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Abstract

Reconstruction of the electrical sources of human EEG activity at high spatiotemporal accuracy is 

an important aim in neuroscience and neurological diagnostics. Over the last decades, numerous 

studies have demonstrated that realistic modeling of head anatomy improves the accuracy of 

source reconstruction of EEG signals. For example, including a cerebrospinal fluid compartment 

and the anisotropy of white matter electrical conductivity were both shown to significantly reduce 

modeling errors. Here, we for the first time quantify the role of detailed reconstructions of the 

cerebral blood vessels in volume conductor head modeling for EEG. To study the role of the 

highly arborized cerebral blood vessels, we created a submillimeter head model based on ultra-

high-field-strength (7 T) structural MRI datasets. Blood vessels (arteries and emissary/intraosseous 
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veins) were segmented using Frangi multi-scale vesselness filtering. The final head model 

consisted of a geometry-adapted cubic mesh with over 17 × 106 nodes. We solved the forward 

model using a finite-element-method (FEM) transfer matrix approach, which allowed reducing 

computation times substantially and quantified the importance of the blood vessel compartment by 

computing forward and inverse errors resulting from ignoring the blood vessels. Our results show 

that ignoring emissary veins piercing the skull leads to focal localization errors of approx. 5 to 15 

mm. Large errors (>2 cm) were observed due to the carotid arteries and the dense arterial 

vasculature in areas such as in the insula or in the medial temporal lobe. Thus, in such predisposed 

areas, errors caused by neglecting blood vessels can reach similar magnitudes as those previously 

reported for neglecting white matter anisotropy, the CSF or the dura — structures which are 

generally considered important components of realistic EEG head models. Our findings thus imply 

that including a realistic blood vessel compartment in EEG head models will be helpful to improve 

the accuracy of EEG source analyses particularly when high accuracies in brain areas with dense 

vasculature are required.
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Introduction

Realistic head models are important tools in neuroscience (Pascual-Marqui, 1999; Michel et 

al., 2004; Grech et al., 2008; Michel and Murray, 2012; Schneider, 1972; Opitz et al., 2011; 

Datta et al., 2013; Sadleir et al., 2010; Fernández-Corazza et al., 2013; Bayford and Tizzard, 

2012; Vonach et al., 2012; Carter et al., 2005; Miller et al., 2010; Voo et al., 1996; Yang et 

al., 2009; Panzer et al., 2012; Wendel et al., 2009; Lau et al., 2014; Heers et al., 2012; 

Rampp and Stefan, 2007). The present paper focuses on realistic head models for EEG 

research that are used as volume conductor head models (VCHMs) for computing the 

electric fields created by electrical sources in the brain. VCHMs enable to study the 

influence of detailed anatomy on field propagation (Opitz et al., 2011; Ramon et al., 2006; 

Haueisen et al., 1997) and the optimal spatial sampling of EEG signals (Ramon et al., 2009; 

Slutzky et al., 2010; Srinivasan et al., 1998) and are essential for source localization 

(Pascual-Marqui, 1999; Michel et al., 2004; Grech et al., 2008; Michel and Murray, 2012; 

Schneider, 1972).

For these applications, simplified spherical shell (Brazier, 1949; Geisler and Gerstein, 1961; 

Frank, 1952; Wilson and Bayley, 1950; Hosek et al., 1978; Meijs and Peters, 1987) models 

can be used and solved with analytical methods, but they neglect the complex anatomy of 

the head and the brain. Numerous studies have demonstrated that realistic modeling of 

anatomical structures such as the skull (Dannhauer et al., 2011; Ramon et al., 2004; 

Chauveau et al., 2004; Lanfer et al., 2012a; Anwander et al., 2002; Ary et al., 1981; Cuffin, 

1993; van den Broek et al., 1998; Vorwerk et al., 2014), the dura (Slutzky et al., 2010; 

Ramon et al., 2014; Ramon, 2012), the cerebrospinal fluid (CSF) (Ramon et al., 2006; 

Haueisen et al., 1997; Slutzky et al., 2010; Ramon et al., 2004; van den Broek et al., 1998; 
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Vorwerk et al., 2014; Bangera et al., 2010; Bénar and Gotman, 2002; Lanfer et al., 2012b; 

Rice et al., 2013; Vanrumste et al., 2000; Wendel et al., 2008) and head extent (Lanfer et al., 

2012a; Bruno et al., 2003; Vatta et al., 2005) as well as realistic modeling of anisotropy 

(Chauveau et al., 2004; Anwander et al., 2002; Vorwerk et al., 2014; Bangera et al., 2010; 

Haueisen et al., 2002; Güllmar et al., 2010; Wolters et al., 2006; Hallez et al., 2005, 2008, 

2009; Rullmann et al., 2009; Wolters, 2003), particularly of the white matter, can 

substantially improve the accuracy of forward and inverse modeling of EEG signals. The 

strong concerns related to anisotropy even prompted the development of new modeling 

methods to enable its implementation (Hallez et al., 2005; Wolters, 2003). Thus, most 

aspects of the cranial macro-anatomy have meanwhile been addressed in previous head 

modeling studies.

One exception, though, is the role of cranial blood vessels for EEG forward and inverse 

solutions which has only been marginally addressed so far (Haueisen et al., 1997). As the 

influences of gray matter, white matter, CSF, dura and skull have all been addressed, blood 

vessels might be the last uninvestigated widespread macroscopic structure within the bounds 

of the skull. One reason for this has been the difficulty in obtaining detailed reconstructions 

of the complex, highly arborized cerebral blood vessels from available imaging data for 

VCHMs, in particular without application of contrast agents. The role of blood vessels in 

VCHMs however deserves attention as (i) the brain is strongly vascularized and, hence, a 

large number of blood vessels of different calibers are present throughout the skull and 

brain. Blood vessels not only permeate the skull diploe but, at specific locations, directly 

pierce through the skull bone. As in the case of nerve foramina and surgical skull holes 

(Chauveau et al., 2004; Lanfer et al., 2012a; van den Broek et al., 1998; Heasman et al., 

2002; Bénar and Gotman, 2002; Li et al., 2007; Oostenveld and Oostendorp, 2002; Sparkes 

et al., 2009; Thevenet et al., 1992; Vanrumste et al., 2000), these direct connections 

(foramina) between brain and head surface may significantly influence the forward and 

inverse propagation of electrical fields. However, the impact of these skull foramina due to 

blood vessels on VCHMs has thus far not been addressed. (ii) The conductivities previously 

used to simulate blood vessels were quite high (0.417–1.25 S/m) (Haueisen et al., 1997) and 

while these values appear appropriate for blood per se, they may not be adequate for the 

blood vessel system as a whole, as vessels also include the surrounding layer of 

endothelium. This endothelium, among other tasks, serves as a diffusion barrier with low 

electrical conductivity, preventing substances from freely entering and leaving the blood 

stream. The importance of taking into account the low electrical conductivity of blood vessel 

walls has recently been demonstrated for electrocardiogram (ECG) modeling (Stinstra et al., 

2005a, 2005b). Although direct measurements comparing vessel wall resistance in the brain 

with that in the rest of the body are missing to our knowledge, resistance of the former may 

be even more pronounced, as the endothelium there forms the brain–blood barrier (BBB) 

with a high number of tight junctions between endothelial cells (Daneman, 2012), which 

should further decrease electrical conductivity. Thus, the vessel-wall-related effects 

previously described in ECG modeling (Stinstra et al., 2005a, 2005b) may be even more 

important for the blood vessels supplying the brain.

