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Although immunotherapy represents one of the most potent therapeutic anti-cancer

approaches, only a limited number of patients shows clinical benefit. Recent evidence

suggests that patients’ nutritional status plays a major role in immunotherapy outcome.

Fatty acids are essential in a balanced diet and well-known to influence the immune

response. Moreover, short-chain fatty acids (SCFAs) show beneficial effects in metabolic

disorders as well as in cancer and polyunsaturated fatty acids (PUFAs) contribute to body

weight and fat free mass preservation in cancer patients. In line with these data, several

studies imply a role for SCFAs and PUFAs in boosting the outcome of immunotherapy. In

this review, we specifically focus on mechanistic data showing that SCFAs modulate the

immunogenicity of tumor cells and we discuss the direct effects of SCFAs and PUFAs on

the immune system in the context of cancer. We provide preclinical and clinical evidence

indicating that SCFAs and PUFAs may have the potential to boost immunotherapy

efficacy. Finally, we describe the challenges and address opportunities for successful

application of nutritional interventions focusing on SCFAs and PUFAs to increase the

therapeutic potential of immunotherapeutic approaches for cancer.

Keywords: cancer, immunotherapy, fatty acid, SCFAs, PUFAs

INTRODUCTION

According to the world health organization (WHO), cancer is the second leading cause of death
globally. Worldwide, cancer accounted for nearly 10 million death in 2020 and the cancer burden
further continues to grow (1, 2). Immunotherapy, a treatment that utilizes the immune system
in order to help the body to fight cancer, represents one of the most promising novel treatment
approaches. A variety of different immunotherapeutic strategies are currently being used, including
immune checkpoint inhibitors (3), immuno-cytokines (4), monoclonal antibodies (5), adoptive
T or NK cell based therapies (6, 7) and cancer vaccines (8). To improve therapeutic outcome,
immunotherapy is often combined with other treatments such as chemotherapy or radiation (9).

However, despite long-lasting effects of immunotherapy in some responders (4, 10), disease
control occurs in only a small subset of patients (11–13). For example, <13% of the eligible
patients for immune checkpoint inhibitor therapy in the U.S. actually benefit from this treatment
(11). This low response rate can in part be explained by the fact that a small, but significant
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proportion of patients receiving immunotherapy develop
immune-related adverse effects that dictate cessation of
treatment (14). However, in the majority of the patients, the
underlying reasons for the lack of response to immunotherapy
are unknown. Various mechanisms have been proposed, such as
low programmed death-ligand 1 (PD-L1) expression on tumor
cells limiting efficacy of immune checkpoint inhibitors (15) and
low mutational burden in combination with downregulation of
human leukocyte antigen (HLA) proteins. The latter disrupts the
process of antigen presentation of tumor cells, thereby hindering
effective T cell recognition, eventually leading to failing of T
cell-based immunotherapeutic approaches (16). In addition, the
tumor microenvironment (TME) influences immunotherapy
responses, e.g., a hypoxic TME impairs anti-tumor immunity and
has been suggested to suppress the efficacy of immunotherapy
(17). Also, infiltration in the TME of regulatory T cells, myeloid-
derived suppressor cells (MDSCs) and M2 tumor-associated
macrophages (TAMs) is associated with immunosuppression
(16). Moreover, the efficacy of immunotherapy is dependent on
a competent immune system, but the latter can be compromised
due to multiple host factors, including malnutrition, a problem
often encountered in cancer patients (18, 19).

Several epidemiological studies have reported an association
between nutritional and metabolic status of cancer patients
and responsiveness to immunotherapy. For instance, a low
prognostic nutritional index (PNI) has been reported as an
independent predictor of short time to treatment failure in lung
cancer patients treated with the anti-PD-L1 immune checkpoint
inhibitor Atezolizumab (20). In another cohort of lung cancer
patients, malnutrition parameters, such as hypoalbuminemia
and significant weight loss, have been associated with decreased
immunotherapy efficacy (21). Moreover, clinical data from lung
cancer and melanoma patients have indicated that cachectic
cancer patients appear refractory to immune checkpoint
inhibitor therapy (22). In contrast, obesity has been associated
with improved responses to immune checkpoint blocking agents
in cancer patients (23). Obesity results in increased inflammation
and immunosenesence, tumor progression and PD-1-mediated T
cell dysfunction which is driven, at least in part, by elevated leptin
levels (24). Elevated levels of PD-1 are correlated with increased
T cell exhaustion, but also facilitates the success of anti-PD-1
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checkpoint therapy, contributing to increased overall survival
of obese cancer patients treated with anti-PD-1 antibodies (24).
Thus, evidence of an association between nutritional status
and immunotherapy efficacy is arising and the underlying
mechanisms explaining to what extent the nutritional status is
involved in the responsiveness to immunotherapy are becoming
increasingly clear.

