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Abstract

Regulatory T cells (Treg cells) are increased in context of malignancies and their expansion can be correlated with higher
disease burden and decreased survival. Initially, interleukin 2 (IL-2) has been used as T-cell growth factor in clinical
vaccination trials. In murine models, however, a role of IL-2 in development, differentiation, homeostasis, and function of
Treg cells was established. In IL-2 treated cancer patients a further Treg-cell expansion was described, yet, the mechanism of
expansion is still elusive. Here we report that functional Treg cells of a naı̈ve phenotype - as determined by CCR7 and
CD45RA expression - are significantly expanded in colorectal cancer patients. Treatment of 15 UICC stage IV colorectal
cancer patients with IL-2 in a phase I/II peptide vaccination trial further enlarges the already increased naı̈ve Treg-cell pool.
Higher frequencies of T-cell receptor excision circles in naı̈ve Treg cells indicate IL-2 dependent thymic generation of naı̈ve
Treg cells as a mechanism leading to increased frequencies of Treg cells post IL-2 treatment in cancer patients. This finding
could be confirmed in naı̈ve murine Treg cells after IL-2 administration. These results point to a more complex regulation of
Treg cells in context of IL-2 administration. Future strategies therefore might aim at combining IL-2 therapy with novel
strategies to circumvent expansion and differentiation of naı̈ve Treg cells.
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Introduction

Human regulatory T cells (Treg cells) have been characterized as

CD4+CD25high T cells with inhibitory function [1]. They are

crucial for the preservation of T-cell homeostasis and self-tolerance

and regulate the immune responses to alloantigens, pathogens and

tumors [2]. Both in humans and animal models activation of Treg

cells results in exertion of their full suppressive function [3,4].

Natural Treg cells are generated in the thymus as a distinct lineage

of anergic CD4+ T cells bearing self-reactive T-cell receptors,

although cells with similar characteristics can also be generated in

the periphery under appropriate conditions [5]. Typically, Treg

cells express cytotoxic T-lymphocyte–associated-antigen 4 (CTLA-

4) and glucocorticoid-induced tumor-necrosis-factor receptor-

related protein (GITR), although both molecules can also be

expressed by activated T cells [6,7]. The transcription factor

forkhead box P3 (FOXP3) has been demonstrated to be expressed

exclusively on Treg cells in the mouse [2], while data concerning its

expression in humans are not as clear-cut [8,9]. In numerous

murine tumor models increased frequencies of CD4+CD25high

Treg cells seem to be a hallmark of tumor progression and

metastasis [10,11]. Moreover, efficient anti-tumor immune

responses are induced by deletion of these cells resulting in

complete tumor regression [12,13]. In humans, we and others

have demonstrated that CD4+CD25highFOXP3+ Treg cells are also

expanded in patients with solid tumors and hematologic

malignancies and contribute to the overall immunosuppression

in these patients [14,15]. Numerous animal models over the last

years could demonstrate that increased numbers of Treg cells are

beneficial for tumor growth while depletion of Treg cells can lead

to tumor regression [16]. In humans, administration of an IL-2

immunotoxin to tumor patients results in decreased numbers of

Treg cells and higher responses against simultaneously adminis-

tered tumor peptides [17,18]. Several studies over the last years

have addressed the question of Treg-cell frequencies in colorectal

cancer patients [19,20,21]. These reports could demonstrate

increased number of FOXP3+ Treg cells in the peripheral blood,

tumor-draining lymph nodes and in close tumor proximity

[19,20,21]. Still, the question why Treg cells are expanded in

human tumors remains elusive.
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CD45RO expression has been primarily linked to Treg cells,

which led to the assumption that Treg cells belong to the memory

T-cell compartment [4,22]. Recently, a Treg-cell population with a

naı̈ve phenotype (CCR7+CD45RA+) was identified in healthy

individuals [23,24]. These naı̈ve Treg cells proliferated vigorously

in response to auto-antigens suggesting that particularly this

subpopulation was specific for self rather than foreign antigens

[23]. Persistence of naı̈ve Treg cells has been described throughout

adult life [25,26], although it must be pointed out that this pool of

naı̈ve Treg cells is relatively small in peripheral blood of healthy

individuals [27]. In patients with multiple myeloma (MM),

however, we could demonstrate an expansion of naı̈ve Treg cells

[28]. We could validate this finding for a number of hematologic

malignancies and patients with solid tumors and even show strong

suppressive function for the naı̈ve Treg-cell population [29].

Comparison of levels of T-cell receptor excision circles (TREC)

in Treg cells of healthy individuals addressed the diversity and

developmental stage of thymic emigrants as well as peripheral

blood Treg cells [30,31]. As expected, TREC numbers were

significantly higher in thymic emigrants compared to peripheral

blood derived Treg cells, which supports thymic development of

human CD4+CD25high Treg cells [31].

On the one hand, IL-2 is both important for the development

and expansion of effector T cells and also critical in the context of

immune tolerance [32]. On the other hand, experiments

performed in murine models established that IL-2 and its

downstream effector molecules are essential for the generation,

maintenance, and function of Treg cells [33,34,35,36]. Several

studies have addressed the role of IL-2 administration on the

frequency and function of human Treg cells in cancer patients and

demonstrated that treatment with recombinant IL-2 induces an

expansion of Treg cells in peripheral blood, thereby interfering

with efficient anti-tumor immune responses [37,38,39,40,41,

42,43]. These studies pointed to a peripheral expansion of Treg

cells post IL-2 therapy [41]. It was further suggested that altered

migratory behavior due to increased expression of CCR4 and

CXCR4 on Treg cells might be associated with peripheral

expansion and increased migration to the tumor site [41]. In

two recent studies however, Correale et al. demonstrated that the

combination of chemotherapy with GM-CSF and IL-2 adminis-

tration leads to reduced Treg-cell numbers [44,45]. These findings

suggested a more complex regulation of Treg-cell frequency,

distribution and function than previously thought. Moreover, it

remains unclear whether different mechanisms might be respon-

sible for frequency changes of Treg cells in these different patient

populations treated with IL-2.

In the current study, we investigated the impact of IL-2

administration on the frequency and function of CD4+CD25high-

FOXP3+ Treg cells. We provide clear evidence for an increased

expansion of naı̈ve Treg cells particularly post IL-2 therapy as a

major mechanism of overall Treg-cell expansion in these cancer

patients. Our data clearly suggest an increase of newly generated

Treg cells in cancer patients. These novel findings are of particular

interest for strategies targeting Treg cells in cancer patients.

