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Vast repertoires of unique antigen receptors are created in developing B and T
lymphocytes. The antigen receptor loci contain many variable (V), diversity (D) and
joining (J) gene segments that are arrayed across very large genomic expanses and are
joined to form variable-region exons of expressed immunoglobulins and T cell receptors.
This process creates the potential for an organism to respond to large numbers of different
pathogens. Here, we consider the possibility that genetic polymorphisms with alterations
in a vast array of regulatory elements in the immunoglobulin heavy chain (IgH) locus lead to
changes in locus topology and impact immune-repertoire formation.
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INTRODUCTION

The adaptive immune response has evolved to recognize pathogens using antigen-specific receptors
expressed on B and T lymphocytes. Two identical immunoglobulin (Ig) heavy chains (IgH) and two
identical light chains (Igk or Igl) constitute the B-cell receptor (BCR). The two lineages of T cells
are distinguished by the type of T-cell receptor (TCR) expressed. TCRab is encoded by the Tcra and
Tcrb loci, whereas TCRgd is encoded by the Tcrg and Tcrd loci. Developing B and T cells undergo
an ordered set of DNA rearrangements termed V(D)J recombination, using RAG recombinase
(RAG1/2) and thereby creating a diverse repertoire of antigen receptors (1). The assembly of antigen
receptors involves the juxtaposition of variable (V), diversity (D) and joining (J) gene segments into
a V gene exon that encodes the antigen binding domain of antigen receptors. However, there are
several barriers which must be overcome to enable a suitably diverse Ig repertoire to emerge. Many
of the concepts discussed here are applicable to TCR loci.

Formation of a diverse Ig repertoire is critically dependent on proficient pro-B and pre-B cell
function since it is in these cells that IgH and IgL chain genes are assembled through V(D)J
recombination, respectively. V(D)J recombination requires that antigen receptor genes undergo
ordered rearrangement with DH to JH joining preceding VH to DHJH recombination (Figure 1A).
There are ~100 functional Igh locus VH gene exons that must recombine with one rearranged DJH
element, that is assembled from one of 8-12 DH and one of 4 JH gene segments in C57BL/6 mice
(Figure 1) (1). The introduction of RAG dependent DNA breaks at recombination signal sequences
(RSSs) adjacent to each rearranging gene segment initiates Igh gene assembly (1). RAG1/2 loads at
the recombination center (RC) situated in the region spanning Eµ and the most 3’ DH segment,
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DQ52 (2). RAG1/2 has been proposed to track from the RC to
locate a suitable RSS for synapsis and DNA cleavage (3).
THE VH GENE USAGE CONUNDRUM

The number of V, D, and J gene segments and the availability of
those segments for rearrangement determines the composition
and complexity of antigen receptor repertoires. The Igh locus is
quite large in linear genomic distance, extending 2.9 Mb and
containing ~100 functional VH gene segments. V gene usage is
only quasi-random in the pre-selected Igh repertoire as V genes
rearrange at very different intrinsic frequencies (4–11). In studies
of V germline transcript levels, transcription factor (TF) binding,
RSS quality, and the distribution of a variety of epigenetic marks
each make a contribution, but no one variable, or combination of
variables, fully accounts for unequal V gene usage (4–6, 8, 12).
Although the V gene accessibility hypothesis (13–15) offered an
attractive model to explain V gene usage, recent studies have
made plain that V gene accessibility is a necessary but insufficient
condition for participation in V->DJ rearrangement (16, 17).
Therefore, the factors underpinning unequal V gene
rearrangement frequencies remain to be determined.

It is important to note that the potential contribution of Ig
haplotype diversity in these processes has been underappreciated
(18). Despite the fact that the Ig loci of natural outbred
organisms are known to be extremely diverse, much of our
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understanding of the mechanisms dictat ing V(D)J
recombination have come from studies of inbred models.
However, even in inbred models, it has been demonstrated
that Ig genetic diversity is more extensive than initially
appreciated, in many cases mirroring (or even exceeding) what
has been observed in human populations and other more
outbred organisms (19–28). In mouse, for example, a
comparison of germline VH sequences between C57BL/6 and
BALB/c revealed surprisingly little overlap in the germline
repertoires of these two strains. Of the 99 C57BL/6 and 164
BALB/c VH alleles compared, only 5 were found to be identical
(23), likely the result of both allelic sequence divergence and
structural variation associated with differences in V gene content
between the two strains. Extended comparisons of VH germline
alleles across additional inbred wild-derived strains, thought to
represent diverse mouse sub-species origins, revealed even
greater diversity, suggesting that Ig germline variation across
commonly used mouse inbred strains is likely to be vast (24).
Similar inter-strain diversity has been observed within the mouse
DH gene loci as well (19, 20). These and other data clearly
demonstrate the presence of extensive polymorphism within the
Igh locus, and highlight the potential influence of both sequence
diversity and Ig gene segment number as significant contributors
to Ig repertoire diversity.

