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Bacterial antibiotic resistance is becoming a significant health threat, and rapid
identification of antibiotic-resistant bacteria is essential to save lives and reduce the
spread of antibiotic resistance. This paper analyzes the ability of machine learning
algorithms (MLAs) to process data from a novel spectroscopic diagnostic device to
identify antibiotic-resistant genes and bacterial species by comparison to available
bacterial DNA sequences. Simulation results show that the algorithms attain from 92%
accuracy (for genes) up to 99% accuracy (for species). This novel approach identifies
genes and species by optically reading the percentage of A, C, G, T bases in 1000s
of short 10-base DNA oligomers instead of relying on conventional DNA sequencing
in which the sequence of bases in long oligomers provides genetic information.
The identification algorithms are robust in the presence of simulated random genetic
mutations and simulated random experimental errors. Thus, these algorithms can be
used to identify bacterial species, to reveal antibiotic resistance genes, and to perform
other genomic analyses. Some MLAs evaluated here are shown to be better than
others at accurate gene identification and avoidance of false negative identification of
antibiotic resistance.

Keywords: antibiotic resistance, machine learning, DNA sequencing, Raman spectroscopy, biomedical
diagnostic

INTRODUCTION

Novel DNA sequencing technologies have proliferated over the past two decades. Continual
improvements in “next-generation sequencing” (NGS) and “third-generation sequencing” (TGS)
have increased the fidelity and rate of sequencing, but it still takes hours or days to obtain complete
sequences (van Dijk et al., 2018). Sequencing plays an essential role in biological classification, cell
biology, forensic analysis, and gene manipulation for medical and research purposes. Furthermore,
there are some diagnostic applications in which very rapid identification of a particular gene or
genetic species becomes essential, while identification of all genes is not necessary. For example,
in patients with septic shock from bacterial infections, identification of antibiotic-resistance genes
is essential because the mortality rate increases 7.6% per hour of delay in administering correct
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antibiotics (Kumar et al., 2006). Unfortunately, it takes more
than 24 h to grow up the bacteria recovered from the blood
of an infected patient, identify the species, and then determine
to which antibiotics the organism is resistant, leading to a very
high mortality rate for such infections (Kumar et al., 2009).
Carbapenem resistance is one of the most concerning antibiotic
resistances, as infections with carbapenem-resistant bacteria have
a 48% mortality rate (Patel et al., 2008) caused in part by the
good reluctance of physicians to initially prescribe carbapenem
antibiotics without verifying resistance because of the severe side
effects of carbapenems. The attending clinician wants to know the
bacterial species and needs to know any resistance to antibiotics,
with confidence that the diagnostic technique has a very low error
rate of false negatives. As genome and plasmid sequencing can
identify the species and previously identified resistance genes, it
would be tremendously useful to perform bacterial sequencing in
an hour or less. However, current and proposed NGS and TGS
techniques still require much more time.

Herein we present a novel approach that is useful when the
diagnostic objective is to rapidly identify the species of bacteria or
the presence of an antibiotic resistance gene in the bacteria. Our
approach employs a genomic analysis technique that has some
data compression and data loss, but compensates by very rapid
analysis of very short reads of DNA–sufficiently short length
and suitably fast analysis that the species and resistance genes
can be identified in about an hour. Such a process has been
proposed and demonstrated for the identification of resistance
genes in bacteria associated with bloodstream infections (Sagar
et al., 2018; Korshoj and Nagpal, 2019). This technique employs a
block optical sequencing (BOS) method using surface-enhanced
Raman spectroscopy (SERS) to obtain a spectrum of short DNA
oligomers of length k, called k-mers (Sagar et al., 2018; Korshoj
and Nagpal, 2019). Because the Raman spectrum of each A, T,
G and C base is known, the overall ATGC content of a single
k-mer can be calculated by mathematical analysis of the k-mer
spectrum. Sequence information is lost, but the base content–
called block optical content (BOC)–is preserved. For example,
the 10 bp DNA segment ATATGGCCTT would become a BOC
datum of A2T4G2C2. For very rapid analysis, this BOC technique
can be multiplexed by creating an array of 1000s of pyramidal
peaks on a silicon wafer whose entire peak field can be imaged
by a sensitive CCD camera. Using band-pass filters at discrete
spectral windows, optical intensity at specific wavelengths can
be obtained simultaneously from all peaks. Finally the optical
spectra are processed to obtain the ATGC content of the DNA
on each pyramid peak. The size of the tips is such that 10 bases,
but not any longer length, fit within the SERS electromagnetic
field “hot-spot” (Sagar et al., 2018). It is estimated that using
a 1,000 × 1,000 array of SERS pyramids on a silicon wafer,
1,000,000 reads of DNA 10-mers can be done in about 100 s,
using high-throughput Raman spectroscopy using quantum dot
optical filters (Bao and Bawendi, 2015) and digital processing of
the resulting spectra.