Fatty acids (Supplementary Box 1) are essential in a balanced
diet and dietary fatty acids are well-known to influence the
nutritional status as well as the immune response of cancer
patients (25, 26). Specifically, oral nutritional supplementation
containing omega-3 polyunsaturated fatty acids (n-3 PUFAs)
resulted in preservation of body weight and fat free mass in
lung cancer patients (25). Moreover, nutritional intervention
with a specific diet rich in n-3 PUFAs, reduced serum
levels of inflammatory mediators in cancer patients receiving
radiotherapy (26). The role of omega-6 PUFAs (n-6 PUFAs)
on inflammation is more controversial. Although in general
high intake of n-6 PUFAs has been linked to increased
inflammation, some studies also suggest that specific n-6
PUFAs can actually decrease inflammation (27). Finally, as a
separate class of fatty acids, short-chain fatty acids (SCFAs),
formed in the gut upon fermentation of dietary fibers,
are known for their anti-inflammatory properties (28) and
show beneficial effects in metabolic disorders as well as in
cancer (29–31).

Overall, epidemiological evidence associating nutritional
status to immunotherapy outcome is increasing and the
beneficial effects of specific types of SCFAs and PUFAs on
nutritional status, metabolism and the immune response are
well-established (25–31). In the next paragraphs, the evidence
supporting the potential use of dietary interventions with SCFAs
and PUFAs to enhance immunotherapy efficacy will be discussed.

SCFAS AND PUFAS POTENTIALLY
ENHANCE IMMUNOTHERAPY EFFICACY

Epidemiological Data Indicate That SCFAs
Associate With Response to
Immunotherapy
Epidemiological studies specifically investigated the
relationship between serum and fecal SCFA concentration
and immunotherapy response. In that context, Nomura et al.
demonstrated that high concentrations of fecal acetic, propionic,
butyric and valeric acids were associated with longer progression-
free survival in patients with solid tumors receiving the anti-PD-1
antibodies Nivolumab or Pembrolizumab (32). In line with the
data presented by Nomura et al., metabolomics profiling of the
gut microbiota from patients with non-small cell lung cancer
(NSCLC) receiving Nivolumab showed that propionate and
butyrate were significantly associated with long-term beneficial
effects (33). However, Coutzac et al. reported an inverse relation
between serum SCFA levels and outcome in melanoma patients
receiving the anti-CTLA-4 antibodies Ipilimumab; patients with
lower serum levels of butyrate and propionate demonstrated
longer progression free survival (34). These findings may be
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the result of the complex interplay between production and
absorption of SCFAs in the gastrointestinal tract. Taken together,
the results of these studies suggest that fecal and/or serum SCFAs
concentrations associate with response to immunotherapy.

In vitro Data Indicate That SCFAs and n-3
PUFAs Enhance Immunotherapy Efficacy
A plethora of in vitro studies has indicated the potential of
SCFAs to improve immunotherapy efficacy via enhancing the
immunogenicity of cancer cells. Already in 1994, it was shown
that colon adenocarcinoma cells enhanced the expression of
major histocompatibility complex 1 (MHC-1) and intercellular
adhesion molecule 1 (ICAM-1) upon butyrate exposure, which
makes tumor cells more sensitive to cytotoxic lymphocytes-
mediated killing (35). More recently, acetate has been shown
to reduce the expression of CD155 on colorectal cancer cells
(36). CD155 is a ligand for the inhibitory receptor T cell
immunoreceptor with Ig and ITIM domains (TIGIT) expressed
on natural killer (NK) cells, T cells and dendritic cells (DCs)
and is frequently upregulated in malignant cells (37–39).
Downregulation of CD155 on cancer cells has been suggested
to enhance CD8+ T cell effector responses toward cancer cells
(36). Andresen et al. and Hogh et al. (40, 41) both demonstrated
that propionate induced the expression of the natural killer
group 2D (NKG2D) ligands MHC class I polypeptide-related
sequence A/B (MICA/B) on cancer cells. ActivatedNK and T cells
recognize these MICA/B positive cells via the NKG2D receptor,
followed by elimination of the target cell upon ligand-receptor
coupling (42). Altogether, these in vitro data imply that SCFAs
are capable of sensitizing cancer cells to immunogenic responses,
potentiating the effects of immunotherapeutic approaches used
to combat cancer.