Results

Increased frequencies of CD4+CD25highFOXP3+ Treg cells
in peripheral blood of patients with metastatic colorectal
cancer

Within a clinical phase I/II combined chemoimmunotherapy

trial of patients with metastatic colorectal cancer we assessed

frequencies of FOXP3-expressing CD4+CD25high Treg cells in

peripheral blood before initiation of therapy in comparison to

healthy controls (Fig. 1A). The frequency of Treg cells in healthy

donors (n = 22, 2.9%61.2%) was comparable to previously

published results (Fig. 1B) [46,47]. In contrast, individuals with

colorectal cancer assessed before initiation of treatment (n = 15,

4.7%61.2%, p,0.001) showed significantly increased frequencies

of Treg cells compared to healthy individuals (Fig. 1A and 1B). We

also assessed previously described surface receptors associated with

Treg cells including CTLA4 and GITR on CD4+CD25high-

FOXP3+ T cells in colorectal cancer patients as well as healthy

individuals. As depicted in Figure 1C, we observed comparable

expression of both molecules on Treg cells from healthy donors and

colorectal cancer patients while percentages of CD4+CD25high-

FOXP3+ Treg cells expressing either molecule were significantly

increased in colorectal cancer patients (CTLA4: 3.7%61.2% vs.

1.5%60.6%, p,0.001; GITR: 1.7%60.8% vs. 0.5%60.2%,

p,0.001) (Fig. 1D).

Expansion of CD4+CD25highFOXP3+ Treg cells after
chemoimmunotherapy including low-dose IL-2
administration

Next, we investigated changes in frequency of Treg cells in

respect to IL-2 administration (Fig. 2). From the 15 patients

included in the trial, 12 successfully completed the whole protocol,

while 3 patients were rapidly progressing under therapy and

deceased shortly thereafter. Blood samples from the 12 patients

(P1–12) who completed the whole treatment were taken after

completion of IL-2 treatment following vaccination. For the 3

rapidly progressing patients (P13–15) who were taken off study,

Treg-cell frequencies were assessed at the last time point were

material was available. As depicted for patient P11 in Figure 2A

we observed an expansion of CD4+CD25highFOXP3+ Treg cells in

the majority of patients. When assessing all patients, 11 colorectal

cancer patients had higher frequencies post therapy while 2 (P3,

P15) had lower frequencies at the second time point of analysis and

two other patients (P4, P5) showed similar frequencies at both time

points (Fig. 2B). No feature (laboratory test, treatment or clinical

parameter) we have assessed so far showed an association with

changes in Treg-cell frequency in these patients (data not shown).

In addition, we did not observe any cytopenia greater grade 2

during therapy. Overall, in the majority of patients the frequency

of Treg cells after combined chemoimmunotherapy was increased

compared to the initial frequencies before treatment (5.8%61.7%

vs. 4.7%61.2%, p,0.05) (Fig. 2C) as well as in comparison to

healthy donors (5.8%61.7% vs. 2.9%61.2%, p,0.001). When

assessing the absolute numbers of Treg cells we observed the same

trend; total numbers of Treg cells were increased after chemoim-

munotherapy (after: 29.26106/l620.56106/l vs. before: 21.36
106/l617.16106/l, p,0.005) and only one of the rapidly

progressing patients showed reduced numbers of Treg cells

(Fig. 2D).

Among the 15 colorectal cancer patients, 4 patients had

progressive disease at the time of analysis while 11 showed a

response or stable disease. Comparing these two patient cohorts

revealed no significant difference in the proportion of Treg cells,

whereas both patient cohorts showed higher frequencies of Treg

cells compared to healthy controls (data not shown). Next, we

assessed if Treg-cell frequencies were indicative of longer freedom

from treatment failure or overall survival or if these 2 parameters

were linked to the expansion of Treg cells, yet no statistically

significant correlation was detected (data not shown). Our data

indicate that an expansion of CD4+CD25highFOXP3+ Treg cells

occurred in the majority of colorectal cancer patients after IL-2

administration as part of combined chemoimmunotherapy.

IL-2 Induced Naı̈ve Treg Cell Expansion in CRC
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Inhibitory function of CD4+CD25high Treg cells from
colorectal cancer patients

In 4 colorectal cancer patients sufficient numbers of highly

purified CD4+CD25high Treg cells (Fig. 3A and B) were isolated from

peripheral blood by flow cytometric cell sorting before and after

vaccination to analyze their inhibitory function in comparison to

Treg cells from healthy controls (n = 4). Proliferation of allogeneic

conventional CD4+CD252 T cells stimulated by beads coated with

CD3 and CD28 mAbs was used as the read out to assess inhibitory

function of CD4+CD25high Treg cells [28]. Proliferation of allogeneic

conventional CD4+CD252 T cells was significantly inhibited when

highly purified CD4+CD25high T cells from healthy donors were

added at a 1:1 ratio (white bar, Fig. 3C, p,0.001). On a cell-to-cell

basis highly purified CD4+CD25high Treg cells from colorectal

cancer patients (before initiation of therapy) showed an equally

strong inhibitory function on conventional CD4+CD252 T-cell

proliferation (dark grey bar, Fig. 3C, p,0.001). Titration

experiments demonstrated that the inhibitory function of Treg cells

from healthy individuals and colorectal cancer patients was

comparable also at lower Treg:Tconv ratios (data not shown).

Moreover, after IL-2 treatment of colorectal cancer patients (after

treatment), Treg cells had equal suppressive function on conven-

tional CD4+CD252 T-cell proliferation when compared to Treg

cells isolated before start of therapy (light grey bar, Fig. 3C,

p,0.001). Taken together, these data suggest, that Treg cells from

colorectal cancer patients have normal suppressive function.