Such a technique is ideally suited for genomic identification of
bacteria, as a typical bacterial genome is about 5,000,000 bp, or 10
Mbase of single-stranded DNA (ssDNA). Clipping this genome
into 10-mer lengths would provide enough ssDNA from a single

bacterium to cover the SERS pyramids on a 1,000 × 1,000 array.
Bloodstream infections contain very low counts of bacteria, often
on the order of 10 colony forming units (CFU) per mL of blood.
Thus a 10 mL sample of blood would provide 100-fold more
DNA than needed to place a 10-mer on each pyramid. Bacteria
(and their DNA) can be collected from blood in minutes (Pitt
et al., 2016; Alizadeh et al., 2017; Pitt et al., 2019), and the SERS
analysis can commence immediately, followed by computations
for identification of species and antibiotic resistance.

Compared to species identification, analysis of resistance
genes on plasmids is more challenging since those genes are
usually contained within 500 to 1,000 bases while an average
plasmid is roughly 200,000 bases in length. Thus, there is a
much smaller signal to background ratio, making detection of
resistance genes more difficult. Nevertheless, we show herein that
our technique can still identify specific genes.

While such technology seems promising, a working device
with many 1000s of pyramid tips is still in development,
thus leaving some experimental questions unanswered for now.
While we wait, however, many of the theoretical questions
can be answered, the largest of which is whether the loss
of sequence data (the BOC reads give only content, not
sequence) will make it difficult to uniquely identify a bacterial
species or state unequivocally whether a known resistance gene
is present. Another theoretical question is whether random
mutations in the bacterial genomes will compromise correct
identification, or whether random noise from the experimental
optical measurements will reduce accuracy.

The main goal of this study was to determine whether data
produced in 10-mer blocks could be used in a diagnostic device,
meaning that the data could correctly identify species and
antibiotic resistance genes with a realistic number of pyramid tips
(≤1,000,000 tips). To answer this question, this study addressed
four main objectives: (1) to determine how many BOC reads are
needed for species identification; (2) to determine how many
BOC reads are needed for single gene detections (such as an
antibiotic resistance gene of around 800 bp); (3) to analyze how
accuracy is affected by noise from the detecting instrument and
from random gene mutations; (4) to identify which learning
algorithms are best at accurately identifying the species and genes.

The present study answers these and other questions to show
that only 104 BOC reads, even in the presence of mutations or
experimental noise, are sufficient to identify bacterial species. The
presence of resistance genes can be identified with an accuracy of
80% up to 95% using 105 BOC reads. Both of these results are
well below the proposed 106 BOC reads, even when large error
is present, showing that the algorithm could be used with high
accuracy in a diagnostic device.

MATERIALS AND METHODS

Figure 1 provides an overview of the process for simulating
the experimental data reads, converting these into a spectrum,
and testing the machine learning algorithms (MLAs). A brief
outline follows: a sequence is obtained (see section “DNA
Sequences”); the sequence is broken into every possible 10-mer
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FIGURE 1 | Overview of the identification algorithm. In actual experiments, bacterial DNA (genomic or plasmid) is digested into 10-base lengths. In simulated
experiments and in teaching the learning algorithms, known DNA sequences are randomly broken into 10-base lengths. The block optical content (BOC) is
measured for each 10-mer and put into bins corresponding to the fractional base composition (FBC) of each 10-mer, producing a distribution of FBC for the entire
set of BOC measurements. In some cases random error is generated and added to (or subtracted from) the distribution. Finally the distribution of purely random
ATCG 10-mers is subtracted from the FBC spectrum to produce a spectrum of deviation from randomness. This deviation spectrum is processed by PCA or the
MLAs as described herein.