Immunotherapy removes the break on the immune system,
potentially causing a range of undesired inflammatory side-
effects (43). Inflammation at barrier organs, including the
gastrointestinal mucosa, is a common sign of toxicity in
patients treated with immune checkpoint blockers (44). The
gastrointestinal mucosa has an important role in controlling
pathogenic organisms, while maintaining adequate permeability
for nutrient absorption (45). A disruptive intestinal barrier
can cause microorganisms to translocate into the bloodstream
leading to adverse effects (46). In the context of fatty acids, in
vitro studies have indicated that SCFAs significantly improve
intestinal barrier function, measured by transepithelial electrical
resistance (TEER) (47). In agreement, Nielson et al. found that
butyrate at physiologically relevant concentrations (1-10mM)
significantly improved epithelial barrier function in E12 human
colon cells (48) and Peng et al. also confirmed that butyrate
(2mM) improves intestinal barrier function (49). Together, these
data indicate that SCFAs can improve gut barrier function and
thereby might suppress the immune-mediated toxicities often
induced by immunotherapy.

Another possible side effect of immunotherapy is cytokine
storm syndrome, which can be harmful as it can interfere with
body functions and in severe cases even can lead to organ failure
and death (50). Park et al. demonstrated that acetate promotes

T cell differentiation into both effector T cells producing IL-17
and interferon γ (IFNγ) or regulatory T cells producing IL-10,
depending on the cytokine milieu (51). It has been proposed that
butyrate and propionate, but not acetate, modulate cytotoxic T
cell activation by inhibiting DC secretion of IL-12. Importantly,
butyrate and propionate supported a more tolerogenic immune
activation of the innate immune system instead of a pro-
inflammatory response in the gut (52). The results of these studies
highlight the potential of SCFAs to provide a balance between
inflammation and immunity, and it is tempting to speculate that
these SCFAs may prevent the cytokine storm syndrome often
induced by T cell based immunotherapy.

Similar as for SCFAs, in vitro studies have suggested that
n-3 PUFAs might contribute to suppression of exacerbated
inflammatory cytokine production by immune cells. Long
chain PUFAs, present in membrane phospholipid, are released
by phospholipases and serve as substrate for cyclooxygenase
isozymes and 5-lipoxygenase and are precursors for different
prostaglandins, leukotrienes, thromboxanes and other
eicosanoids. The relative abundance of n-3 and n-6 PUFAs
and the respective lipid species within these categories determine
the eicosanoid lipid mediators species and the respective effect
on immune function and their pro- or anti-inflammatory
potential. Where in general the eicosanoids derived from
the n-6 fatty acid (arachidonic acid, ARA) have a high pro-
inflammatory potential, the species derives from n-3 fatty acid
(eicosapentaenoic acid, EPA and docosahexaenoic acid, DHA)
have low or even anti-inflammatory properties. For instance, Hao
et al. showed that EPA treatment reduced lipopolysaccharide
(LPS) or prostaglandin E 2 (PGE-2)-induced expression of
IL-6 and tumor necrosis factor α (TNFα) and increased the
expression of IL-10 in both macrophages and hepatocytes (53).
While EPA reduces these inflammatory responses, its direct
anti-carcinogenic effects on tumor cells is preserved (53, 54).
Hence, n-3 PUFA supplementation has been suggested as a
useful addition for adoptive T cell therapy (54). These studies
propose that dietary interventions focusing on n-3 PUFAs could
also be beneficial to prevent or diminish the cytokine storm.

The efficacy of immunotherapy has been shown to be
dependent on the TME. For instance, a hypoxic TME impairs
anti-tumor immunity, induces T cell exhaustion and has been
suggested to suppress the efficacy of immunotherapy (17).
Moreover, infiltration of immunosuppressive cells, such as
regulatory T cells, MDSCs and M2 TAMs into the TME
is associated with immunosuppression, potentially affecting
immunotherapy efficacy (16) and a recent review highlighted
a major role for cancer-associated fibroblasts in the TME in
promoting immunotherapy resistance (55). Multiple studies
indicate that SCFAs, n-3 and n-6 PUFAs alter the TME.
Specifically, butyrate inhibited the hypoxia-induced induction
and activity of hypoxia-induced factor 1α (HIF-1α) in HT1080
human fibrosarcoma cells and butyrate also suppressed HIF-
1α and vascular endothelial growth factor (VEGF) expression
in vascular endothelial cells in hypoxic conditions in vitro (56).
Similarly, DHA supplementation in vitro resulted in decreased
HIF-1α total protein levels and transcriptional activity in the
malignant breast cell lines, but not in the non-transformed
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cell line (57). Thus, SCFAs and n-3 PUFAs may exert relevant
anti-cancer effect in a hypoxic TME. In addition, as described
before, depending on the cytokine milieu, acetate promotes a
pro-inflammatory TME via enhancing effector T cell function
or suppresses inflammation via promoting differentiation of
regulatory T cells (51). Also, in general, increased dietary n-
6 PUFA consumption is associated with a pro-inflammatory
TME, while n-3 PUFA rich diets suppress inflammation (the
effects of dietary PUFAs on immune cells in the TME has been
extensively reviewed by Khadge et al.) (58). Furthermore, SCFAs
as well as n-3 PUFAs have been shown to inhibit fibroblast matrix
metalloproteinase secretion into the TME (59, 60). However,
it remains to be studied whether SCFAs, n-3 and n-6 PUFAs
influence the outcome of immunotherapy via modulation of
the TME.