To investigate the role of blood vessels in volume conductor modeling, we needed to create a 

detailed reconstruction of the cerebral blood vessels. 7 T MRI can detect blood vessels with 
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a particularly high contrast-to-noise ratio (CNR) (Maderwald et al., 2008) not achieved at 

lower field strengths. We therefore built a VCHM including a detailed blood vessel 

compartment based on submillimeter 7 T anatomical sequences. We assessed the modeling 

errors induced by neglecting blood vessels (arteries and intraosseous/emissary veins) by 

comparisons with the well-established effect of neglecting CSF, as well as with the effect of 

neglecting the dura. In addition, the feasibility of using 7 T MRI data to build a 

submillimeter VCHM needed to model near-microscopic blood vessels had not been 

investigated thus far. We therefore implemented this new approach to create the first 

submillimeter 7 T-based VCHM and solve it using a Finite Element Method (FEM) transfer 

matrix approach to minimize computational load while maintaining minimal numerical 

errors.

The present paper provides a detailed description of the methods used to create our 

submillimeter FEM model based on 7 T MRI data, including the extraction of the blood 

vessels using spatial filtering methods, describes the computational requirements for whole-

head submillimeter FEM modeling, and presents the forward and inverse modeling results 

on the role of blood vessels in high-resolution volume conductor head modeling of EEG.

Methods

7 T MRI data acquisition and pre-processing

Whole-head 3-D Magnetization Prepared Rapid Gradient Echo (MPRAGE, T1-weighted) 

and 3-D Gradient Echo (GE, PD-weighted) sequences of one male subject (age: 27, right-

handed, no history of neuro-psychiatric disease) were acquired on a Magnetom 7 T whole 

body MRI system (Siemens, Germany, Erlangen) at a 0.6-mm isotropic resolution (Fig. 

1a,b). Acquisition parameters are summarized in Table 1.

The volumes were co-registered using SPM8 (freely available at http://

www.fil.ion.ucl.ac.uk/spm/) with default parameters and T1 as reference. Additionally, a 

third dataset with a more homogenous brain was created by dividing the T1 images by the 

PD images (Van de Moortele et al., 2009). The T1/PD data was used for skull stripping and 

brain segmentation (cf. Supplementary Methods for a detailed description of the 

segmentation procedure).

Segmentation of blood vessels

To segment cranial blood vessels (intracranial, intraosseous, and extracranial), we utilized a 

Frangi vesselness filter (Kroon, 2009). This filter is designed to enhance tubular structures, 

indicated by the eigenvalues of the Hessian of the image data at multiple spatial scales 

(Frangi et al., 1998; Manniesing et al., 2006). In our hands, this filter proved well-suited for 

segmenting arteries and intraosseous/emissary veins, but not as successful in detecting 

draining veins. This could be due to the draining veins’ geometry and lower contrast, 

because of slower blood flow compared to the arteries. Throughout the manuscript, we will 

use the term “blood vessels” when addressing all segmented vessels, and “arteries” or 

“veins” otherwise. Blood vessels were segmented from the Frangi-filtered volumes with an 

in-house regional growth algorithm (see Supplementary Methods for further details). 
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Intraosseous vessels, including veins piercing through the skull via foramina, were identified 

by computing the intersection between the blood-vessel and skull compartments. Results 

were manually inspected and compared with anatomy atlases (Benninghoff, 1993; Netter, 

1987; Nowinski et al., 2011) to ensure that only blood vessels were segmented. An axial 

slice as well as a 3-D axial cut through the final head model segmentation are shown in Fig. 

1(c) & (d), respectively. Fig. 2 shows an overview of all segmented blood vessels, including 

major cerebral arteries and their ramifications (Benninghoff, 1993; Netter, 1987; Nowinski 

et al., 2011)

Volume conductor head models

To quantify and compare the model errors induced by ignoring blood vessels, the CSF, and 

the dura, we created one blood-vessel-free model, three models including blood vessel, one 

CSF-free model and two dura-free models (Fig. 3).

The blood-vessel-free model was the model as described above, but without the blood 

vessels, which were replaced by the surrounding tissue types, i.e., soft tissue, fat, bone, dura, 

CSF, GM and WM, depending on the vessel location. We shall refer to this model as the no-

blood-vessel-model.

In the blood vessel model, all blood vessels derived from the imaging data as described in 

the preceding sections were implemented as one blood vessel compartment. For volume 

conductor modeling, a conductivity value needs to be assigned to each volume conductor 

model compartment. In contrast to other tissue types such as skin, bone, or gray matter, there 

are no conductivity values in the literature for the total conductivity of cerebral blood 

vessels, i.e., including both vessel walls and blood-filled vessel lumen. As it is not yet 

possible to treat vessel walls and lumina separately, we modeled them as one compartment 

and set the compound conductivity of this compartment to cover the range of possible 

scenarios described in the Introduction. Because it is highly unlikely that blood vessels as a 

whole could have a conductivity (σ) higher than that of blood alone (Haueisen et al., 1997), 

we used the latter as our upper limit in the high-σ-model. Similarly, it is highly unlikely that 

the combination of blood vessel walls (endothelium) and BBB would produce a conductivity 

lower than that of compact bone. Therefore, we used compact bone conductivity (Haueisen 

et al., 1995) as a lower extreme in the low-σ-model. Because the conductivity of cardiac 

blood vessel endothelium is known (Stinstra et al., 2005a, 2005b), we used this conductivity 

for our intermediate-σ-model.

Several previous studies have demonstrated the importance of the CSF on volume 

conduction. It is well established that neglecting the CSF compartment induces severe 

modeling errors. To directly compare model improvement by including CSF with model 

improvement by including blood vessels, we generated a no-CSF-model by replacing CSF 

by gray matter in the no-blood-vessel-model. To also compare blood-vessel-related effects to 

those related to the dura, we replaced the dura of the no-blood-vessel-model by compact 

bone in the dura-as-bone-model. Finally, as an alternative scenario of dura-related model 

errors, the dura was replaced by CSF in the dura-as-CSF-model. Both dura models are 

included because, in our experience, the dura may be misclassified as either bone or CSF, 
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depending on which MRI-weighting the segmentation is based on. Fig. 3 shows axial slices 

through the different models investigated.