Figure 1. Frequency of CD4+CD25highFOXP3+ Treg cells. (A) Flow cytometric analysis of CD25 and FOXP3 on peripheral blood derived CD4+ T
cells from a representative healthy individual (left panel) and a representative colorectal cancer patient before treatment (right panel). Numbers
represent percentage of events within the gate. (B) Frequency of CD4+CD25highFOXP3+ Treg cells in 22 healthy donors and 15 colorectal cancer
patients (CRC) before treatment. Each dot represents a single individual assessed in the respective group; mean expression (line) of all samples in
each group is also shown (*, p,0.05, Student’s t test). (C) CTLA4 (top) and GITR expression (bottom) in CD4+CD25highFOXP3+ Treg cells of healthy
donors (left, grey fill) and colorectal cancer patients (right, grey fill). Isotype control (black line). (D) Frequency of CTLA4 (left) and GITR (right)
expressing CD4+CD25highFOXP3+ Treg cells in healthy donors (white) and colorectal cancer patients (grey, CRC) before treatment. Shown here are
median, 25th and 75th percentile (box), 10th and 90th percentile (whiskers) and outliers (dots), (*, p,0.05, Student’s t test).
doi:10.1371/journal.pone.0030422.g001

IL-2 Induced Naı̈ve Treg Cell Expansion in CRC
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Figure 2. Analysis of frequencies of CD4+CD25highFOXP3+ Treg cells after chemoimmunotherapy. (A) Flow cytometric analysis of CD25
and FOXP3 on peripheral blood derived CD4+ T cells from a representative colorectal cancer patient before (left panel) and after
chemoimmunotherapy (right panel). Numbers represent percentage of events within the gate. (B) Serial analysis of frequencies of
CD4+CD25highFOXP3+ Treg cells in colorectal cancer patients before and after chemoimmunotherapy. (C) Frequency of CD4+CD25highFOXP3+ Treg

cells in 15 colorectal cancer patients before (light grey box) and after (dark grey box) chemoimmunotherapy. Shown here are median, 25th and 75th

percentile (box), 10th and 90th percentile (whiskers) and outliers (dots), (*, p,0.05, Student’s t test). (D) Serial analysis of total numbers of
CD4+CD25highFOXP3+ Treg cells in colorectal cancer patients before and after chemoimmunotherapy.
doi:10.1371/journal.pone.0030422.g002

Figure 3. Functional analysis of CD4+CD25highFOXP+ Treg cells. (A) CD4+ cells were separated by flow cytometric cell sorting into
conventional CD4+CD252 and regulatory CD4+CD25high T cells as defined by their expression of CD25. (B) Re-analysis of FOXP3 expression in
CD4+CD252 Tconv (left, grey fill) and CD4+CD25high Treg cells (right, grey fill) post cell sorting. Isotype control (black line). (C) Reduction of proliferation
of CD4+CD252 Tconv cells stimulated with beads coated with CD3 and CD28 mAbs (black bar) by highly purified CD4+CD25highFOXP3+ Treg cells from
healthy donors (white bar) or colorectal cancer patients before (dark grey bar) and after therapy (light grey bar).
doi:10.1371/journal.pone.0030422.g003

IL-2 Induced Naı̈ve Treg Cell Expansion in CRC
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Expansion of fully functional naı̈ve Treg cells in colorectal
cancer patients after chemoimmunotherapy

It has been previously reported by us and others that differential

expression of the cell surface receptors CD45RA and CCR7 can

be used to differentiate between naı̈ve, central and effector

memory Treg cells (Fig. 4A) [23,28,48]. This approach can be used

to address the question, if naı̈ve, central or effector memory Treg

cells contribute to the overall expansion of Treg cells in patients

with solid tumors and how treatment, particularly administration

of IL-2 influences the frequency and function of naı̈ve versus

memory CD4+CD25highFOXP3+ Treg cells. In healthy individuals,

naı̈ve CCR7+CD45RA+ Treg cells were hardly detectable (Fig. 4B).

Treg cells were almost exclusively of a memory phenotype (Fig. 4C

and D) with a higher frequency of TEM cells (Fig. 4D). In contrast,

in colorectal cancer patients we observed a significantly higher

number of Treg cells with a CCR7+CD45RA+ naı̈ve phenotype

(Fig. 4B). This was further accompanied by an increase of Treg

cells with a central memory phenotype in colorectal cancer

patients prior to therapy (Fig. 4C) while effector memory Treg cell

levels were comparable in colorectal cancer patients (prior to

therapy) and healthy donors (Fig. 4D). However, most surprising,

after IL-2 treatment, expansion of Treg cells almost exclusively

occurred within the naı̈ve Treg-cell population (Fig. 4B) while

frequencies of central and effector memory Treg cells remained

unchanged (Fig. 4C and D). To further characterize the increased

subset of naı̈ve CD4+CD25highFOXP3+ Treg cells, we assessed the

expression of intracellular CTLA4 or GITR expression. Compa-

rable to the data obtained for the total Treg-cell population both

molecules were expressed at similar levels on a per cell basis on

naı̈ve Treg-cells from healthy individuals and cancer patients

irrespective of IL-2 treatment (data not shown) while percentages

of CD4+CD25highFOXP3+ Treg cells expressing either molecule

were significantly increased in colorectal cancer patients (CTLA4:

0.31%60.23% vs. 0.05%60.01%, p,0.05; GITR: 0.10%6

0.07% vs. 0.02%60.01%, p,0.05) with a further increase after

IL-2 administration (CTLA4: 0.78%60.56% vs. 0.31%60.23%,

p,0.001; GITR: 0.24%60.19% vs. 0.10%60.07%, p,0.05)

(Fig. S1).

Next, we assessed the suppressive function of naı̈ve versus

memory Treg-cell populations before and after therapy (Fig. 4E).

We observed a clear inhibition of conventional CD4+CD252 T-

cell proliferation induced by stimulation with CD3/CD28-coated

beads by adding sorted Treg cells to the culture irrespective of the

subtype (naı̈ve vs. memory) used or the status of therapy (no

therapy vs. chemoimmunotherapy) demonstrating that the differ-

ent subtypes of Treg cells have full suppressive activity independent

of IL-2 therapy. Taken together, these data demonstrate a

significant expansion of naı̈ve Treg cells post IL-2 treatment.

Furthermore, these cells are similarly effective in suppressing

conventional T-cell activation when analyzed on a cell-to-cell

basis, suggesting an overall higher suppressive effect of these cells

in colorectal cancer patients.