In addition, specific PUFAs have been described to enhance
immunotherapy outcome via other mechanisms. For example,
it has been shown that DHA can enhance the anti-proliferative
as well as the apoptotic effect of tumor necrosis factor-related
apoptosis inducing ligand (TRAIL—an immune-cytokine used as
immunotherapy) specifically for cancer cells (61). Kumar et al.
demonstrated the potential of ARA to enhance the capacity
of DCs to exhibit increased in vitro and in vivo chemotaxis
accompanied with better stimulatory and cytotoxic T cell activity
as well as a favorable T helper cell 1 (Th1) cytokine profile. These
results highlight the potential of ARA to enhance DC capacity for
DC-based vaccines for cancer immunotherapy (62).

Preclinical in vivo Data on the Effects of
SCFAs and PUFAs on Immunotherapy
Outcome Are Inconclusive
Several in vivo studies investigated the effects of SCFAs
on the efficacy of immunotherapy. One of the earliest
observations, in 1994, indicated that intraperitoneally injected
butyrate significantly enhanced the immune-mediated effects of
recombinant IL-2 treatment in a subcutaneous adenocarcinoma
rat model (35). In a more recent study, mice bearing melanoma
or pancreatic tumors were treated with an adoptive T cell
therapy approach. The results showed that the in vivo anti-
tumor immunity of transferred cytotoxic T cells was ameliorated
when cultured ex vivo in presence of butyrate and pentanoate.
The improved in vivo cytotoxic T cell response was explained
by histone deacetylase activity (HDAC) inhibiting capacity of
butyrate and pentanoate, which enhanced the expression of
effector molecules (TNFα and IFNγ) produced by cytotoxic T
cells (63). However, it should be noted that the effect of cytotoxic
T cells transferred in tumor bearing mice was absent when
pentanoate was administrated in vivo via injections (63). The
exact mechanism has not yet been elucidated, but one possible
explanation might be that in vivo pentanoate administration,
similarly as butyrate, propionate and acetate (64–66), not only
improves the function of effector T cells, but also promotes T
cell differentiation into regulatory T cells (51), thereby resulting
in no overall beneficial effect of the adoptive T cell therapy
approach in vivo. Yet, the promoting or suppressing function
of SCFAs on anti-cancer T cell mediated cytotoxicity in vivo

requires further examination, especially since another study did
not observe any changes in the frequency of regulatory T cells
in tumors upon oral butyrate administration in a subcutaneous
colon cancer mouse model (67). Actually, in this study, oral
butyrate administration even boosted the anti-tumor responses
of CD8+ effector T cells in vivo (67). Altogether, from these
data it is speculated that SCFAs can push the immune response
in 2 direction, either toward enhanced CD8+ effector T cell
functioning or toward increased differentiation of immuno-
suppressive regulatory T cells. Which direction is activated by
the SCFAs most likely depends on the cytokine environment
(51). Although these studies did not show directly a beneficial
effect of SCFAs on adoptive T cell therapy efficacy in vivo, these
data imply a role for SCFAs in ex vivo culturing of T cells used
in adoptive T cell therapies (63). Moreover, several preclinical
mouse studies have investigated the combinatory effects of SCFAs
and immune checkpoint inhibitors. Han et al. demonstrated that
oral administration of inulin, a dietary fiber serving as a nutrient
source for the gut bacteria which generate SCFAs, modulates
the gut microbiome composition. Consequently, the anti-tumor
activity of anti-PD-1 antibodies was amplified in murine models
of colon cancer and melanoma (68). In agreement, mice
bearing melanoma tumors treated with anti–PD-1 therapy in
combination with a fiber-rich diet demonstrated delayed tumor
outgrowth compared to mice receiving a fiber-poor diet. The
therapeutic gain observed in the mice receiving the fiber-rich
diet might partly be explained by the significantly higher levels
of propionate observed in the stool samples (69). Furthermore,
anti-PD-1 antibody efficacy was largely impaired inMC38-tumor
bearing mice receiving fecal microbiota transplantation (FMT)
from newly diagnosed colorectal cancer patients compared to
mice receiving FMT from healthy controls. Remarkably, dietary
pectin, a soluble fiber that is fermented in many metabolites in
the gut, including SCFAs, could reverse the poor efficacy of anti-
PD-1. Follow-up experiments indicated that supplementation
of butyrate (but not acetate) in the drinking water, instead of
pectin, was already sufficient to result in synergistic therapeutic
effects when combined with immune checkpoint inhibitor
therapy (70). Although these studies suggest a role for SCFAs
in supporting immune checkpoint inhibitor therapy, it was
previously shown that butyrate supplementation reduced the
efficacy of anti-CTLA-4 antibodies in multiple tumor mouse
models, by inhibiting the upregulation of the co-stimulatory
molecules CD80/CD86 on dendritic cells (34). In line, no
beneficial effect of anti-PD-1 treatment in combination with
pentanoate injections was observed in a subcutaneous mouse
model for melanoma (63). The authors did not explore the reason
of these negative data, but given the small number ofmice and the
large variation in the data, the power of this experiment may have
been too low to reach statistically significant differences. Overall,
currently published in vivo studies investigating the effects of
SCFAs on the outcome of immunotherapy provide contradictive
information. The opposing results obtained in the different
studies could be related to differences in the experimental design
such as concentrations, route of administration of the SCFAs or
different dietary fibers fermentable in SCFAs, different response
read-outs as well as different types of immunotherapy treatment.
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Therefore, improved standardization of intervention designs,
and use of appropriate experimental models will further facilitate
systematic evaluation of the effects of SCFAs on the outcome
of immunotherapy.

