Cell Carcinoma; NK – Natural Killer; pDC – 

Plasmacytoid Dendritic Cell; Tcm – T Central Memory; Tem – T Effector Memory; Trm – T 

Resident Memory; Temra – T Effector Memory expressing CD45RA; DC – Dendritic Cell; 

MAIT – Mucosal Associated Invariant T Cell.  

 

Figure 3 - Gene Set Enrichment Analysis (GSEA). The terms were determined using the 

MSigDB_Hallmark library. A GSEA analysis was conducted per cell type, comparing N+/N0 

cells (A) or T3+T4/T1+T2 (B) and considering all DEGs. The graphical representation 
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illustrates the enrichments of cell types present in TICs from the integrated data sets of 

GSE139324 and GSE164690. The size of the points in the figure represents -Log padj value 

of each enrichment in that specific cell type and the color represents Normalized Enrichment 

Score (NES) from lowest (blue) to highest (red). NK – Natural Killer; pDC – Plasmacytoid 

Dendritic Cell; Tcm – T Central Memory; Tem – T Effector Memory; Trm – T Resident 

Memory; Temra – T Effector Memory expressing CD45RA; DC – Dendritic Cell; MAIT – 

Mucosal Associated Invariant T Cell.  

  

Figure 4. Cell-cell communication in TIC. Circular plots illustrating cellular communication 

among major cell types, representing the numbers of interactions between these cells in TIC 

from N0 (A) of N+ (B). Bar plots representing the Log2 Fold Change (N+ over N0) in 

outgoing interactions from Intermediate Macrophages and Alveolar/TREM2+ Macrophages 

(C) and incoming interactions from Trm/Tem and Temra/Tem Cytotoxic T cells (D). HNSCC 

– Head and Neck Squamous Cell Carcinoma; NK – Natural Killer; pDC – Plasmacytoid 

Dendritic Cell; Tcm – T Central Memory; Tem – T Effector Memory; Trm – T Resident 

Memory; Temra – T Effector Memory expressing CD45RA; DC – Dendritic Cell; MAIT – 

Mucosal Associated Invariant T Cell; UMAP – Uniform Manifold Approximation and 

Projection; TIC – Tumor Infiltrating Cells;  

 

 

Figure 5. Gene trajectories in TICs. Jitterplots with average line illustrating relative 

expression of AREG (A), KLRG1 (B), TCF7 (C), GZMA (D) and KIR2DL4 (E) in NK cells. 

Blue dots represent cells from N0, and red dots represent cells from N+. PCA representing 

gene trajectories of CHUK, HLA-DRB5, HLA-DQA1, HLA-DQB1, CD3D, HLA-DRA, NFKBIA, 

HLA-DRB1, TRAC, UBE2N in Cytotoxic T cells over pseudotime (F), Pathologic Stage (G) 

and PCDC1 expression (H). PCA – Principal Component Analysis. 

 

Figure 6. Spatial Proteomics of HPV-Negative HNSCC The Spatial Multi-IF assay at lower 

resolution presents a representative area from one of the tumors analyzed in the spatial 
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proteomics study. In this image, intra-tumoral and peri-tumoral regions are highlighted, with 

analyses focused on compartmentalizing these two subsets within each tumor. The intra-

tumoral region (left) shows NK cells and CD8+ T cells (dashed-white circle of central panel) 

with lower concentrations of immune markers compared to the peri-tumoral region (right) (A).  

Z-score heatmap representation of immune marker expression levels in NK and CD8+ T 

cells across different tissue compartments (whole tissue, peri-tumoral, and intra-tumoral 

regions). (B) Spatial distribution of immune markers in tumor regions. The left panel shows 

CD107a enrichment, with peri-tumoral areas noted in red and tumor-enriched regions 

marked in blue. The right panels display PD-1, PD-L1, HLA-A, and ICOS expression maps 

according to TACIT annotation. For each marker, peri-tumoral and intra-tumoral regions are 

outlined with dashed lines (C). NK – Natural Killer.  
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Supplementary figures  
 
Figure S1 – Gene expression of marker genes across cell populations. Bubble plots 

showing marker genes in X across cell populations in Y in PBMCs (top) and TICs (bottom). 

The size of the dot represents the percentage of population which expresses the marker 

gene, and the color represents the average expression from -2 (blue) to +2 (red). PBMC – 

Peripheral Blood Mononuclear Cells; NK – Natural Killer; pDC – Plasmacytoid Dendritic Cell; 

Tcm – T Central Memory; Tem – T Effector Memory; Trm – T Resident Memory; Temra – T 

Effector Memory expressing CD45RA; DC – Dendritic Cell; MAIT – Mucosal Associated 

Invariant T Cell; TIC – Tumor Infiltrating Cells.  