Thymic expansion of naı̈ve CD4+CD25highFOXP3+ Treg

cells in patients with colorectal cancer after IL-2
administration

As Treg cells with a naı̈ve phenotype were increased in patients

with colorectal cancer, particularly post IL-2 treatment, we were

interested to assess whether the increase of Treg cells resulted from

peripheral expansion or possibly thymic generation of

CD4+CD25highFOXP3+ Treg cells. We previously reported that

the level of TREC can be used as a marker to estimate the

developmental vicinity of Treg cells to the thymus and their

division history [28] and therefore applied TREC analysis to

address this issue in relation to IL-2 treatment. PB derived CD4+

T cells from two colorectal cancer patients and two age-matched

healthy individuals were sorted according to their CD25, CCR7

and CD45RA expression into the appropriate CD4+CD25high

Treg-cell subsets, namely Tnaı̈ve, TCM, and TEM (Fig. 5A and B).

TREC values for the highly purified Treg-cell subsets were assayed

by real-time PCR. As described before, CD4+CD25high Treg cells

showed relatively low TREC contents in the naı̈ve T-cell

population and TREC levels were below detection threshold in

the TCM and TEM subsets (Fig. 5C) [28]. These observations are in

line with the concept of antigen-driven peripheral expansion of

Treg cells in healthy individuals rather than recent thymic

emigration. In contrast, the TREC content on the single cell level

in naı̈ve CD4+CD25high Treg cells in colorectal cancer patients was

more than two-fold higher in average compared to healthy

individuals before initiation of chemoimmunotherapy and even

more increased after administration of IL-2 (.4–fold in average,

Fig. 5C). These results strongly suggest that the expansion of Treg

cells in colorectal cancer patients was nurtured by the generation

of new Treg cells in the thymus and the further increase of Treg-cell

frequencies post IL-2 administration was strongly associated with

an increase of thymic emigrants of naı̈ve Treg cells.

Administration of IL-2 leads to an expansion of a
population of murine ‘‘naı̈ve’’ CD4+ CD25highFOXP3+ Treg

cells
To demonstrate that IL-2 administration indeed leads to an

increase of naı̈ve Treg cells, we administered IL-2 or PBS i.p. in

C57BL/6 mice for 10 days and assessed the frequency of

CD4+CD25highFOXP3+ Treg cells in these animals after the

treatment period. In comparison to PBS-treated animals a

significant expansion of CD4+CD25highFOXP3+ Treg cells oc-

curred after IL-2 administration in spleen, peripheral as well as

mesenteric lymph nodes, peripheral blood, thymus, and liver

(Fig. 6A). Of particular interest was the increase of Treg cells in the

thymus, which could be indicative of an increased thymic output.

As a first approximation for vicinity of T cells to thymic output

expression of CD45RB on CD4+CD25highFOXP3+ Treg cells was

assessed since up to now no true marker for murine naı̈ve Treg cells

has been established. We observed a significant increase of

CD45RBhigh CD4+CD25highFOXP3+ Treg cells in spleen, periph-

eral as well as mesenteric lymph nodes, peripheral blood, thymus,

and liver of IL-2 treated mice (Fig. 6B) clearly indicating that an

increase of naı̈ve Treg cells contributed to the overall expansion of

Treg cells after IL-2 administration and that the overall Treg-cell

expansion was related to elevated frequencies of naı̈ve Treg cells in

the thymus.

To further delineate if IL-2 treatment induces generation of

naı̈ve Treg cells in the thymus we sorted CD45RB+

CD44lowCD62L+ naı̈ve Tconv and Treg cells from IL-2 as well as

PBS treated animals (Fig. 6C) and assessed TREC levels in the

naı̈ve Tconv and Treg-cell population. We observed significantly

higher levels of TREC in Tconv and Treg-cell populations after IL-2

administration (Fig. 6C) suggesting that IL-2 treatment indeed

results in a higher thymic output of naı̈ve Treg cells as observed in

IL-2 treated human colorectal cancer patients.

Discussion

In the current study we addressed the question whether IL-2

treatment leads to an expansion of fully functional Treg cells in

colorectal cancer patients and whether an increase of Treg cells in

colorectal cancer patients is due to peripheral or thymic

IL-2 Induced Naı̈ve Treg Cell Expansion in CRC
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expansion. Using phenotypic, functional and molecular approach-

es we demonstrate an increase of CD4+CD25highFOXP3+ Treg

cells in colorectal cancer patients already before initiation of an IL-

2 containing chemoimmunotherapy regimen. The increase of Treg

cells in these patients was further augmented after completion of

treatment, clearly demonstrating that IL-2 treatment is associated

with an increase in Treg-cell numbers an alarming effect which

could potentially influence and dampen the immune response in

an immunotherapy protocol. Treg cells expressed phenotypic

markers associated with Treg cells (e.g. CTLA-4 and GITR) and

suppressed the proliferation of CD4+CD252 Tconv cells. Further-

more, we can clearly show that Treg cells in colorectal cancer

patients have normal suppressive function.

In addition, we demonstrate that the expansion of Treg cells in

colorectal cancer patients was particularly prominent within the

naı̈ve CCR7+CD45RA+ CD4+CD25highFOXP3+ Treg cell popu-

lation and to a lesser extent in central memory Treg cells, while

there was no difference in Treg cells with an effector memory

phenotype. Most surprising, expansion of Treg cells post IL-2

treatment was almost exclusively due to an increase of naı̈ve Treg

cells. Expansion of naı̈ve Treg cells was further supported by the

increase of TREC numbers that were significantly higher in naı̈ve

Treg cells from untreated colorectal cancer patients when

compared to healthy controls and further increased post IL-2

treatment. To demonstrate that the observed results in humans are

dependent on the IL-2 administration, we treated mice with IL-2

and could detect increased levels of Treg cells in these animals. In

line with our results in humans, we observed thymic generation of

naı̈ve Treg cells after IL-2 treatment as shown by high TREC levels

in the naı̈ve Treg-cell population. These findings strongly suggest

that Treg-cell expansion in colorectal cancer patients is due to

higher thymic output which is further increased by IL-2 treatment.