In contrast to SCFAs, preclinical in vivo studies on the direct
effects of dietary PUFAs on the outcome of immunotherapeutic
approaches in cancer are lacking. However, several preclinical
cancer models show that these lipids can modulate immune
responsiveness. For example, in a mouse model for obesity-
associated breast cancer, a high fat diet (HFD) in combination
with fish oil resulted in a reduction of inflammatory markers
(TNFα, IL-6) and in an increase of the anti-inflammatory marker
IL-10, compared to HFD alone (71). Additionally, experimental
research in colon cancer tumor bearing cachectic mice has
revealed that intervention with a diet rich in n-3 PUFAs reduced
the inflammatory state and improved immune competence (72).
Furthermore, in a mouse model of castrate-resistant prostate
cancer, administration of a diet rich in n-3 PUFAs inhibited
the function of M2 tumor associated macrophages (TAMs)
(73). Opposite to n-3 PUFAs, diets rich in saturated fatty acids
(SFAs) promote an immunosuppressive TME, conceivably via
stimulating chronic low-grade inflammation. For example, Liu
et al. demonstrated that SFAs enhance the differentiation of pro-
tumorigenic TAMs. In this study, breast tumor-bearing mice
were fed a high fat diet consisting of either cacao butter (rich
in SFAs) or fish oil (rich in n-3 PUFAs). Fish oil resulted in
uncoupled obesity-associated tumor growth and reduced the
number of pro-tumoral TAMs, whereas cacao butter enhanced
the differentiation of pro-tumoral TAMs (74). In addition, the n-
6 PUFAARA, which can be converted into several prostaglandins
including PGE-2, stimulated the accumulation of myeloid-
derived suppressor cells (MDSC) inhibiting immunosurveillance
in the TME (75). Overall, these data suggest that n-3 PUFAs
can reduce chronic low-grade inflammation in cancer, while
SFAs and n-6 PUFAs lead to an immunosuppressive TME via
stimulation of chronic low-grade inflammation. Nevertheless,
it remains to be addressed whether these SFAs, n-3 and n-
6 PUFAs influence the outcome of immunotherapy. Here as
well, standardization of intervention designs, and selection
of appropriate experimental models will expedite systematic
exploration of the potential of n-3 or n-6 PUFAs to contribute
to clinical efficacy of immunotherapy.

In addition to direct effects of PUFAs on immune cells,
PUFAs can also influence the immune response by modulating
the gut microbiome. Preclinical evidence has shown that
n-3 PUFAs, especially EPA and DHA, can modify the gut
microbiota composition in several rodent models in a
beneficial manner by increasing the intestinal population
of Bifidobacteria (76, 77), Akkermansia muciniphila bacteria
(77, 78) and Firmicutes bacteria (79). Contrary, a diet high in
n-6 PUFAs has been shown to induce gut microbiome dysbiosis
resulting in a marked reduction of Firmicutes, Clostridia and
Lachnospiraceae bacterial presence while stimulating growth
of Bacteroidetes and Deferribacteraceae bacteria and the
pro-inflammatory Mucispirillum schaedleri and Lactobacillus
bacteria (80). In line, supplementation of high-fat diets rich
in n-6 PUFA to aged mice caused dysbiosis resulting in

intestinal inflammation by promoting bacterial overgrowth
while depleting microbes from the Bacteroidetes and Firmicutes
phyla (81). Although evidence is arising that the microbiota
composition is essential for determining immunotherapy
outcome, there is currently no consensus what type of
microbiota composition or which microbial species are robustly
associated with clinical responses; while one study reported
an association between high abundance of Bifidobacterium
longum, Collinsella aerofaciens, and Enterococcus faecium
and improved responses to immunotherapy (82), other studies
reported an association between higher abundance of microbes
from the Verrucomicrobiota and Firmicutes phyla and enhanced
immunotherapy responses (83, 84). Thus, despite recognition
of prebiotic properties of PUFAs, the effects of PUFAs on
immunotherapy outcome remain ambiguous.