 

Figure S2 - Clustering and proportions of immune cell populations in PBMCs from 

GSE139324 and GSE164690. UMAPs stained by Cell Types (A) and Pathological Node (B) 

in PBMCs. Bar graphs show proportions of cell types across samples (C) or Pathological 

Node (D) from GSE139324. UMAPs stained by Cell Types (E) and Pathological Node (F) in 

PBMCs. Bar graphs show proportions of cell types across samples (G) or Pathological Node 

(H) from GSE164690. HNSCC – Head and Neck Squamous Cell Carcinoma; PBMC – 

Peripheral Blood Mononuclear Cells; NK – Natural Killer; pDC – Plasmacytoid Dendritic Cell; 

Tcm – T Central Memory; Tem – T Effector Memory; Trm – T Resident Memory; Temra – T 

Effector Memory expressing CD45RA; DC – Dendritic Cell; MAIT – Mucosal Associated 

Invariant T Cell; UMAP – Uniform Manifold Approximation and Projection;  

 

Figure S3 - Clustering and proportions of immune cell populations in TICs from 

GSE139324 and GSE164690. UMAPs stained by Cell Types (A) and Pathological Node (B) 

in TICs. Bar graphs show proportions of cell types across samples (C) or Pathological Node 

(D) from GSE139324. UMAPs stained by Cell Types (E) and Pathological Node (F) in 

PBMCs. Bar graphs show proportions of cell types across samples (G) or Pathological Node 

(H) from GSE164690. HNSCC – Head and Neck Squamous Cell Carcinoma; NK – Natural 

Killer; pDC – Plasmacytoid Dendritic Cell; Tcm – T Central Memory; Tem – T Effector 

Memory; Trm – T Resident Memory; Temra – T Effector Memory expressing CD45RA; DC – 
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Dendritic Cell; MAIT – Mucosal Associated Invariant T Cell; UMAP – Uniform Manifold 

Approximation and Projection; TIC – Tumor Infiltrating Cells.  

 

 

Figure S4 – Proportion of cells between N status and Pathological stages across cell 

populations. Box and whiskers with jitterplots representing cell populations proportions 

between N status (A) or Pathological Stages (B) from PBMCs, and between N status (C) or 

Pathological Stages (D) from TICs. Student’s t Test. NK – Natural Killer; pDC – 

Plasmacytoid Dendritic Cell; Tcm – T Central Memory; Tem – T Effector Memory; Trm – T 

Resident Memory; Temra – T Effector Memory expressing CD45RA; DC – Dendritic Cell; 

MAIT – Mucosal Associated Invariant T Cell. 

 

Figure S5 - Differentially expressed genes at the single cell level in PBMCs. Jitterplots 

indicating differentially expressed genes between N status (A) and Pathological Stages (B). 

The size of each dot represents the percentage of cells expressing the gene. Cell types have 

been highlighted by color. Genes were ranked based on the average Log2FC. Highlighted 

genes are those that showed the highest differential expression with known immunological 

function among the 20 genes with highest Log2FC in each cell annotation. The black line 

represents Log2FC of zero. The dotted line represents the Log2HR threshold of 0.25.  

HNSCC – Head and Neck Squamous Cell Carcinoma; PBMC – Peripheral Blood 

Mononuclear Cells; NK – Natural Killer; pDC – Plasmacytoid Dendritic Cell; Tcm – T Central 

Memory; Tem – T Effector Memory; Trm – T Resident Memory; Temra – T Effector Memory 

expressing CD45RA; DC – Dendritic Cell; MAIT – Mucosal Associated Invariant T Cell. 

 

Figure S6. Bulk RNAseq data are not able to represent these findings - Graphs showing 

disease-free survival in Y according to Status N (A) or Pathological (B). Gene expression of 

genes marked by Status N (A) or Pathological (B). Data deposited from the TCGA-HNSC 

project. Ln – Lymph Node. 

Supplementary Tables  
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Table S1. Patient demographic and tumor data. Patient demographic and tumor 

information for single cell, bulk and spatial samples.   

 

Table S2. Differential gene expression for TICs and PBMCs based on node status and 

pathological stage. Average log2 fold change and p values for differentially expressed 

genes across cell types. Analysis reported for T3/T4 vs T1/T2 and N+ vs N0 sample across 

both TICs and PBMCs.    

 

Table S3. GSEA for TICs and PBMCs based on node status and pathological stage. 

Biological pathways and corresponding p-value/ adjusted values for Gene Set Enrichment 

Analysis across cell types. Analysis reported based on pathological stage and node status 

across both TICs and PBMCs.    

 

Table S4. Number of outgoing/ incoming signals received based on node status. 

Number of outgoing signals from intermediate and TREM 2+ macrophages and number of 

incoming signals for Temra/Tem Cytotoxic T Cells and Trm/Tem Cytotoxic T Cells based on 

node status.  

 

Table S5.  Individual cell types were identified using the TACIT annotation tool. Marker 

intensities, quantified through immunofluorescence, were normalized using Z-scores, 

enabling a comparative assessment of cytotoxic and immunosuppressive features across 

different cell populations. The analysis uncovered considerable diversity, with distinct 

subgroups of NK and CD8+ T cells demonstrating a wide range of functional marker profiles. 
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DATA AVAILABILITY 

 

All data, including links to original raw data from each of the 2 studies can be found at GEO: 

https://www.ncbi.nlm.nih.gov/geo/. The data can also be analyzed at: 

https://cellxgene.cziscience.com/collections/065ad318-59fd-4f8c-b4b1-66caa7665409 

 

CODE AVAILABILITY 

 

Analysis notebooks and CELLxFEATURE matrices for Phenocycler-Fusion 2.0 data are 

available at: https://github.com/Loci-lab. 
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Integrated Atlas of HNSCC Peripheral Blood Mononuclear Cells (PBMCs)

Figure 1

Integrated Atlas of HNSCC Tumor-inflitrating Immune Cells (TICs)
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Figure 2

Signatures of TICs in HNSCC
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