Over the last years several murine studies showed the

importance of IL-2 for Treg cells. IL-2 is a critical growth factor

Figure 4. Increase of naı̈ve CD4+CD25highFOXP3+ Treg cells in colorectal cancer patients after chemoimmunotherapy. (A) Strategy of
flow cytometric analysis of CCR7 and CD45RA expression on the surface of CD4+CD25highFOXP3+ Treg cells as exemplified for a representative healthy
donor (left) and a representative colorectal cancer patient (right). Frequencies of (B) CCR7+CD45RA+ naı̈ve Treg cells (Tnaive), (C) CCR7+CD45RA2

central memory Treg cells (TCM), and (D) CCR72CD45RA2 effector memory Treg cells (TEM) were assessed in peripheral blood of colorectal cancer
patients (n = 15) before (light grey bars) and after therapy (dark grey bars) as well as healthy individuals (white bars, n = 22). Significant differences
(p,0.05, Student’s t test) between healthy donors and colorectal cancer patients before and after chemoimmunotherapy are marked by an asterisk
(*). Error bars represent SD. (E) Assessment of regulatory function of naı̈ve and memory CD4+CD25high Treg cells sorted according to their CD45RA
expression from colorectal cancer patients. Reduction of proliferation of CD4+CD252 Tconv cells stimulated with beads coated with CD3 and CD28
mAbs by highly purified naı̈ve and memory CD4+CD25high Treg cells from colorectal cancer patients before and after therapy.
doi:10.1371/journal.pone.0030422.g004

IL-2 Induced Naı̈ve Treg Cell Expansion in CRC
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for murine Treg cells, it is responsible for maintenance and

regulation of Treg cells in the periphery [33,34,35]. IL-2 seems to

be involved in the generation of Treg cells during antigen-specific

immune responses [49] and has been suggested to be involved in

the suppressive function of Treg cells [50,51]. In human Treg-cell

biology, IL-2 is supposed to induce a peripheral expansion of

CD4+CD25highFOXP3+ Treg cells as suggested by Wei et al. [41]

while it has no effect on FOXP3 expression in conventional T

cells. This has been further confirmed in a second study which

reported that IL-2 induced STAT-dependent mechanisms are

responsible for the selective expression of FOXP3 in Treg cells and

in vivo expansion following IL-2 administration indicating a unique

programming of CD4+CD25high Treg cells within the IL-2

signaling pathway [52].

Most recently increased frequencies of CD4+CD25highFOXP3+ Treg

cells were reported for patients with renal cell carcinoma, malignant

melanoma or ovarian cancer patients after IL-2 monotherapy

[37,39,40,41] and administration of IL-2 during immune reconstitu-

tion after chemotherapy in pediatric sarcomas led to a preferential

expansion of Treg cells after cytoreductive chemptherapy [38]. In

contrast, patients with metastatic colorectal cancer treated with a

combined chemoimmunotherapy containing gemcitabine and FOL-

FOX-4 (oxaliplatin, fluorouracil, and folinic acid) polychemotherapy

followed by the subcutaneous administration of GM-CSF and low-

dose IL-2 showed clinical objective responses in the majority of patients

associated with a significant reduction in CD4+CD25highFOXP3+ Treg

cells as reported by Correale et al. [44,45].

Our data however support an alternative outcome of combined

chemoimmunotherapy as low-dose IL-2 in combination with a

peptide-vaccination resulted in increased frequencies of

CD4+CD25highFOXP3+ Treg cells, particularly naı̈ve Treg cells.

These rather opposite results might be explained by the

differences in the vaccination and chemotherapy protocols, e.g.

high-dose vs. low-dose 5-FU, irinotecan vs. oxaliplatin, forgoing of

gemcitabine, dosage and schedule of GM-CSF administration, or

addition of CAP-1-peptide, in the time course of administration, in

the patient cohort under study (metastatic colorectal cancer vs.

unselected colorectal cancer), number of patients analyzed, and

additional, yet unknown, confounding factors. Further conflicting

might be technical issues as it has been previously stated by

Baecher-Allan et al. that the assessment of human Treg cells is still

difficult and the use of different assays sometimes makes it difficult

to compare different studies [47]. Indeed, a recent study in

patients with renal cell carcinoma or malignant melanoma

suggested an enormously high proportion of naı̈ve Treg cells

[39]. However, the number of naı̈ve Treg cells in the healthy

control group was also reported to exceed 50% of all Treg cells, a

frequency that could never be confirmed by us and others [24,27].

Irrespective of these experimental differences in earlier studies,

we clearly unraveled the expansion of naı̈ve Treg cells to be one of

the mechanisms leading to an overall expansion of fully functional

Treg cells in colorectal cancer patients which was further

augmented by IL-2 therapy. Over the last years differentiation

of Treg cells into naı̈ve, central and effector memory Treg cells

according to their expression of CCR7 and CD45RA has been

established for healthy individuals [23,24,25,31,53]. We have

incorporated this strategy for the analysis of Treg cells in cancer

patients and demonstrated an expansion of naı̈ve Treg cells in

human multiple myeloma patients and B-CLL patients [28].

Remarkably, in B cell malignancies, increase of Treg cells was

associated with peripheral expansion of naı̈ve Treg cells while in

patients with colorectal cancer the expansion seems to be thymus

Figure 5. Replicative history of CD4+CD25highFOXP3+ Treg cell populations defined by the expression of CD45RA and CCR7.
CD4+CD25high Treg cells were isolated by flow cytometric cell sorting according to their expression of CD25 as well as CD45RA and CCR7 in three Treg-
cell subsets, namely Tnaı̈ve (CD45RA+CCR7+), TCM (CD45RA2CCR7+), and TEM cells (CD45RA2CCR72). (A) Strategy of flow cytometric analysis of CD4
and CD25 expression on the surface of CD4+ T cells as exemplified for a colorectal cancer patient. (B) Re-analysis of FOXP3 and CD25 expression (left)
as well as CCR7 and CD45RA expression (right) in CD4+CD25high Treg cells. (C) Naı̈ve, central and effector memory CD4+CD25high Treg cells from healthy
donors and colorectal cancer patients before and after chemoimmunotherapy were assessed for TREC (T-cell receptor excision circle) content.
Genomic DNA of sorted subsets was isolated, and the number of TREC was determined by quantitative real-time PCR. Data are shown as the mean
values obtained for 2 independent healthy donors and 2 colorectal cancer patients. Error bars represent SD.
doi:10.1371/journal.pone.0030422.g005
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Figure 6. IL-2 administration leads to an expansion of ‘‘naı̈ve’’ CD4+CD25highFOXP3+ Treg cells in C57BL/6 mice. (A) Flow cytometric
analysis of CD4 and FOXP3 expression in CD4+ T cells from untreated as well as IL-2-treated animals in spleen, peripheral and mesenteric lymph
nodes, peripheral blood, thymus, and liver. Significant differences (p,0.05, Student’s t test) between untreated and IL-2 treated animals are marked
by an asterisk (*). (B) Analysis of ‘‘naı̈ve’’ CD45RBhigh CD4+CD25highFOXP3+ Treg cells in spleen, peripheral and mesenteric lymph nodes, peripheral
blood, thymus, and liver. Significant differences (p,0.05, Student’s t test) between untreated and IL-2 treated animals are marked by an asterisk (*).
Similar results were obtained in two independent experiments. (C) CD45RB+CD44lowCD62L+ naı̈ve CD4+CD252 Tconv and CD4+CD25high Treg cells were
isolated by flow cytometric cell sorting and assessed for TREC content. Genomic DNA of sorted subsets was isolated, and the number of TREC was
determined by quantitative real-time PCR (n = 3, p,0.05, Student’s t test). Error bars represent SD. Similar results were obtained in three independent
experiments.
doi:10.1371/journal.pone.0030422.g006
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dependent as determined by analysis of TREC as an approxima-