Fermentable Fibers and n-3 PUFAs Have
the Potential to Enhance Clinical
Immunotherapy Efficacy
Data on specific fatty acid tailored dietary intervention studies
to explore the effect on immunotherapy responsiveness in
cancer patients are not yet available. However, recently, a
cohort study investigated whether intake of dietary fiber
(fermenting into SCFAs) affects clinical outcome of melanoma
patients treated with different immune checkpoint inhibitors.
The patients reporting sufficient dietary fiber intake, using
the National Cancer Institute Dietary Screener Questionnaire,
demonstrated a significantly longer progression-free survival
compared to patients reporting insufficient dietary fiber intake
(69). To evaluate whether dietary fiber intake and probiotic use
may synergistically affect clinical outcomes in these melanoma
patients treated with immune checkpoint inhibitors, the study
compared levels of fiber intake and probiotic use in this
patient population. Strikingly, longest progression-free survival
was observed in patients reporting sufficient dietary fiber
intake without probiotic use (69). These findings suggest
that use of commercially available probiotics consumed by
this study population is not beneficial in the setting of
immune checkpoint inhibitors, while dietary fiber interventions
synergistically enhance immunotherapy efficacy potentially by
supporting a diverse microbiome and increasing SCFA content.
Along this line, a phase 2 clinical trial (NCT04645680), aiming
to investigate the effects of dietary fiber intervention on the
structure and function of the gut microbiome in patients
with melanoma treated with Pembrolizumab or Nivolumab, is
currently recruiting patients.

Although direct clinical evidence regarding the effects of
PUFAs on immunotherapy outcome is lacking, multiple clinical
intervention studies in cancer patients indicate that n-3 PUFAs
modulate immune responsiveness by reducing chronic low-grade
inflammation (85). For example, the role of EPA and DHA
on inflammatory and oxidative status in patients with NSCLC
treated with chemotherapy was investigated in a multicenter
randomized double-blinded control trial. Results indicated that
dietary administration of these n-3 PUFAs decreased the levels of
oxidative stress as well as the production of the pro-inflammatory
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mediators C-reactive protein (CRP) and IL-6 (86). Furthermore,
increased concentrations of EPA and DHA, as a result of
consumption of a medical food rich in fish oil, protein, and
leucine, reduced serum levels of the inflammatorymediator PGE-
2 in a randomized clinical trial for patients receiving radiotherapy
(26). Overall, these clinical intervention studies indicate that
n-3 PUFAs have anti-inflammatory effects in cancer patients.
However, as indicated before, it remains unclear how these n-3
PUFAs influence the outcome of immunotherapy.

Several clinical intervention studies have associated n-3 PUFA
rich diets with modulation of the gut microbiome in humans.
For example, healthy volunteers receiving n-3 PUFA rich diets
for 8 weeks, reversibly increased the abundance of the SFCA
producing bacteria Bifidobacterium, Roseburia and Lactobacillus
in the gut (87). In addition, type 2 diabetes patients treated
with a diet enriched with 100 g sardines 5 days a week for 6
months demonstrated a decreased Firmicutes/Bacteroidetes ratio
at the end of the study compared to standard diet. Both dietary
interventions decreased phylum Firmicutes concentrations (88).
These clinical studies, similarly as for the in vivo animal data,
indicate that n-3 PUFAs may modulate the gut microbiome
beneficially. However, since there currently is no consensus what
type of microbiota composition or which microbial species are
robustly associated with clinical responses to immunotherapy,
the effects of n-3 PUFAs on immunotherapy outcome in cancer
patients remains uncertain.

CHALLENGES, OPPORTUNITIES AND
FUTURE DIRECTIONS

In this review we have described the influence of dietary
intervention with SCFAs and dietary fibers that are fermented
in SCFAs on immunotherapy efficacy. Proposed mechanisms
through which SCFAs enhance immunotherapy efficacy include
sensitization of cancer cells to immunogenic responses, improved
gut barrier function and enhanced cytotoxic T cell functioning
(see Figure 1). Moreover, recent clinical data indicate that fiber
rich diets are beneficially impacting immunotherapy outcome,
potentially via supporting fiber fermentation, which yields
increased content of SCFAs or by increasing the gut microbiota
diversity. Overall, dietary fiber or SCFA administration holds the
potential to improve immunotherapy efficacy. Yet, most evidence
is rather speculative and direct proof for an effect of SCFAs on
immunotherapy outcome is relatively sparse and sometimes even
contradictory. Therefore, to fully understand the mechanisms
underlying the effects of different SCFAs on immunotherapy
efficacy, more research will be essential.