for both strands of DNA (see section “Generating Sequence-
Specific FBC Spectrum”); the 10-mers are binned according
to the percent A, T, G, and C, resulting in the sequence-
specific fractional base content (FBC) spectrum (see section
“Generating Sequence-Specific FBC Spectrum”); experimental
noise is simulated by introducing random errors into the
sequence-specific FBC spectrum resulting in the simulated
experimental FBC spectrum (see section “Simulating Gene
Mutations and Experimental Errors”); the spectrum from a
purely random sequence (bias) is subtracted from the simulated
experimental FBC spectrum, producing a deviation spectrum
(see section “Bias FBC Spectrum”); the FBC deviation spectra
from many DNA samples are then analyzed by both principal
component analysis (PCA) (see section “Principal Component
Analysis”) and the MLAs (see section “Testing the MLAs”); the
MLAs are trained and cross-validated on one set of FBC deviation

spectra and then tested against another set of never-before-seen
FBC deviation spectra (see section “Testing the MLAs”).

DNA Sequences
While awaiting experimental data from the SERS instrument,
simulated SERS BOC data were generated to determine the
feasibility of the device in identifying bacterial species and
antibiotic resistance genes. Reference genomes for 12 bacterial
species, 728 plasmids containing 4 different types of carbapenem
antibiotic-resistant genes, and 600 control plasmids not
containing any carbapenem resistance genes were collected
from the National Center of Biotechnology Information’s
reference sequence (NCBI RefSeq; see Supplementary
Material for NCBI reference IDs for each genome and
plasmid) (O’Leary et al., 2016). The DNA sequences were
separated into genomic and plasmid DNA (gDNA and
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pDNA, respectively) and studied separately using PCA
and several MLAs.

Of the gDNA sequences, 10 of the 12 species are common
organisms producing bloodstream infections (Bacteroides
fragilis, Campylobacter jejuni, Enterococcus hirae, Escherichia
coli, Escherichia fergusonii, Klebsiella pneumoniae, Salmonella
enterica, Staphylococcus aureus, Streptococcus pneumoniae,
and Streptococcus pyogenes) and were used in both training
and testing (different genomic sequences were used for
training and testing); and two additional species (Klebsiella
aerogenes and Mycobacterium tuberculosis) were only used
in testing (for taxonomy testing). Median GC% contents for
the chosen species are included in Supplementary Table 4.
One NCBI RefSeq genome was used for each species in the
training set and one NCBI RefSeq genome was used for each
species in the testing set. Only one was used because 1000
genomes are generated from each genome using the original
genome FBC spectrum as the probability distribution for
creating new genomes (see sections “Generating Sequence-
Specific FBC Spectrum” and “Simulating Gene Mutations
and Experimental Errors”). This means that no 2 simulated
genomes are identical, even in the absence of error, and that
the MLAs see the original genome and 999 variations for
both the training and testing sets for each species, resulting
in a similar analysis to one made with multiple NCBI RefSeq
genomes per species.

For the pDNA, all sequenced plasmids from the NCBI RefSeq
for the four carbapenem resistance plasmids [imipenemase 4
(IMP-4), Klebsiella pneumoniae carbapenemase 2 (KPC-2), New
Delhi metallo-beta-lactamase 1 (NDM-1), and Verona integron-
encoded metallobeta-lactamase 1 (VIM-1)] were used in either
training or testing (see Table 1 for specific number used in
training and testing). No variant plasmid data were used (a
variant being KPC-4 or VIM-2), and all control plasmids
were checked to make sure they did not contain the four
carbapenem resistance plasmids or any variants. Two different
tests were performed on the pDNA: the first test investigated
whether the MLAs are able to identify the particular type
of resistance (out of four types) or identify that none of
these are present; the second test grouped the carbapenem
resistance plasmids together and investigated whether the
MLAs are able to identify the presence (or not) of any
carbapenem resistance.

TABLE 1 | Carbapenemase-gene-containing plasmids used in this study.

Plasmid type Number of plasmids
used in training set

Number of plasmids in test
set (not seen in training set)

KPC-2 100 98

NDM-1 100 99

VIM-1 100 99

IMP-4 100 33

No-resistance
plasmids

100 (or 400 for
2-group set)a

500 (or 200 for
2-group set)a

aPlasmids were tested against individual resistant types and not resistant (five
groups), or as a resistant vs. non-resistant grouping (two groups).