tion of adjacency of Treg cells to the thymus. Moreover,

administration of IL-2 further augmented this increase. Two

recent publications underlined the importance of IL-2 for the

development of Treg cells in the thymus [54,55], while other results

support a more restricted role for IL-2 of regulating Treg cells in

the periphery without alteration of the thymic output [34]. The

latter proposition has been further strengthened by data obtained

by Wei et al. who could demonstrate expansion of memory Treg

cells in vitro by IL-2 treatment [41]. To address whether effects

induced by IL-2 were limited to peripheral expansion of mainly

memory Treg cells, we treated C57BL/6 mice with IL-2 and

assessed the frequencies of Treg cells with a special focus on naı̈ve

Treg cells in the periphery and in the thymus. We observed an

overall expansion of Treg cells in these animals and detected a

particular enrichment of naı̈ve Treg cells in the thymus and

peripheral lymph nodes. By assessment of TREC in the naı̈ve Treg-

cell population we could demonstrate thymic generation of naı̈ve

Treg cells as a result of IL-2 adminstration, clearly suggesting that

increased thymic output is an important mechanism leading to

increased frequencies of naı̈ve Treg cells post IL-2 treatment and

these cells subsequently can differentiate into peripheral Treg cells

with a memory phenotype. Whether peripheral expansion might

also occur under these conditions might be further studied by

administration of IL-2 to thymectomized animals.

The assessment of the source of expanded Treg cells in cancer

patients is of particular importance as the mechanism of

expansion, an augmented production of Treg cells in the thymus,

expansion of Treg cells in the periphery, preferential migration of

Treg cells to the tumor site, increased conversion of conventional T

cells into Treg cells as well as diminished apoptosis and cell death of

peripheral Treg cells, might influence the strategy to therapeuti-

cally target Treg cells to increase anti-tumor immunity. E.g.

peripherally expanded Treg cells might be deleted by short-term

use of cytotoxic agents such as denileukin diftitox while continuing

thymic expansion would require either long-term treatment or

deletion of the cause of thymic expansion of these inhibitory cells

to induce a long-lasting reduction of Treg cells. Other mechanisms

such as conversion of differentiated conventional T cells into Treg

cells might also contribute to the overall expansion of Treg cells in

cancer patients as well the preferential egress of activated Treg cell

from the tumor microenvironment into the peripheral blood and

will have to be addressed when targeting Treg cells [5].

Taken together, we demonstrate an in vivo expansion of fully

functional CD4+CD25highFOXP3+ Treg cells in colorectal cancer

patients due to an increase in naı̈ve Treg cells with an increased

TREC content. Moreover, naı̈ve Treg cells with a further increase of

TREC are expanded post IL-2 treatment clearly pointing to an

increased thymic output of naı̈ve Treg cells after IL-2 therapy, a

mechanism also observed in mice in vivo post IL-2 treatment. This

expansion of Treg cells post administration of IL-2 can potentially

hinder an immune response towards co-administered anti-tumor

reagents and should therefore be avoided when planning new

cancer immunotherapy protocols. The existence of different

mechanisms of expansion of Treg cells (thymic vs. peripheral

expansion and conversion) highlights the complexity of regulation of

these cells and cautions the use of simple strategies targeting these

highly regulated cells in future cancer immunotherapy approaches.

Materials and Methods

Patients and clinical parameters
15 HLA-A2+ patients with primary metastatic colorectal cancer

were enrolled in this Phase I/II combined chemoimmunotherapy

with a HLA-A2 peptide derived from the carcinoembryonic

antigen CEA (CAP-1) and irinotecan, 5-fluorouracil, and leucov-

orin after approval by the institutional review committee at the

University of Cologne and the German Drug Administration [56].

All patients signed informed consent. Mean age was 56.2613.1

years; 8 were male and 7 were female; 12 had colon while 3 had

rectal cancer. Mean age for the corresponding healthy controls

was 49.569.3 years with no significant differences in gender and

age. Inclusion criteria required an age of between 18 and 75 years,

positive HLA-A2 status, elevated serum CEA (.5 mg/l) and/or

CEA-positive tumor, untreated metastatic disease, chemotherapy-

free interval after adjuvant treatment of at least 6 months,

Karnofsky index .70%, life expectancy of at least 3 months,

sufficient bone marrow and liver function, HIV and hepatitis B

and C negativity, absence of central nervous system metastases, no

immunosuppressant medication, and negative pregnancy test. All

patients received low-dose IL-2 (16106 IU) post vaccination. For

vaccination, several approaches were compared in this study,

namely a vaccine containing only the CAP-1-peptide, or the CAP-

1-peptide together with 50 mg GM-CSF (Novartis) or the CAP-1-

peptide together with an oligonucleotide adjuvant (dSLIM,

Mologen); as a fourth option, patients obtained autologous CAP-

1-pulsed dendritic cells as a cellular vaccine. For the analysis of

Treg-cell frequency and function post IL-2 treatment, no

statistically significant influence of the different types of vaccina-

tions could be established (data not shown). Two cycles of

vaccination and IL-2 treatment were given 2 and 1 week before

the first cycle of chemotherapy consisting of 80 mg/m2 irinotecan,

2,000 mg/m2 high-dose 5-FU, and 500 mg/m2 leucovorin (six

weekly administrations). Alternating, two cycles of IL-2 and

vaccination were combined with one cycle of chemotherapy and

repeated three times. After the third cycle, patients were treated

with IL-2 and CAP-1-peptide vaccination on a weekly schedule

until progressive disease. At baseline and after three cycles of

chemoimmunotherapy, patients underwent a leukapheresis to

obtain PBMC for diagnostic and therapeutic purposes. PBMC

were isolated using Ficoll/Hypaque (Amersham, Uppsala, Swe-

den) density centrifugation. Staging was performed according to

the UICC classification for colorectal cancer. All patients were

UICC stage IV. The treatment schedule is provided as Figure S2.