There is a growing body of evidence supporting the potential
impact of genetic polymorphism on V(D)J recombination. First,
multiple studies of the naïve repertoire in human monozygotic
A

B

FIGURE 1 | The Igh locus contains ~100 VH gene segments over an almost 3Mb genomic interval. (A) (Upper panel) Diagram of the Igh locus indicating VH, D, JH,
and CH exons and regulatory elements (not to scale). The intronic Em and 3′Ea super-enhancers and intergenic control region 1 (IGCR1), composed of two divergent
CBEs, are critical regulatory elements. CBE orientation is indicated by (purple) triangle direction. The 3′ regulatory region (3′RR) is a composite of nine CBEs located
at the 3′ boundary of the Igh locus adjacent to 3′Ea super-enhancer. Sites I, II, and III (purple circles) anchor the sub-topologically associating domain (Sub-TADs) A,
B, and C. The VHS107 family along with nine smaller VH families comprise the intermediate VH segments. The interspersed distal VH gene segments are composed
of the VHJ558 and VH3609 families and are located at the 5’ end of the locus. (Lower panel) The VH7183 (blue bars) and VHQ52 families (red bars) are located at the
DHJH-proximal end of the locus. Each DHJH -proximal VH exon is paired with a recombination signal sequence (not shown) and a CBE (purple triangle). The CBE
associated with VH5-1 exon is non-functional (gray triangle). VH81X (VH5-2) is the second VH exon gene relative to IGCR1. (B) Schematic of the stepwise process of
V(D)J recombination. DH-JH rearrangement precedes VH-DHJH recombination.
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twins have demonstrated that VH, DH, and JH usage is highly
heritable (29, 30). Second, genetic variants within the Ig loci
associate with variation in gene usage observed between
individuals, including examples of Ig gene coding and non-
coding single nucleotide polymorphisms (SNPs) (31, 32), as
well as large structural variants (32–34). Here we examine the
confluence of VH gene identity with locus polymorphism and
locus architecture as determinants for VH gene usage in V(D)J
recombination and ultimately the diversity of the preselected
Ig repertoire.
IGH LOCUS ARCHITECTURE AND
CONTRACTION ARE IMPLICATED IN
REPERTOIRE DIVERSITY

It is essential that all VH genes achieve spatial proximity with the
RC located at the Eµ-DHJH domain to produce a fully
representative Ig repertoire (Figure 1B). In C57BL/6, VH exons
are segregated into three clusters, the proximal, intermediate and
distal VH regions, that collectively span ~2.4 Mb. Recent studies
have established that chromosomes are folded into hierarchical
domains of various length scales. Chromosomes are
nonrandomly located in nuclei within chromosomal territories
(35, 36) which are subdivided into chromosomal compartments
(36) that are further partitioned into topologically associating
domains (TADs) (36, 37). TADs are zones in which intraregional
interactions are more frequent than those traversing the
boundaries between TADs (37–39). TAD organization reflects
the functional partition of chromatin regions by transcriptional
activity (37, 39), histone modifications (37–40), and replication
timing (41) implying a link between function and genome structure.

The Igh locus is contained within a 2.9-Mb TAD in pro-B cells
(42). 5C studies demonstrate that themurine Igh TAD is subdivided
into two highly structured sub-TADs A and C, corresponding to the
DH-proximal and DH-distal VH gene families, respectively, while the
less structured sub-TAD B includes the intermediate VH gene
segments (42). Correspondingly, live pro-B cell imaging indicates
that Igh locus topology is organized as a series of three large,
intermingled chromatin loops anchored close to the DJH RC, that
provide comparable access between distal VH gene segments with
rearranged 3’DHJH (43). Hence, Igh locus topology is best described
as a series of three large chromatin loops that are anchored at sub-
TAD boundaries.
THE BUILDING BLOCKS OF TAD
ARCHITECTURE: LOOP EXTRUSION,
CTCF AND ENHANCER-PROMOTER
CONTACTS