We have further depicted the impact of dietary intervention
with PUFAs on immunotherapy outcome. The currently available
data indicate that for cancer patients with elevated systemic
chronic low-grade inflammation, e.g., obese patients, a diet rich
in n-3 PUFAs might be preferred above a n-6 PUFA rich diet
which promotes an immunosuppressive TME by stimulating
chronic low-grade inflammation. Similar to patients with obesity,
malnourished patients suffering from sarcopenia or cachexia
often have chronic inflammation leading to immune senescence

and may also benefit from intervention with n-3 PUFAs to
reduce chronic inflammation and thereby potentially improve
immune competence and immunotherapy efficacy. Nonetheless,
whether in these malnourished patients, consumption of anti-
inflammatory n-3 PUFAs restores, stimulates or actually further
inhibit immunotherapy efficacy is currently unknown. One
could also argue that elevated n-6 PUFA levels, which are
regarded as more pro-inflammatory, may support the immune
activating properties of immunotherapy in patients with immune
senescence. Thus, depending on the nutritional status of cancer
patients, either n-3 or n-6 PUFAs may contribute to enhance
immunotherapy efficacy, awaiting further validation in follow-
up experiments.

The collective, sometimes contradictive or inconclusive
evidence available on the use and influence of dietary
intervention with SCFAs or PUFAs to improve therapy
outcome, highlights the importance of metabolic profiling and
personalized medicine in this context. It will be essential to
develop tailored diets: a single recommended diet for all cancer
patients treated with immunotherapy most likely not exist
due to the variability in metabolism of lipids and immune
responses. In that context, nutritional status or patients’ body
composition should be taken into account. Obese individuals
for instance, have significantly higher fecal SCFA concentrations
with a similar fiber intake, compared to lean individuals
(89). Also, malnourished patients may require a different
route of administration of the dietary intervention then obese
patients. There are different ways to administer diets according
to the patients’ needs, including classical oral intake via a
dietary regimen, but also supplementation with enriched oral
nutritional supplements, capsules or concentrated parenteral
emulsions or injections, specifically for patients who cannot
adhere to the recommended intake via the classical way. Since
personalized nutritional interventions are relatively feasible, this
approach holds the potential to extend the clinical benefit of
immunotherapeutic approaches to many different populations
who currently do not benefit from this treatment. Yet, several
challenges need to be overcome before fatty acid focused dietary
regimens can be integrated in standard of care. First of all, dietary
interventions require sufficient consumption and adherence to
the recommended intake, while some diets, e.g., ketogenic diet,
are very difficult to comply with. In addition, cancer cells require
fatty acids for energy storage, membrane production, and the
generation of signaling molecules (90). Hence, it will be complex
to balance fatty acid focused dietary interventions in such a
manner that they suppresses tumor vitality instead of promoting
tumor growth. Moreover, different cancer types vary in their
preferred energy source and metabolic activity. For instance,
many cancer types overexpress stearoyl-CoA desaturases (SCD)
enzymes (91, 92) which prevents SFA lipotoxicity, and has been
suggested to reduce ferroptosis triggered by peroxidation of
PUFAs (93). Also, cancer cells frequently upregulate enzymes
involved in lipid elongation, which appears to promote cancer
progression (94). Additionally, although epidemiological, in vitro
and preclinical data indicate a potentially beneficial effect of
dietary fibers that are fermented into SCFAs, further research
would be required to better understand the specificity of the
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FIGURE 1 | Proposed mechanisms through which SCFAs and PUFAs enhance immunotherapy efficacy. Effects on gastric barrier: SCFAs can improve gut barrier

function and have, as well as n-3 PUFAs, anti-inflammatory effects. Diets rich in n-3 PUFAs have a beneficial effect on the gut microbiome. Both have beneficial effects

on gastro-intestinal functioning, thereby reducing immune-mediated toxicity and may enhance to immunotherapy outcome, as the need of cessation of treatment is

lower. Diets rich in n-6 PUFAs lead to dysbiosis accompanied with pro-inflammatory effects. Effects on immune system: SCFAs promote T cell differentiation in both