Generating Sequence-Specific FBC
Spectrum
The physical optical instrument reads the BOC of each DNA
k-mer bound to r number of SERS pyramids on a silicon chip
in the instrument (Sagar et al., 2018). Since the size (i.e., k
bases) of each read is known, these base fractions are converted
into specific integer counts of nucleotides for each k-mer. BOC
reads are written in the form AwTxGyCz where 0 ≤ w,x,y,z ≤ k,
and w + x + y + z = k. For traditional sequencing, there are
4k possible reads for a single k-mer; however, there are only
(k + 3)!/(k!3!) BOC reads corresponding to the different ways
of assigning the variables w, x, y, and z, given the previous
constraints. The distribution of BOC reads, hereafter called the
FBC spectrum, is defined as the probability distribution function
of sampling any BOC read of a specific base composition (see
Figure 2).

In order to create the FBC spectrum for each gDNA and
pDNA sequences of interest, each sequence is decomposed
into every possible 10-mer block using both complementary
strands of DNA, since both strands will be present in a physical
system and a 10-mer block from either strand has the same
probability of adhering to the pyramid tip for the BOC reads.
Therefore, in creating the FBC spectrum, the k-mers from both
complementary strands of DNA are used. These blocks are
then assigned to their corresponding bins to produce the FBC
spectrum. Once all blocks are binned for the given sequence, each
bin count is divided by the total 10-mer count of all 286 bins
for that DNA sequence to get the sequence-specific probability
distribution function, or FBC spectrum.

To simulate BOC reads on a multi-pyramid chip, the FBC
spectrum for the selected plasmid or genome is randomly
sampled 2.5 million times, using the sequence-specific probability
distribution. This represents having more than one copy of the
DNA sequence present in a physical experiment. From this 2.5-
million-value array, the first r number of values are selected
and distributed into bins to produce a simulated experimental
FBC spectrum, where r represents the number of pyramid tips
on the SERS-BOC device. This is done for both the training
and testing sets.

Simulating Gene Mutations and
Experimental Errors
Due to mutations present in bacteria, any given bacteria species
or plasmid will not have a perfectly identical FBC spectrum
as that of the corresponding NCBI reference sequence. These
natural gene mutations, which are on the order of 5 × 10−4 to
5× 10−9 in bacteria (Denamur et al., 2002; Denamur and Matic,
2006), are expected to be overwhelmed by the experimental errors
produced during experimental BOC reads and assignments.
There are several sources for error in the optical sequencing
reads. A few examples are under-digestion and/or over-digestion
which results in non-uniform length k-mer sequences, k-mer
sequences adhering to the pyramid tips such that not all bases
can be read, portions of multiple k-mer sequences adhering to
the same pyramid tip, and optical noise from the instrumentation
(Sagar et al., 2018). While creating more realistic training and test
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samples, a single error rate parameter was introduced to modify
the BOC read that accounts for both the expected bacterial
mutations and the instrument errors, producing FBC spectra
with various levels of random error.

We define an error rate m (where 0≤m≤ 1) to be the fraction
of bases in the reference sequence that are expected to contain
an error. Assuming that the errors are randomly distributed
throughout the reference sequence, the number of errors in a
randomly selected 10-mer is the same as the number of errors
in 10 randomly selected bases. The probability of selecting a 10-
mer without any errors is therefore determined by a binomial
distribution in which the number of trials is the same as the
number of pyramid tips, r, and the probability of being errorless
is one minus the error rate, 1-m. To simulate errors, a value of
either [0,1] is sampled from the binomial distribution B(r,m). If a
0 is chosen, then a value is chosen from the sequence-specific FBC
spectrum (the 2.5-million-value array described above in Section
“Generating Sequence-Specific FBC Spectrum”). If a 1 is chosen,
then a random value from the bias spectrum (see section “Bias
FBC Spectrum” for details) is chosen. This is repeated until a list
of values is created that is r in length; next, the list is distributed
into bins to produce the “noisy” FBC bins. The resulting FBC
10-mer bin counts are divided by r to obtain the “noisy” FBC
spectrum for the given plasmid or genome.

Bias FBC Spectrum
We discovered that a key to enhancing the differences in the
FBC spectra of various DNA sequences is to subtract from each
FBC spectrum the spectrum of totally random ATGC, leaving a
spectrum of deviations from randomness. The resulting spectrum
is called the “deviation spectrum” for a particular sequence.