FEM methods

FEM forward calculations were computed with SimBio-NeuroFEM (SimBio Development 

Group, 2012) using the Saint-Venant direct approach (Buchner et al., 1997; Wolters et al., 

2007; Vorwerk et al., 2012) based on geometry-adapted cubic meshes (Hartmann et al., 

2010) (cf. Supplementary Methods for details), which improve the precision of the 

computed potentials by reducing the error due to unsmooth transition edges (Wolters et al., 

2007). To achieve good RAM efficiency, we used a conjugate gradient solver with 

incomplete Cholesky preconditioning (IC(0)-CG) (Lew et al., 2009). To maximize the 

accuracy of our model, forward solutions were calculated with a residual error in the order 

of 10−11. All models comprised the same 17,606,835 nodes and 17,349,004 elements with 

an isotropic resolution of 0.6 mm. To reduce simulation time, a transfer matrix for 329 EEG 

channel was calculated for each model (Wolters et al., 2004). The positions of the 329 

electrodes were defined according to the 10-5 system (Oostenveld and Praamstra, 2001) 

using the MATLAB script kindly provided by Giacometti et al. (2014) on their website. 

Conductivity values of the different tissue compartments are listed in Table 2.

For building the models, we used a workstation with 4 × 2.8 GHz cores central processing 

units (CPU) and 16 GB of random access memory (RAM) under Linux. For simulations, 

three different systems were used: the same as for building the models, one with 16 × 3.1 

GHz cores and 256 GB RAM and one with 120 × 2.8 GHz cores and 3 TB RAM, the latter 

two used to run multiple simulations in parallel.

Placement of sources

For forward EEG simulations, one St. Venant dipole (Wolters et al., 2007) was placed at the 

center of every gray matter mesh element of the full model (with blood and CSF 

compartments). The St. Venant direct approach has a high computational efficiency when 

used in combination with a FEM transfer matrix (Wolters et al., 2004). To fulfill the St. 

Venant condition (Lanfer et al., 2012a; Vorwerk et al., 2014), all dipoles neighboring non-

gray matter elements were discarded using a parallelized version of the sb_check_sources 

function provided by FieldTrip (Oostenveld et al., 2011), resulting in 2,229,036 remaining 

dipoles. Inverse localization was performed on a St. Venant-conditionfulfilling 1.2-mm 

isotropic grid (278,565 dipoles). The dipoles were oriented normally to the local gray matter 

surface (see Supplementary Methods for more details).

Because the dipolar model of brain activity is best used when evaluating the effect of 

spatially smooth structures, like dura and CSF, and blood vessels are heterogeneously 

distributed within the brain, an extended source model could better approximate the effects 

to expect in vivo. Therefore we generated a second source space where the activity of each 

entry was taken as the sum of all dipoles within a cortical area of approx. 6 cm2 which is 

often assumed to be the area of cortex required to be active to generate scalp-visible effects 

(Cooper et al., 1965).
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Error measures

To quantify and compare the effects of ignoring blood vessels, CSF and dura, we calculated 

three error measures commonly used in the modeling literature. In the following, “reference 

model” always refers to the more detailed model of a tested pair and the “test model” to the 

less detailed model, which is responsible for the investigated error. Seven model pairs were 

tested, which were the no-blood-vessel-model paired with each other model.

The first error measure investigated was the relative difference measure (Lew et al., 2009; 

Meijs et al., 1989) (RDM), defined as

(1)

where n is the number of electrodes, and refi and testi are the voltages of all sources at the ith 

electrode in the reference model and the test model, respectively. The RDM is used to 

quantify forward errors and was calculated for all 2,229,036 cortical sources of each source 

model. In some publications the subtraction of the L2 norms is inverted (test-ref instead of 

ref-test). From a mathematical point of view this makes no difference and is irrelevant for 

comparability.

The second error measure was the goal function scan localization error (Mosher et al., 

1992), defined as

(2)

(3)

where GfPos(test) is the position in the source space of the test models where the goal 

function scan is minimal for the ith source, Pos(ref) is the position in the source space of the 

reference source and GfError is the Euclidian distance between Pos(ref) and GfPos(test), 
also known as the localization error, testi is the voltages at all electrodes of the ith source, 

Li,· is the leadfield matrix of the reference model for the ith source and all electrodes, and n 
is the number of electrodes. The localization error is used to quantify the inverse error and 

was calculated for a 1.2-mm grid comprising 278,565 sources, again for both source models. 

The number of sources was reduced for this error measure because of its high computational 

load. As sources were reconstructed using identical grids perfect source localization (zero 

localization error) is possible, making our estimation of the inverse error conservative. 

Because sources were always reconstructed in a test vs. reference model setting, implying 
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that reconstruction was always performed in a model other than the one used for forward 

simulation, this is not an inverse crime (Kaipio and Somersalo, 2007).

We also calculated the logarithmic magnitude error (lnMAG), defined as

(4)

where testi and refi are the voltages of all sources at electrode n for the test model and the 

reference model, respectively. This error measure did not provide any additional insights to 

the other two error measures and was therefore later omitted (Lanfer et al., 2012a).

RDM, localization errors and lnMAG were computed using in-house Matlab scripts (The 

MathWorks Inc., Natick, MA, USA). Because the RDM is bounded between 0 and 2, it can 

be converted into a percentage by dividing by 2 and multiplying by 100. For more 

information regarding these error measures, we refer to Lew et al. (2009), Meijs et al. 

(1989), and Mosher et al. (1992)).

Analysis of the impact of local blood vessel density on errors

To quantify the influence of the local blood vessel density on errors, a multi-scale rank 

correlation analysis was performed. This analysis was designed to answer the question: 

blood vessels at which spatial scale around a source are relevant for the observed errors? To 

this end, the errors observed at all source positions were correlated with the local blood 

vessel density at these positions, both for the forward and inverse error measures, using 

Spearman’s rho (Best and Roberts, 1975). The local blood vessel density was obtained from 

spherical kernels around each position, their diameters ranging between 0 mm and 100 mm 

(multiples of the model resolution, 0.6 mm). Local blood vessel density was expressed as the 

ratio of blood vessel elements within the kernel to all elements within the kernel. Local 

blood vessel density was chosen as measure because of its invariance against blood vessel 

size (discussed in Impact of source size section).

Results

In the present study, for the first time, a FEM VCHM with an isotropic submillimeter 

resolution including a detailed blood vessel compartment and skull foramina was used for 

forward and inverse modeling (Figs. 1(c), (d), 2 & 3). In the following, we will present the 

forward and inverse simulation results and also describe the computational requirements of 

submillimeter FEM modeling.