Characteristics of the patients studied are summarized in Table 1.

Antibodies and FACS analysis
Phenotype of T cells was defined by flow cytometry using the

following antibodies: CD4-FITC, CD45RA-PE-Cy-5, CD4-APC,

CD4-APC-Cy-7 (all from Becton Dickinson PharMingen), CD25-

PE-Cy7 (BDBiosciences), CCR7-FITC (R&D Systems) as well as

the corresponding isotype control antibodies (BDPharMingen).

Intracellular staining was performed with the following antibodies:

FOXP3-PE or APC (eBioscience), GITR-FITC (R&D Systems),

CTLA4-PE or with the appropriate isotype controls (BDPharMin-

gen) [28,46]. Cells were stained according to the manufacturer’s

recommendations.

Samples were acquired on a FACSCanto and analyzed with

FlowJo software (TreeStar Inc.). Frequencies of CD4+CD25high-

FOXP3+ T cells are shown as percent values of CD4+ T cells.

Isolation of CD4+CD25high and CD4+CD252 T cells
For functional analysis, CD4+CD25high T cells were purified

from PBMC. Briefly, CD4 MACS Beads (Miltenyi Biotec) were

used for isolation of CD4+ T cells [28,46]. After staining with

CD25-PE, and CD4-APC (BDPharMingen) according to the

manufacturer’s recommendations, CD4+CD25high T cells were

purified using a FACSDiVa Cell Sorter (BDBiosciences) and used
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for functional characterization. The CD4+CD252 T cells isolated

from healthy individuals were used as effectors to assess Treg cell

function independently of potential defects of conventional CD4+

T cells from colorectal cancer patients [28,46]. The cells were re-

analyzed for FOXP3 expression after sorting and routinely showed

.95% purity.

Assessment of inhibitory function
To assess the suppressive activity of Treg cells, 5,6-Carboxy-

fluorescin-Diacetat-Succinimidyl-Ester (CFSE, Sigma-Aldrich)

stained CD4+CD252 T cells (56104/well) were stimulated with

magnetic beads (Dynal Biotech) coated with 5% anti-CD3

(OKT3), 14% anti-CD28 (9.3) and 81% anti-MHC class I (W6/

32) at a ratio of 3:1 (cells:beads) in X-VIVO 15 supplemented with

10% fetal calf serum, 100 U/ml penicillin/streptomycin and

2 mM glutamine (all from Invitrogen). PKH-26 (Sigma-Aldrich)-

labelled allogeneic CD4+CD25high T cells or naive or memory

CD4+CD25high T cells activated for 20 hours with 10 U/ml IL-2

(ProleukinH, Chiron) and 0.5 mg/ml anti-CD3 mAb in X-VIVO

15 (BioWhittakker) were added at a 1:1 ratio to the culture and

proliferation of CD4+CD252 T cells was determined by assessing

CFSE dilution after four days of culture [28].

Isolation of CD4+CD25high T-cell subpopulations for
assessment of T-cell receptor excision circles and
functional characterization

Briefly, CD4 MACS Beads were used for isolation of CD4+ T

cells [46]. After staining with CCR7-FITC, CD25-PE, CD45RA-

PE-Cy-5, and CD4-APC, CD4+CD25high T cells and the

respective T cell subsets, CCR7+CD45RA+ Tnaı̈ve, CCR7+

CD45RA2 TCM, and CCR72CD45RA2 TEM cells were purified

using a FACSDiVa Cell Sorter and used for either functional

characterization or assessment of TREC levels.

DNA was isolated from purified CD4+CD252, CD4+CD25low

and CD4+CD25high Tnaı̈ve, TCM, and TEM cells respectively using

a DNA Isolation Kit (Roche Diagnostics) following the manufac-

turer’s instructions.

Relative TREC levels were determined using real-time PCR with

a LightCycler (Roche Diagnostics) based on specific primers and

general fluorescence detection with SYBR Green. All PCR were

performed using LightCycler-FastStart DNA Master SYBR Green I

kit (Roche Diagnostics). All samples were studied in duplicate

reactions using the human TREC primer kit (Search-LC). The

number of TREC molecules in the sample was calculated as

number of copies per 104 cells (detection limit $10 molecules).

Analysis of IL-2 effects on murine Treg cells
Female C57BL/6 mice of 7 weeks were obtained from Elevage

Janvier (France) and maintained in our animal facility. In vivo

experiments were approved by the Animal Care Commission of

Nord-Rhein-Westfalia, Germany (TVZ 9.93.2.10.31.07.089). Af-

ter either treatment with human IL-2 (16105 IU/mouse/day,

Proleukin) i.p. or PBS as control for 10 days [57], mice were

sacrificed and their spleens, thymi, liver, and LN removed. Single-

cell suspensions were prepared and stained for flow cytometric

analysis. Antibodies used for staining were CD4-PE-Cy7, CD8a-

Pacific Blue, CD45RB-APC-Cy7, CD25-Alexa 647, and FOXP3-

Alexa 488 as well as appropriate isotype controls (all from

BDBiosciences or BioLegend). Samples were acquired on a

FACSCantoII and analyzed with FlowJo software. Frequencies

of CD4+CD25highFOXP3+ Treg cells are shown as percent values

of CD4+ T cells.

Table 1. patient characteristics.