TAD boundaries are frequently marked by CBEs in a convergent
orientation (40, 44) which participate in loop extrusion (45, 46).
The loop extrusion model posits that chromatin loops are
formed when cohesin is loaded onto and reels in DNA in an
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ATP-dependent process (45–48). Architectural “stripes”,
visualized within Hi-C maps (49) may form when one subunit
cohesin stalls near a strong CTCF loop anchor while the second
one slides along the chromatin to formmultiple interactions. The
extrusion model explains how enhancers can processively track
along arrays of promoters separated by long genomic intervals
(45, 46, 50) and has been proposed as the mechanism that
enforces deletional CSR (51, 52) and creates Igh locus
contraction during V(D)J recombination (52). However, while
sharp TAD boundaries are lost upon CTCF inactivation,
compartment organization as well as TAD-like globular
chromatin domain structures are preserved in single cell
experiments (53) and the impact of CTCF inactivation on the
transcriptome is small (54). Cohesin has been shown to promote
clustering of enhancer elements in 3D spatial hubs (55). Intra-
TAD contacts between regulatory elements facilitated by cohesin
loop extrusion can be stabilized by other mechanisms such as
homo-dimerization of the structural regulator YY1 (56). The
inter-relationship of loop extrusion and a putative promoter-
enhancer interactome in the Igh locus remains largely undefined.
IS IGH LOCUS TOPOLOGY CONFIGURED
BY A PROMOTER-ENHANCER
INTERACTOME?

New unpublished work from the Kenter group has identified
highly transcribed VH gene promoters and a series of novel
enhancers (NEs) that are pro-B cell specific, are involved in
anchoring Igh subTAD loops and influence Igh repertoire
formation in pro-B cells through formation of a promoter-
promoter-enhancer hub. This is an interesting proposition as
hundreds of VH exon promoters and newly recognized
enhancers could participate in an intricate contact interactome
that spatially organizes VH segments within the previously
defined large chromatin loops and defines access probability to
the RC and DJ segments. The presence of intra-TAD promoter-
promoter-enhancer interactomes has been documented in
several genetic loci and in different developmental and
differentiation systems. Here we consider evidence that
enhancers and promoters initiate specific interactions in
nuclear space and propose that this interactome influences
repertoire diversity.

Multiple lines of evidence support the existence of enhancer
interactomes in different genomic contexts (57). While some
studies link chromatin contacts between regulatory elements to
transcriptional activity (58), in other examples these contacts
precede gene activation (59). Most prominently, enhancers in
olfactory sensory neurons form a large inter-chromosomal hub
(60). In other systems, super-enhancers, clustered arrays of
enhancer elements in close spatial proximity that can span
several kilobases and are linked to the regulation of cell-
identity genes with high transcriptional activity (61, 62), are
highly involved in the formation of specific chromatin contacts.
Genome architecture mapping identified abundant three-way
contacts between super-enhancers and highly transcribed
May 2021 | Volume 12 | Article 682589
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chromatin regions beyond the pairwise interactions detectable by
3C techniques (58). Similarly, the enhancer elements within a
super-enhancer and target promoters can cluster spatially to
form a hub structure with simultaneous multi-way interactions
as demonstrated by multi-contact 4C for the locus control region
of the beta-globin locus (63).
INTERGENIC IGH POLYMORPHISM MAY
ALTER ENHANCER AND PROMOTER
FUNCTION

When considering the Igh locus it is important to note that
genetic differences between inbred strains extend beyond coding
variation into intergenic regions. To date, the mouse IgH locus
has only been fully characterized in C57BL/6, which, as we noted
above, has served as the primary model for characterizing the
functional regions and mechanisms that dictate V(D)J
recombination. However, a partial assembly, including the
proximal region of Igh in the 129S1/SvImJ mouse strain was
published in 2007 (20). A comparison of these haplotypes
revealed evidence of both local sequence conservation as well
as divergence, including examples of structural variation and
single nucleotide differences (20) (Figure 2). For example,
several complex regions (Figure 2A) represent insertions of Ig
genes in the 129S1/SvImJ strain that are absent in C57BL/6. In
addition, the degree of sequence identity between these two
strains varies considerably across the locus, with sequence
Frontiers in Immunology | www.frontiersin.org 4
identities ranging between 88% and 98%. Even in regions
characterized by high degrees of homology between 129S1/
SvImJ and C57BL/6, SNPs occur at relatively high densities in
both coding and intergenic regions (Figure 2B). The impact of
such inter-strain haplotype diversity on V(D)J recombination
has not been investigated.

Elsewhere in the genome, deletions or mutations in enhancer
sequences can lead to aberrant gene expression and disease
phenotypes (66). Genome-wide association studies show that
the vast majority of sequence variants associated with common
diseases and traits are located in such non-coding parts of the
genome (67). In line with long-range enhancer interactions
discussed above, misregulation of target gene expression due to
variation in enhancers can occur tens of kilobases away in linear
sequence space (68).