Effect of blood vessels

To understand the role of blood vessels in volume conductor head modeling, three scenarios 

with different blood vessel conductivities were investigated. In the first one, the high-σ-

model, blood vessels were attributed the conductivity of blood (Haueisen et al., 1997). In the 
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second scenario, the intermediate-σ-model, the conductivity of the cardiac endothelium was 

used (Stinstra et al., 2005a). In the third case, the low-σ-model, blood vessels were modeled 

with conductivity of bone as the lower extreme. This wide range of conductivities was used 

to ensure that effects induced by the real bulk conductivity of cerebral blood vessels, which 

can be expected to be somewhere in this spectrum, will be accounted for. To ensure that we 

did not overestimate the effects of blood vessels due to the use of single dipolar sources we 

also calculated the results for an extended source model (cf. Methods section). Results 

obtained with dipolar and extended sources were mostly very similar regarding the 

conclusions of this paper. The reported results thus refer to both source models if not 

otherwise stated.

The simulations produced one EEG topography for each model and dipole. The EEG 

topographies resulting from selected dipoles (with the 100th strongest RDM) for all models 

are shown in Fig. 4. The change in topographies induced by introducing blood vessels and 

varying their conductivity are quite noticeable for the presented example of the topographies 

with the 100th strongest RDM error for each model. As can be seen, blood vessel-related 

topography changes become visible to the bare eye above an RDM of approx. 0.2. Following 

Lanfer and colleagues, we consider errors with an RDM value >= 0.1 and/or a 

mislocalization >= 5 mm as non-negligible (Lanfer et al., 2012a).

RDM and goal function scan localization errors were computed against a model without any 

blood vessels (Figs. 5–8). Maximal error, mean error, the proportion of affected sources and 

the 5th, 50th and 95th percentiles of the error distributions are summarized in Table 3.

Forward and inverse errors of both source models showed a similar general picture. With the 

high-σ-model, non-negligible (see above) errors were mainly located directly adjacent to 

points with blood vessels either passing through or within the skull (emissary or intraosseous 

vessels, respectively) (Figs. 5(a) & 7(a)), namely 5 vessel-related skull foramina and 3 

intraosseous veins. The foramina were the parietal emissary foramen, the paired carotid 

canals, parts of the paired foramen lacerum, parts of the paired foramen spinosum and two 

symmetrical foramina located above the anterior part of the Sylvian fissure (Netter, 1987). 

The paired intraosseous veins were the venae diploicae frontalis, temporalis posterior and 

occipitalis (Netter, 1987). The segmentation of the former vein also included the entry and 

exit parts of the canales diploici (Benninghoff, 1993; Netter, 1987).

With the high-σ-model, non-negligible errors were also found close to the major brain 

arteries (anterior, lateral and posterior arteries) and their branches (Figs. 5(a) & 7(a)). For the 

intermediate-σ-model, some non-negligible errors were still found close to emissary or 

intraosseous vessels, but errors mainly clustered around major and minor arteries (Figs. 5(b) 

& 7(b)). Finally, for the low-σ-model, nonnegligible errors were no longer found close to 

emissary or intraosseous vessels. Instead, errors now clustered strongly around major and 

minor arteries (Figs. 5(c) & 7(c)).

With both source models (dipolar and extended sources), the overall strongest and most 

widespread errors were observed for the region of the carotid arteries. An example of the 

EEG topography differences for a dipole in this region and with the different models 
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investigated is shown in Fig. 4, first column. Other areas with dense vasculature and 

pronounced errors included the anterior cingulate, the insula, and the medial temporal lobe 

(Figs. 4–8).

Impact of local blood vessel density on errors

The spatial error distributions as shown in Figs. 5–8 indicated a close spatial relation of local 

vessel density and error magnitudes for the intermediate- and low-σ-vessel-models, while 

the spatial distribution of errors in the high-σ model appeared to be dictated by the position 

of vessels penetrating the skull. To quantify these relations, we performed a correlation 

analysis across multiple spatial scales. This confirmed the visual impression of a strong 

relationship between local blood vessel density and error measures (cf. Fig. 9) for both low- 

and intermediate-σ-models. For these models, correlations became maximal with kernels of 

20- to 30-mm diameters for forward and inverse errors, respectively, indicating a critical 

spatial scale with the highest relevance of local blood vessel density to VCHM modeling (if 

the low-to-medium conductivity assumption is correct). Expectedly, errors obtained in the 

high-σ-scenario did not show a strong correlation of errors with local blood vessel density.

Effect of CSF and dura on modeling errors

To put vessel-related errors in relation to other model errors, we examined errors due to 

ignoring the CSF and dura. Forward-calculated EEG maps reflecting errors made by 

ignoring the CSF (results for dipoles with the 100th strongest RDM) are shown in Fig. 4(f). 

The changes in topographies induced by replacing CSF by gray matter were, as expected, 

pronounced (Table 3). Overall, forward and inverse errors showed similar distributions. Non-

negligible (>=5 mm or >=0.1 RDM) errors were found throughout the source spaces, with 

clusters of higher values, often on gyral crowns. Similar results have been reported by 

Lanfer and colleagues using dipolar sources (Lanfer et al., 2012b). The high values and 

broad spatial distribution of modeling errors are in accordance with the literature (Ramon et 

al., 2006; Haueisen et al., 1997; Slutzky et al., 2010; Ramon et al., 2004; van den Broek et 

al., 1998; Vorwerk et al., 2014; Bangera et al., 2010; Bénar and Gotman, 2002; Lanfer et al., 

2012b; Rice et al., 2013; Vanrumste et al., 2000; Wendel et al., 2008).

Forward-calculated EEG results reflecting errors made by ignoring the dura (replaced by 

compact bone and CSF, respectively) are summarized in Table 3 and shown in Fig. 4 (g) & 

(h). Ramon et al. (2014) and Ramon (2012) have reported lower forward errors (0.057 mean 

RDM) when replacing the dura with CSF using dipolar sources. To the best of our 

knowledge, no investigation considering replacing the dura with compact bone exists for 

comparison, although such segmentation errors may occur.

Computational requirements of submillimeter head modeling

The main criteria for the computational feasibility of forward and inverse EEG modeling are 

the computation time and the amount of memory needed. With the current implementation 

(cf. FEM methods section), computing one row of the transfer matrix (Wolters et al., 2004), 

corresponding to one EEG electrode, took approx. 24 min. Computation of the whole 

transfer matrix (a matrix with approx. 329 × 17 Mio. entries) for all 329 electrodes thus 

lasted 133.5 ± 3.8 h (mean ± std). After having calculated the transfer matrix (only once per 
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model and sensor-configuration), one forward simulation could then be performed in just 

approx. 120 ms per dipole. For all 2,229,036 dipoles, the forward simulation thus lasted 74.5 

± 0.6 h. Times are given for a solver residual error in the range of 10−11 on a 2.8 GHz CPU 

and may vary according to the geometrical complexity of the models. No more than 30.5 GB 

of RAM were required for any operation.