Patient ID Sex Age(y)
Primary
tumor

Sites of
metastases Primary vaccine Boost

time point of
2nd analysis

Clinical
response

FFTF
(mo)

Survival
(mo)

P01 M 66 Colon Liver CAP-1+GM-CSF+IL-2 CAP-1+IL-2 after 3 cycles PR 15 34

P02 F 44 Colon Liver CAP-1+dSLIM+IL-2 CAP-1+dSLIM+IL-2 after 3 cycles SD 5 21

P03 F 70 Colon Liver CAP-1+dSLIM+IL-2 CAP-1+dSLIM+IL-2 after 3 cycles SD 12 32

P04 F 32 Colon Liver, spleen,
ovaries, pelvis,
peritoneum

DC-CAP-1+IL-2 CAP-1+dSLIM+IL-2 after 3 cycles CR 12 26

P05 F 60 Colon Liver CAP-1+IL-2 CAP-1+IL-2 after 3 cycles SD 11 15

P06 M 57 Rectum Lung CAP-1+dSLIM+IL-2 CAP-1+dSLIM+IL-2 after 3 cycles SD 7 17

P07 M 44 Rectum Liver CAP-1+dSLIM+IL-2 CAP-1+dSLIM+IL-2 after 3 cycles CR 12 28

P08 M 64 Colon Liver, lung DC-CAP-1+IL-2 CAP-1+dSLIM+IL-2 after 3 cycles SD 10 28

P09 F 43 Rectum Liver, bone,
pararectal,
paraaortal
lymphnodes

CAP-1+GM-CSF+IL-2 CAP-1+GM-CSF+IL-2 after 3 cycles PD 6 13

P10 M 61 Colon Liver CAP-1+dSLIM+IL-2 CAP-1+dSLIM+IL-2 after 3 cycles CR 9 11

P11 M 62 Colon Peritoneum CAP-1+IL-2 CAP-1+IL-2 after 3 cycles CR 13 21

P12 M 55 Colon Liver (primary
resection)

CAP-1+dSLIM+IL-2 CAP-1+dSLIM+IL-2 after 3 cycles CR 24 24

P13 F 38 Colon Liver DC-CAP-1+IL-2 CAP-1+dSLIM+IL-2 after 1 cycle PD 3 10

P14 F 72 Colon Liver, spleen,
lung,
mediastinum

CAP-1+IL-2 CAP-1+IL-2 after 0.5 cycle PD 2 2

P15 M 75 Colon Liver CAP-1+IL-2 CAP-1+IL-2 after 0.5 cycle PD 1 6

doi:10.1371/journal.pone.0030422.t001
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Isolation of CD4+CD45RB+CD44lowCD62L+ naı̈ve murine
T-cells for assessment of T-cell receptor excision circles

Briefly, CD4 MACS Beads were used for isolation of murine

CD4+ T cells from the spleen after treatment with IL-2 as

described above [46]. After staining with CD44-FITC, CD62L-

PE, CD25-Alexa 647, CD45RB-APC-Cy-7, CD8a-PE-Cy-7, and

CD4-Alexa 405, naı̈ve CD45RB+CD44lowCD62L+ conventional

CD4+CD252 T cells as well as naı̈ve CD4+CD25+ Treg cells were

purified using a FACSDiVa Cell Sorter and used for assessment of

TREC levels.

Murine dRec-yJa TRECs were determined using real-time

quantitative polymerase chain reaction (PCR) as described before

[58]. Briefly, cells were centrifuged and the pellet frozen at 280uC
until analysis. DNA was isolated from purified naı̈ve CD4+CD252

Tconv and naı̈ve CD4+CD25high Treg cells using a DNA Isolation

Kit (Roche Diagnostics) following the manufacturer’s instructions.

Relative TREC levels were determined using real-time PCR

containing mdRec primer (59-GGGCACACAGCAGCTGTG),

yJa primer (59-GCAGGTTTTTGTAAAGGTGCTCA), and

mdRec-yJa fluorescent probe (59-FAM-CACAAGCACCTG-

CACCCTGTGCA-TAMRA-39). Lysates were separately subject-

ed to amplification of the single-copy CD8b chain gene using a

CD8b forward primer (59-CAGGACCCCAAGGACAAGTACT-

39), CD8b reverse primer (59-CACTTTCACCATACAAAA-

CTCCTTTG-39), and CD8b probe (59-FAMTGAGTTCCT-

GGCCTCCTGGAGTTCTTC-TAMRA-39). Reactions con-

tained 0.5 mM of each primer, 0.3 mM fluorescent probe, and

Platinum Quantitative PCR Supermix-UDG (Invitrogen) Ampli-

fications were performed in triplicate on an LightCycler 480 II

(Roche Diagnostics). Amplification conditions were 50uC for

2 minutes, 95uC for 5 minutes, then 40 cycles of 95uC for

15 seconds, and 60uC for 1 minute. Standards for murine TRECs

(mdREC-yJa) and CD8b were provided by Dr. Y.-W. Chu

(Center for Cancer Research, National Institutes of Health).

Standard curves were generated as described before [58]. TREC

frequency (TREC molecules per 10 000 cells) was determined by

normalizing the number of TRECs amplified in the real-time PCR

reaction to the number of amplified CD8b molecules.

Statistical analysis
Comparison between paired or unpaired groups was performed

using the appropriate Student’s t-test. A p-value,0.05 was defined

as statistically significant. All statistical analyses were performed

using the SPSS statistical software package (SPSS 19, SPSS Inc.).

Figures were created using SigmaPlot 12.0 (Systat Software Inc).

Supporting Information

Figure S1 CTLA4 and GITR expression in naı̈ve Treg

cells. Frequency of CTLA4 (left) and GITR (right) expressing

naı̈ve CCR7+CD45RA+ CD4+CD25highFOXP3+ Treg cells in

healthy donors (white) and colorectal cancer patients before (light

grey) and after IL-2 administration (dark grey) before treatment.

Shown here are median, 25th and 75th percentile (box), 10th and

90th percentile (whiskers) and outliers (dots), (*, p,0.05, Student’s t

test).

(TIF)

Figure S2 Therapy schedule. Patients were first randomized

to receive CAP-1 and IL-2 with different adjuvants (dSLIM, GM-

CSF, or none). Subsequently, they were randomized to receive

their first vaccination with or without pulsed autologous dendritic

cells. Vaccinations (V) and chemotherapy (Chemo) were given in

an alternating schedule, starting with two vaccinations.

(TIF)
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