(Continued)
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FIGURE 1 | effector T cells and regulatory T cells, depending on the cytokine milieu. SCFAs also inhibit IL-12 secretion from dendritic cells modulating effector T cell

activation. Contrary, n-6 PUFAs enhance dendritic cell capacity to stimulate cytotoxic T cell activity, directly reducing tumor growth. n-6 PUFAs’ pro-inflammatory

effects occur mainly via stimulation of macrophages contributing to chronic low-grade inflammation. In contrast, n-3 PUFAs suppress inflammation via reducing IL-6

and TNFα and increasing IL-10 production. Effects on tumor cells: SCFAs enhance the expression of MHC-1 and ICAM-1 on tumor cells, making them more sensitive

to cytotoxic lymphocytes-mediated killing. SCFAs also induce the expression of MICA/B on tumor cells, making them a target for effector T cells via the NKG2D

receptor. SCFAs reduce the expression of CD155 on tumor cells, inhibiting the interaction with TIGIT expressed on effector CD8+ T cells. ICAM-1, intercellular

adhesion molecule 1; IL-6, interleukin 6; IL-10, interleukin 10; IL-12, interleukin 12; LFA, lymphocyte function-associated antigen 1; MHC-1, major histocompatibility

complex 1; MICA/B, MHC class I polypeptide-related sequence A/B; NKG2D, natural killer group 2D; n-3 PUFAs, omega 3 polyunsaturated fatty acids; n-6 PUFAs,

omega 6 polyunsaturated fatty acids; SCFAs, short chain fatty acids; TCR, T cell receptor; TIGIT, T cell immunoreceptor with Ig and ITIM domains; TNFα, tumor

necrosis factor α.

different SCFAs. Furthermore, it is difficult to reach high levels
of SCFAs systemically and in peripheral organs via dietary intake.
The gut lumen is the major site of production of SCFAs and
there is a strong biological gradient for each SCFA from the gut
lumen to peripheral organs, which leads to different exposure
of cells and tissues to SCFAs (95). Finally, even if sufficiently
high systemic levels of SCFAs are reached, it will be essential to
prevent comorbidity-related adverse effects such as hyperphagia,
hypertriglyceridemia, ectopic lipid deposition in liver and skeletal
muscle, and liver and muscle insulin resistance (96).

To ensure clinical application, the direct effects of SCFAs
and PUFAs on the immune system and TME and the effects of
dietary interventions on the gut epithelial cells and microbiome
should be tested. Crucially, the most favorable ratios between
different SCFAs, branched SCFAs, saturated, unsaturated and
n-3 PUFAs/n-6 PUFAs, as well as different dosages of the
fatty acids should be explored. Human cohort and clinical
intervention studies need to be established. If standardized well,
these human studies will reveal reliable correlations between the
intake of relevant food components and follow-up data from
cancer patients receiving immunotherapy, which will help us to
better understand the etiology of the responsiveness in patients
with different metabolic profiles. To prevent heterogeneity and
create robust data, these human clinical interventions studies
will also need standardization of protocols (e.g., timing of
dietary interventions, timing and dosages of the immunotherapy
and fecal and serum samples collection) in combination with
detailed multi-analysis. In such well-controlled human clinical
trials, baseline and follow-up measurements regarding tumor
progression will proof the impact of diet on the outcome
of immunotherapy. Moreover, metabolic and biochemical
parameters will contribute to the unraveling of the mechanisms
underlying the effects of SCFAs and PUFAs on immunotherapy
responsiveness in cancer.

Currently, no nutritional biomarkers to predict which
patients will respond to immunotherapy are available. Promising
epidemiological data do however indicate an association
between the patients’ nutritional status and immune checkpoint
inhibitor therapy efficacy, pointing toward a potential role for
fecal and serum SCFA content as well as gut microbiome
diversity as biomarker. These data hold promise for the
development of biomarker signatures to predict treatment
responses, based on metabolic and biochemical data and
validated food frequency/lifestyle questionnaires. Most likely,
multiple biomarker signatures will be required taking into

account subgroup analysis, e.g., patients with obesity will respond
differently compared to malnourished patients and therefore
need different biomarker signatures. Finally, it will be crucial to
validate the developed biomarker signatures in well-controlled
human clinical intervention studies as described above.

In conclusion, dietary regimens that focus on SCFAs
and PUFAs to improve the outcome of immunotherapeutic
approaches hold great promise. Specifically, SCFAs can sensitize
cancer cells to immunogenic responses, improve gut barrier
function, reduce the cytokine storm and activate cytotoxic T
cells. Furthermore, fibers which are fermented into SCFAs can
also indirectly influence the outcome of immunotherapy via
modulation of the gut microbiome. Similar to SCFAs, n-3 PUFAs
may also reduce the cytokine storm and inhibit chronic low-
grade inflammation potentially creating a TME where immune
checkpoint inhibitors work more efficiently, whereas other
patients may benefit from a diet rich in pro-inflammatory n-
6 PUFAs actually supporting the immune activating properties
of immunotherapy. Despite all the promising data, several
challenges remain to be overcome, highlighting the necessity of
more studies before dietary interventions focusing on SCFAs and
PUFAs can become standard of care in the clinic.
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