Discussion

In the present study, we investigated the role of a detailed reconstruction of blood vessels in 

a submillimeter VCHM. This was made possible by the use of anatomical submillimeter 7 T 

MRI data. Before such data became available, specific diffusion weighted sequences and 

contrast agents had to be used to create angiograms. Presumably for this reason, the effect of 

blood vessels on forward and inverse modeling has, up to now, never been investigated in 

detail. In the following, we discuss the results of the different conductivity scenarios and the 

modeling errors induced by ignoring the blood vessels located within the skull. Furthermore, 

we compare our simulation results to the literature and make suggestions on how to improve 

computational speed. Finally, we discuss limitations and perspectives of our work.

Errors with different blood vessel conductivity

Our findings, as summarized in Table 3, showed similar mean and percentile errors 

irrespective of the conductivity σ (high, intermediate, low) assumed for the blood vessel 

compartment, and also irrespective of the type of source model (dipole, extended). The 

maximal inverse errors, however, were considerably larger with the extended source model 

than with the dipoles (discussed in Impact of source size section). There also were more 

strongly affected inverse localizations (as indicated by the large red cones in Fig. 8) in the 

high- than in the intermediate- and low-σ simulations of extended sources. The conductivity 

of blood vessels, which we varied in our simulations over two orders of magnitude, appeared 

to only marginally influence the strength of the dipolar errors, while the extended source 

errors were stronger for both low- and intermediate-σ-model. The percentage of non-

negligibly affected sources (RDM >= 0.1, localization error >= 5 mm), however, showed 

much stronger variations. More than twice as many sources were non-negligibly affected in 

the intermediate-and low-σ-models than in the high-σ-model (Table 3). This can be 

explained by the high deviation of the intermediate and low conductivities from those of the 

surrounding brain tissue, which was not the case in the high conductivity scenario.

The error measure results summarized in Figs. 5–8 showed two distinct spatial error 

patterns: (i) Errors clustering around cerebral arteries and (ii) errors clustering in the vicinity 

of skull foramina and intraosseous vessels. The latter error type was mainly present in the 

results obtained with the high-σ-model, while the former type errors were present in all 3 

cases (all σ-models), but much stronger in results obtained with both intermediate- and low-

σ-models, reflected in the different percentages of affected sources as discussed above.

Error clusters around arteries were widely distributed, affected the medial temporal lobe and 

followed the paths of the three major brain arteries: the anterior cerebral artery, the middle 

cerebral artery and the posterior cerebral artery. As the arteries branched into smaller 

vessels, the errors became smaller until they vanished completely, which happened earlier 
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(at larger vessel diameters) for extended than for dipolar sources (Figs. 5–8). The cingulate 

and insular cortices were strongly affected because of their dense vasculature. Because the 

draining veins and superficial cortical vessels were not included in the model (cf. 

Limitations and further perspectives section), the outer surface of the cortex was less 

affected, with errors mainly at the frontal pole and at the intersection of parietal, occipital 

and temporal cortices (TPO area). Including these missing vessels can be expected to further 

increase the number of affected areas and could also induce interesting edge and tunneling 

effects as some of them pass through the CSF (with high conductivity) and some through the 

dura (with low conductivity).

Errors clustering in the vicinity of blood vessel skull foramina and intraosseous vessels 

(black arrows in Fig. 5 (a) & (b)) were most pronounced in the region in the vicinity of the 

carotid canal. Errors here may affect source reconstruction in the medial and basal temporal 

lobe, which is of interest in the context of mesial-temporal epilepsy (Waberski et al., 2000; 

Jung et al., 2009; Merlet et al., 1996; Assaf and Ebersole, 1997; Merlet et al., 1998; 

Fernández-Torre et al., 1999a; Fernández-Torre et al., 1999b; Aydin et al., 2015; Aydin et al., 

2014). The remaining blood vessel skull foramina and intraosseous veins were in most cases 

too small (Lanfer et al., 2012a) to induce strong and widespread errors, despite being located 

between sources and electrodes (Lanfer et al., 2012b). Nevertheless, most of these produced 

non-negligible errors (RDM >= 0.1 and localization errors >= 5 mm (Lanfer et al., 2012a)), 

although in a highly localized manner.

Results from spatial multi-scaled correlation of errors with local blood vessel density (Fig. 

9) also pointed to the different mechanisms underlying the error generation in the high-σ-

vessel-model compared with the low- and intermediate-σ models. Blood vessel densities at 

the scale of 20 to 30 mm, i.e. still mostly within the skull, correlated best with forward and 

inverse errors of both low- and intermediate-σ-models. Forward and inverse errors related to 

the high-σ-model were, however, not strongly correlated with local blood vessel density, but 

rather appeared dominated by errors due to vessels piercing the skull (Figs. 5–8), 

highlighting the different error mechanisms with different vessel conductivities and a need 

for experimental clarification of this issue (see Conclusions & outlook section).

Blood-vessel-related errors in relation to previously described modeling errors

To relate our findings to previously investigated modeling errors, we compared our results 

obtained with the no-CSF-model, the dura-as-bone/CSF-models and reports by two recent 

publications (Lanfer et al., 2012a; Güllmar et al., 2010) in which detailed error measures 

such as RDM and localization error were given.

CSF, dura and skull

Ignoring the CSF caused similar maximal errors as ignoring vessels (Table 3), but a larger 

mean error and a higher proportion of affected sources. The critical positioning of the CSF 

between sources and electrodes together with its large extend is the main reason why not 

including it creates such strong errors (Lanfer et al., 2012b), as confirmed by our results and 

in line with a large number of previous modeling studies (Ramon et al., 2006; Haueisen et 

al., 1997; Slutzky et al., 2010; Ramon et al., 2004; van den Broek et al., 1998; Vorwerk et 
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al., 2014; Bangera et al., 2010; Bénar and Gotman, 2002; Lanfer et al., 2012b; Rice et al., 

2013; Vanrumste et al., 2000; Wendel et al., 2008) and recent experimental findings (Rice et 

al., 2013).

Replacing the dura by compact bone or CSF caused maximal model errors quite similar to 

those due to blood vessels (Table 3) but again with a larger spatial extent, probably for 

similar reasons as discussed for the case of the CSF above. Our present results confirm that 

the dura plays a major role VCHM accuracy (Slutzky et al., 2010; Ramon et al., 2014; 

Ramon, 2012) and that the inclusion of the dura is nearly as important as that of the CSF.