Promoters and enhancers are characterized by a high density
of sometimes overlapping TF binding sites. Active enhancers are
established through the recruitment of TFs to those binding sites
which opens chromatin (69). Mechanistically, TFs can mediate
promoter–enhancer contacts in a variety of ways directly or
indirectly through binding of additional factors and structural
proteins (reviewed in (57)). For example, in mouse embryonic
stem cells, deletion of KLF4 binding sites or KLF4 ablation
results in reduced contact frequency in enhancer hubs and
diminished expression of multiple target genes (70).

Single nucleotide changes in regulatory sequences can impact
the affinity for TF binding (71). It can tip the balance in sites
where different factors compete for the same space (72, 73) or
regulatory regions have multiple functions (74). Since TF binding
A B

C

FIGURE 2 | Comparison of the C57BL/6 and 129S1/SvlmJ Igh loci reveals significant polymorphisms. (A) A dot plot representing a sequence comparison of the
proximal region of IgH (mm10, chr12:113255638-114465027) between the mouse strains 129S1/SvlmJ and C57BL/6; sequences from each strain were compared
using MashMap (64, 65). Annotated boxes represent regions of complex structural variants, in which Ig gene segments vary in copy number between the two strains.
Sequence identities within homologous regions (green diagonal lines) range between 84% and 98%. (B) A map of a 150 Kb region within the Igh proximal region (mm10,
chr12:113562489-113712488). Shown are the positions of functional Ighv genes and pseudogenes, and single nucleotide polymorphisms (SNPs; indels not included)
that differentiate the 129S1/SvlmJ and C57BL/6 haplotypes. In total, 1,217 SNPs are present, including variants in both coding and non-coding sequences, as illustrated
in the inset panel centered on the functional gene Ighv5-9. SNPs in this region were identified by mapping the corresponding Igh sequence from 129S1/SvlmJ to mm10
using BLASR. (C) Top: Linear sequence of a chromatin neighborhood flanked by converging CTCF sites (purple triangles). Regulatory elements (ovals) and gene elements
(vertical bars) are dispersed throughout the neighborhood. Left: Cohesin (ring) reels the chromatin fiber in to extrude a loop, facilitating interactions between regulatory
elements. Middle: A promoter-enhancer interactome (gray dashed line) can confer locus structure with a distinct set of interactions. Right: Loss of association with the
interactome results in topological changes and affects access to genetic elements.
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is essential for establishing an active enhancer, SNPs detected in Igh
intergenic regulatory regions could potentially ensue in a cascade of
downstream effects. They can alter TF binding in enhancers and
promoters, impact long-range enhancer-promoter interactions, and
thereby change the composition of promoter-promoter-enhancer
interactomes (Figure 2C).

In this context it is significant that variation of intergenic CBE
sequence can have a profound effect on VH gene usage. VH gene
access to the RC was recently shown to be dependent on the
quality of the flanking CTCF binding element (CBE) and related
ability of the gene to loop with IGCR1 (16, 17). VH81X is the
second gene in the locus and is most prominently used. VH5-1 is
the most DH proximal VH gene in the locus and is very rarely
used even though its promoter and recombination signal
sequence are intact and similar to that found for VH81X.
However, the quality of the flanking CBE for VH5-1 is poor
and when replaced with a functional motif directs looping with
IGCR1 and high frequency recombination. Thus, the quality of
CBEs within the Igh locus highlights the importance of the
integrity of similar regulatory sequences which can be altered by
Igh polymorphisms.
CONCLUSIONS

Genetic differences, such as those observed between 129S1/SvImJ
and C57BL/6 (Figures 2A, B), when considered alongside
observations that have been made for regulatory elements
elsewhere in the genome, raise important questions about the
potential for Ig genetic diversity to impact V(D)J recombination.
First, there are numerous examples for which germline VH

variants have been shown to contribute to antigen specificity
(75–79) and associate with disease and clinical phenotypes in the
context of infection, inflammation, and vaccination (31, 32, 80–
83). Second, both large structural variants and single nucleotide
polymorphisms could modify key regulatory elements, such as
CTCF sites and in promoters and enhancers, either through the
disruption of these elements (e.g. sequence deletions or loss-of-
functions SNPs) or the creation of novel elements (e.g. through
sequence duplication or gain-of-function SNPs). In addition,
structural variants could also be expected to change the spatial
Frontiers in Immunology | www.frontiersin.org 5
organization of interacting regulatory elements by increasing or
decreasing the genomic distance between particular elements, or
by changing their orientation. These modifications would in turn
be expected to impact promoter/enhancer interactomes, lead to
changes in the epigenetic landscape, and influence the overall
locus architecture and TAD structure, and ultimately affect the
selection of particular VH, DH, and JH segments into the
repertoire. We expect the discovery of such examples to
continue as the inclusion of genetic variation in the study of
repertoire diversity and dynamics becomes more commonplace.
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