In summary, on the whole-brain scale, CSF and dura are more important for VCHM 

accuracy than blood vessels. On the other hand, local errors due to ignoring blood vessels 

were on par with those due to ignoring CSF or dura (Table 3; Fig. 5) indicating that for 

critical regions with dense vasculature and/or close to vessels piercing the skull, source 

localization directed at these areas may profit from including blood vessels as much as from 

modeling the CSF or dura.

Inaccurate modeling of skull geometry has also been repeatedly reported to be a common 

source of model errors (Dannhauer et al., 2011; Ramon et al., 2004; Chauveau et al., 2004; 

Lanfer et al., 2012a; Anwander et al., 2002; Ary et al., 1981; Cuffin, 1993; van den Broek et 

al., 1998; Vorwerk et al., 2014). Lanfer et al. (2012a) published a thorough investigation of 

the influence of skull segmentation inaccuracies on EEG forward and inverse problems, 

including effects due to skull holes, under- or overestimating skull thickness, or neglecting 

skull sinuses (cf. Table 3). Among these errors, those caused by ignoring a skull hole with a 

10-mm diameter were most similarly to the errors that we observed in relation to cerebral 

blood vessels. Lanfer and colleagues recommend that skull hole larger than 2 mm should be 

included in EEG head models.

Anisotropy

Another widely discussed source of errors in head modeling are anisotropic conductivities. 

Several authors (Anwander et al., 2002; Vorwerk et al., 2014; Bangera et al., 2010; Haueisen 

et al., 2002; Güllmar et al., 2010; Wolters et al., 2006; Hallez et al., 2005, 2008, 2009; 

Rullmann et al., 2009; Wolters, 2003) have described the influence of white matter 

anisotropy in this context. The study by Güllmar et al. (2010) is especially detailed and is 

therefore used here to compare our results with respect to the forward error measures. 

Güllmar and colleagues used a different inverse approach than Lanfer et al. (2012a) and we 

did and to the best of our knowledge no study of anisotropy with a comparable inverse error 

metric exists.

The 95th and 50th percentiles of the RDM values, closest to ours, obtained by Güllmar and 

colleagues with anisotropic models are listed in Table 3. When comparing the RDM values, 

it becomes apparent that the effect of including blood vessels is comparable to the effects 

due to a 1:2 transversal to longitudinal anisotropy ratio, which may be a realistic value as 

suggested by a number of recent studies (Bangera et al., 2010; Güllmar et al., 2010; Hallez 

et al., 2008; Wolters, 2003). For example, Bangera et al. (2010) compared simulations of 

anisotropic models with, among others, ratios between 1:2 to 1:10 with in-vivo intracortical 
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electrical stimulation measurements in epilepsy patients. They could conclusively show that 

the 1:10 ratio fitted worst to the data for all four measured patients. On average, the best 

fitting ratio was 1:2. Thus, ignoring blood vessels may cause similar forward errors than 

ignoring white matter anisotropy, at least with a presumably realistic transversal to 

longitudinal anisotropy ratio.

It is, however, important to keep in mind that our forward and inverse errors were probably 

underestimated as the majority of superficial cortical vessels as well as the veins could not 

be included in our model (cf. Limitations and further perspectives section). Furthermore, 

because of the use of identical source grids for forward and inverse modeling, our 

localization errors are conservative (see Methods section). We can, therefore, conclude that, 

regardless of the conductivity and of the source model used, blood vessels cause, on a local 

scale, errors that are comparable with errors produced by ignoring anisotropies, unrealistic 

modeling of the skull, and ignoring the CSF or the dura.

Impact of source size

We compared modeling results with dipolar (point-like) and extended (surface of approx. 6 

cm2) source models, respectively. Results obtained with these source sizes both support our 

general conclusions regarding the importance of blood vessels in volume conductor head 

modeling of EEG. However, there were also more subtle differences in the error patterns, 

providing interesting insights on how source model size and VCHM structures interact and 

shape forward and inverse solutions.

With all other parameters kept constant, one might expect that a structure would have 

maximal local effect onto forward and inverse errors onto sources with a matching spatial 

extend, thus interpreting the volume conductor as a spatial filter according to the principle of 

the matched filter theorem (Rosenfeld and Kak, 1982). For example, in our simulations, this 

would mean that dipolar sources, which have close to no spatial extent, would be expected to 

have maximal effect in the vicinity of small structures, like small blood vessels. Larger 

extended sources would be expected to have maximal effect when combined with larger 

structures, like large vessels, or other large-scale spatial smooth structures as the CSF or 

dura compartment. This is indeed what we observed from the percentage of non-negligible 

forward errors (Table 3). A similar effect was also observed in the spatial distribution of 

errors throughout the volume conductor. As highlighted by the black boxes in Figs. 5–8, 

non-negligible errors due to dipolar sources aligned along small blood vessels and mostly 

disappeared when switching to extended sources. In contrast, non-negligible errors of the 

large sources close to large blood vessels were enhanced. Our findings point towards 

complex interactions between spatial properties of source and volume conductor models, 

which have received little attention so far but may be practically important, as not all brain 

activation may be well approximated by dipolar sources and may rather involve a wide range 

of different spatial scales (Ball et al., 2012).

Computational requirements of submillimeter head modeling

We showed that FEM modeling based on submillimeter 7 T MRI data with more than 17 

Mio. voxels is possible with current workstations and using Open-Source software (cf. FEM 
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methods section). Improving the speed and memory usage of FEM computations is an 

important goal in FEM research (Lew et al., 2009; Wolters et al., 2004; Nuno et al., 1997; 

Wolters et al., 2002). With the chosen solver technique and parameterizations and the current 

implementation in SimBio-NeuroFEM, computing one row of a transfer matrix (Wolters et 

al., 2004) in a model with about 17 Mio. nodes took about half an hour, resulting in an 

overall computation time for the full 329 electrodes transfer matrix of about five days. 

However, this computation step only needs to be performed once per model and sensor-

configuration. Afterwards, forward simulation can be performed in just about a hundred of 

milliseconds per dipole. For our high source space resolution with more than 2 Mio. nodes, 

the computation of the leadfield for all dipoles still took 3 days. Without calculating a 

transfer matrix beforehand, one forward simulation for a model with about 17 Mio. 

unknowns would have lasted approximately half an hour, which would have resulted in an 

excessive computational amount of more than 70 years. The transfer matrix technique 

(Wolters et al., 2004) was hence crucial for the computational feasibility of our study.

In the future, computation times may still significantly be reduced: for example, a lower 

IC(0)-CG solver accuracy might be sufficient for nearly all applications (Lew et al., 2009) 

which would be interesting to evaluate. The setup of the transfer matrix could be sped up by 

more than ten-fold when using the faster Algebraic MultiGrid preconditioned Conjugate 

Gradient (AMG-CG) FEM solver (Lew et al., 2009; Wolters et al., 2002; Stüben, 2001), at 

the cost of higher memory usage in the current implementation in SimBio-NeuroFEM. 

Parallelization on distributed memory machines (Wolters et al., 2002; Krechel and Stüben, 

2001) could still significantly reduce both computation time and memory load. Most 

importantly, in routine source analysis scenarios, usually no more than 30,000 source space 

nodes are used, which would reduce the forward modeling computation time from 3 days 

down to about an hour. With such optimization, together with increased hardware 

performance, we anticipate that sub-mm FEM head modeling may become amendable for 

routine applications in science and neurological diagnostics.

Limitations and further perspectives

Several limitations have to be considered when interpreting the presented results. First, our 

results are based on only one subject, and blood vessels show inter-individual variability 

(Benninghoff, 1993; Boyd, 1930; van der Zwan and Hillen, 1991; Tatu et al., 2012). Yet, the 

general layout of the cerebral vasculature is quite similar across individuals, both with 

respect to the major vessels and the location of brain regions with a dense vasculature, such 

as the insular region (Benninghoff, 1993; Netter, 1987). Hence, as the strongest errors were 

located in these regions, we expect that vessel-related errors will be present at similar levels 

and locations in other subjects as well.

Second, the accuracy of the presented model could still be improved. As mentioned before, 

few superficial cortical and dura vessels and no draining sinuses (Nowinski et al., 2011) 

were included in the model because of their lower CNR. Incorporating these vessels is 

expected to even further increase the proportion of the potentially-affected brain regions, 

particularly in the cortex, which would be highly relevant for source reconstruction. We 

expect that, due to blood-volume conservation, including missing veins into our model 
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would substantially increase the volume occupied by blood vessels. Such extended models 

could use susceptibility weighted imaging data at 7 T, for segmenting veins. Also co-

registration of a 7 T blood vessel atlas (Nowinski et al., 2011) with our model could possibly 

enable us to better evaluate the true extent of blood vessels to be included in an enhanced 

model. Likewise, not all blood vessel foramina and intraosseous veins could be segmented in 

our current model, resulting in a likely underestimation of the resulting modeling errors. We 

segmented 4 out of 9 and 3 out of 4 previously described foramina containing blood vessels 

(Boyd, 1930; Benninghoff, 1994) and intraosseous veins (Benninghoff, 1993; Netter, 1987), 

respectively. The foramina mastoide, condyloide, vesalius, caecum and squamosale as well 

as the venae diploicae temporalis anterior could not be segmented. This might be due to the 

interindividual variability of diploe veins (Benninghoff, 1993) and foramina size and 

location (Boyd, 1930).

Moreover, there are several areas where the current segmentation could still be improved. 

For example, hyperintensities in the temporal lobe and local susceptibility artifacts above the 

lamina cribosa of the ethmoid sinuses created small segmentation errors. The spongy bone, 

here modeled as intraosseous and emissary veins, could be further improved. The choroid 

plexus was modeled with gray matter conductivity for lack of tissue specific values, but due 

to the deep location of the plexus we expect small model errors. Other areas with possible 

segmentation improvements are due to the lower CNR in the ventral part of the imaging 

volumes (below cortex levels) and affected facial bones, buccal air, muscle and the spinal 

cord (the last two were completely left out of the model). Manual segmentation by 

neuroradiologists (current gold standard) could probably have recovered most of the missing 

tissues, but is impractical for whole head segmentation with a submillimeter resolution. 

Advances in high-field imaging, MR sequence development and creating automated 

segmentation software optimized for 7 T MRI data should level these limitations in the near 

future.

Finally, the use of homogeneous, standard conductivity values also represents a limitation, 

since the values can be expected to be inhomogeneous in the living brain and will vary from 

standard values acquired ex-vivo. Including anisotropic conductivities in the model would be 

a first step to address this issue. The increase in computational load induced by anisotropic 

conductivities might be a limiting factor for 7 T-based head modeling. Because only a 

minority of the blood vessels included in our model was within the white matter 

compartment, we expect no major insights for the questions addressed in the present study 

from modeling white matter anisotropy. Recent advances in electrical impedance 

tomography (EIT) and more specifically in magnetic resonance EIT (Zhang et al., 2008; 

Woo and Seo, 2008; Meng et al., 2013; Degirmenci and Eyuboglu, 2013; Kim et al., 2008) 

suggest that using individualized anisotropic and inhomogeneous conductivities for head 

modeling may be possible in the future, opening up exciting new possibilities in volume 

conductor head modeling.

Conclusions & outlook

For applications directed at regions with little vasculature we would suggest that, if the skull 

is modeled correctly and CSF, dura and anisotropy are present in a VCHM, the modeling of 
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blood vessels is a possible next step towards an even lower model error that may or may not 

be necessary, depending on the accuracy requirements of a study. For applications where 

high forward and/or inverse solution accuracies are necessary and which address areas close 

to the interhemispheric fissure, the temporal pole and the insula, the inclusion of blood 

vessels may be highly relevant and as important as considering the CSF, dura, and white 

matter anisotropy.

Finding the most suitable modeling techniques for blood vessels requires further attention. 

Depending on which conductivities are assumed for vessels, we found different mechanism 

of error generation. As researchers (Butt et al., 1990; Crone and Olesen, 1982) have 

measured the electrical resistance of the brain endothelium (although in rat and frog), two 

paths towards a solution are currently investigated: (i) implementing separate compartments 

for blood vessel endothelium and lumen, requiring a volume mesh with local resolution 

approaching the single μm, making the development of new FEM technologies necessary; 

(ii) modeling the resistive properties of the endothelium as electrical boundary conditions. 

Developing algorithms required for both approaches and making resistances compatible with 

software is the subject of our ongoing research. Once established, these methods will permit 

to investigate the effect of the blood-CSF (choroid plexus) and arachnoid barriers, which are 

also a combination of highly isolating tight junctions and conductive fluids. Further 

investigations will also be needed to clarify the role of the apparent dependence of blood 

conductivity and anisotropy relative to flow velocity and vessel diameter observed in 

impedance — plethysmography and cardiology (Wtorek and Polinski, 2005; Sakamoto and 

Kanai, 1979). In this context, direct measurements in animal models would also be highly 

useful to resolve the current lack of data on the exact conductivity of cerebral vessels, which 

led us to model a wide range of conductivity values in the present study.

Beyond EEG, we can envision multiple applications which could benefit from modeling 

blood vessels, also at submillimeter resolution. For example, submillimeter head modeling 

could be especially well suited for modeling of transcranial magnetic/direct current/

alternating current stimulation to optimize the current flow in targeted brain areas (Wagner 

et al., 2014). Other applications like traumatology and fNIRS could profit even more from 

the precise modeling of blood vessels. Furthermore, fMRI acquired at 7 T could make use of 

the high blood vessel contrast in anatomical data to mask BOLD effects arising from 

superficial cortical vessels which are often misinterpreted as cortical activity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/

j.neuroimage.2015.12.041.
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Fig. 1. 
7 T structural MRI data and segmentation. (a) 7 T T1 MPRAGE MRI data at 0.6-mm 

isotropic resolution used to derive the volume conductor head model. Arteries are, for 

example, visible as bright tubular structures in the insular region (white box). Note that the 

dataset was acquired without any contrast agent. (b) 3 T T1 MPRAGE dataset obtained in 

the same subject (see Derix et al., 2014; Lüsebrink et al., 2013 for acquisition parameters). 

Arteries in the same region (white box) are not clearly visible. (c) Axial slice through the 

VCHM derived from the 7 T data by tissue segmentation. The white box again highlights the 

insular region as in (a) and (b). Segmented blood vessels are shown in red. Note that neither 

the hematopoetic nor the fatty bone marrow was included in the segmentation (see Methods 

section). (d) 3-D visualization of intracranial and intraosseous blood vessels (cf. Fig. 2 for a 

3-D for visualization of extraosseous vessels); the black arrow indicates an example of an 

intraosseous vein.
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Fig. 2. 
Blood vessels extracted from 7 T MRI by Frangi vesselness filtering and regional growth 

segmentation. The following cerebral blood vessels are indicated by numbers: (1) internal 

carotid arteries, (2) vertebral arteries, (3) basilar artery, (4) posterior arteries, (5) medial 

arteries, (6) anterior artery. (A) Part of the carotid artery above the foramen lacerum. 

Draining veins, due to the slow flow of their blood, produced insufficient signal for accurate 

segmentation and are thus not included. For orientation, the inset shows the outer surface of 

the head model from the same viewing angle as for the blood vessels in the main figure.
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Fig. 3. 
Volume conductor head models investigated. No-blood-vessel-model: Model without any 

blood vessels, all other segmented tissues are included. Blood vessel model: As before, but 

with blood vessels. This model was used with three different blood vessel conductivities (see 

Methods section). No-CSF-model: As the no-blood-vessel-model, but with CSF replaced by 

gray matter. Dura-as-bone-model: As the no-blood-vessel-model, but with dura replaced by 

compact bone. Dura-as-CSF-model: As the no-blood-vessel-model, but with dura replaced 

by CSF. Color-coding as in Fig. 1. Note that the holes in the rendering of the no-CSF-model 

are due to the very thin 3D slice used, combined with the geometry-adapted mesh described 

below. These holes are not present in the full volume model.
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Fig. 4. 
Effect of the different head models on forward-calculated EEG topographies. (a) Location 

and orientation of the selected example dipoles in sagittal and coronal views (anterior point 

of view) indicated by cyan cones. Red and yellow: intracranial and intraosseous vessels, 

respectively. (b–h) Forward calculated EEG maps resulting from the dipoles shown in (a) 

and obtained with the no-blood-vessel-model (b; with overlaid electrode layout), with the 

high-σ-model (c), intermediate-σ-model (d), low-σ-model (e), no-CSF-model (f), dura-as-

CSF-model (g), and dura-as-bone-model (h). RDM errors of the EEG maps relative to the 

no-blood-vessel model are indicated in the upper left corner above each EEG map. In each 

column, the model used to select the example dipole is highlighted by a light-gray box. In 
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each case, the dipole producing the 100th strongest RDM error with the indicated model was 

selected.
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Fig. 5. 
Spatial distribution of non-negligible errors induced by ignoring blood vessels: RDM errors 

of dipolar sources. Color and size of spheres represent RDM error at source positions. 

Transparent gray and yellow: brain and skull blood vessels, respectively Note the non-

negligibly affected sources along small vessels (e.g., black box). As draining veins, such as 

the sagittal sinus, were not included in our model, there are no corresponding errors. (a) 

Results obtained with the high-σ-model, (b) the intermediate-σ-model, and (c) the low-σ-

model, all in coronal and sagittal views. Black arrows: errors due to skull foramina and 

intraosseous vessels.
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Fig. 6. 
Spatial distribution of non-negligible errors induced by ignoring blood vessels: localization 

errors of dipolar sources. Cone bases are at the true source localization, cone tip is at the 

erroneous localization due to ignoring blood vessels. As seen for the forward errors, note the 

non-negligibly affected sources along small vessels (e.g., black box). Other conventions as 

in Fig. 5.
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Fig. 7. 
Spatial distribution of non-negligible errors induced by ignoring blood vessels: RDM errors 

of extended sources. Compared with the results obtained with the dipolar sources, there were 

fewer non-negligibly affected sources along small blood vessels (e.g., black box), while 

errors in vessel-rich areas were not diminished. Conventions as in Fig. 5.
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Fig. 8. 
Spatial distribution of non-negligible errors induced by ignoring blood vessels: localization 

errors of extended sources. As in the case of forward errors (Fig. 7), non-negligibly affected 

sources along small blood vessels were reduced (e.g., black box). In vessel-rich regions, 

localization errors were magnified (large red cones, cf. Fig. 6). Conventions as in Fig. 6.
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Fig. 9. 
Rank correlation between error measures and blood vessel density at multiple spatial scales. 

The diameter of the spherical kernels used to determine the local blood vessel density was 

varied between 0 and 100 mm. Note the calculation of local blood vessel density included 

vessels of all sizes; thus high values may indicate both, the presence of large vessels, or local 

clusters of many small vessels. (a) Results for forward errors, and (b) inverse errors.
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Table 2

Overview of algorithms and MRI data used for the segmentation of each model compartment. Additionally, 

the conductivities used for FEM simulations and references for these values are given.

Compartment Segmentation MRI data Conductivity (σ = S/m) References

White matter FAST MPRAGE 0.1429 Haueisen et al. (1995)

Gray matter FAST MPRAGE 0.3333 Haueisen et al. (1995)

Liquor FAST MPRAGE 1.5385 Haueisen et al. (1995)

Blood vessels Frangi filtering + regional 
growth

MPRAGE+GE 0.6250 (high-σ)
0.02 (intermediate-σ)
0.0063 (low-σ)

See Volume conductor head models section

Dura Masking GE 0.0650 Manola et al. (2005)

Compact bone BET2 GE 0.0063 Haueisen et al. (1995)

Fat Thresholding MPRAGE 0.0400 Haueisen et al. (1995)

Eye Regional growth MPRAGE 0.5051 Haueisen et al. (1995)

Soft tissue Regional growth Binary 0.1736 Haueisen et al. (1995)

Internal air Regional growth MPRAGE 0.0020 Haueisen et al. (1995)

Skin Isosurface Binary 0.4348 Haueisen et al. (1995)
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