Because the k-mer size is given, a purely random spectrum
(called the bias spectrum) can be generated by including
every possible k-mer once. Since there are 4k possible
sequential k-mers, and given that any BOC read (AwTxGyCz)
has k!/(w!x!y!z!) ways of permuting the base counts to
create nucleotide-specific k-mers, the bias spectrum can be
calculated as:

bias
(
AwTxGyCz

)
=

1
4k
·

k!
w!x!y!z!

This bias spectrum is subtracted from the FBC spectrum of
the particular DNA sequence to yield a unique-DNA-sequence
FBC deviation spectrum. This unique-DNA-sequence deviation
spectrum is the deviation from pure randomness and should
oscillate around zero.

For our given k-mer size of 10, there are 286 bins in the FBC
spectrum. The FBC spectrum for a sequence can be visualized by
plotting the frequency of a 10-mer in the bins of the spectrum,
as shown in Figure 2. Figure 2A shows the corresponding FBC
spectrum for E. coli, K. pneumoniae, K. aerogenes, and the bias
spectrum. Figure 2B shows the resulting deviation spectra for
E. coli, K. pneumoniae, and K. aerogenes produced by subtracting
the bias spectrum. In Figure 2A, the commonness of the sequence
is indicated by the height of the peak, with taller peaks being
more common, such as A3T2G3C2 and A3T3G2C2. A few of
these peaks are labeled for easy comparison with Figure 2B. As

seen in Figure 2B, some FBC 10-mers appear more often than
expected from a random sequence and some FBC 10-mers appear
less than expected from a random sequence. While obvious that
these bacteria do not have random sequences, it is useful and
informative to observe that randomly breaking their DNA into
all possible 10-mers does not produce a random FBC spectrum;
in fact, unique features appear that suggest a species may be
identified by its deviation spectrum.

To test the robustness of identification of species or genes
by deviation spectra in the presence of real experimental noise
and random mutations in the DNA sequence, random errors are
introduced into the FBC spectra (see section “Simulating Gene
Mutations and Experimental Errors” for details) and then the
resulting noisy data are divided by r and the bias spectrum is
subtracted to obtain a simulated FBC deviation spectrum (with
noise) for the given plasmid or genome. For each gDNA and
pDNA sequence (22 bacterial genomes and 1329 plasmids), 1000
simulated FBC deviation spectra were created from each specific
sequence for both the training set and testing set.

Principal Component Analysis
Principal component analysis is useful analysis is useful for
reducing data dimensions data dimensions while retaining trends
and patterns (Lever et al., 2017). This technique, which can
reduce computational expense, is often used with biological data.
For these reasons, PCA was used to investigate whether a simple
data reduction analysis could easily identify the different species
and antibiotic resistance genes using the noiseless and noisy
FBC deviation spectra. As seen in Figures 3, 4, visualizing the
first two principal components allows for some of the data to
be easily classified into the correct groups, while other data are
unclassifiable. Adding a third principal component may help
cluster the data, but information is not easily retrieved from three
dimensional plots, especially with 1000s of data points. From this
initial result, MLAs were subsequently examined to determine if
supervised learning methods could classify the data.

Testing the MLAs
After creating the FBC deviation spectra from noiseless and noisy
DNA BOC reads, the data sets were split into a training set
and a never-before-seen test set (both sets of FBC spectra are
created through the process detailed by Sections “Generating
Sequence-Specific FBC Spectrum,” “Simulating Gene Mutations
and Experimental Errors,” and “Bias FBC Spectrum”) and run
through several MLAs to classify the bacterial species or the
carbapenem resistance status of plasmids based on their FBC
deviation spectra. The attributes used in the classification model
were the values corresponding to the probability distribution
from each FBC deviation spectrum. The training set was then
randomly split into 900 and 100 deviation spectra for each DNA
sequence for running 10-fold cross-validation. The MLAs were
trained on the 900 deviation spectra from each DNA sequence
and then tested against the remaining 100 deviation spectra
from each DNA sequence of the training set and then tested
against all of the never-before-seen sequences. For the gDNA, that
meant that the MLAs were trained on 9,000 training deviation
spectra (900 FBC spectra for each of the 10 training genome
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sequences) and validated against the remaining 1,000 training
deviation spectra from the training set and then tested against
all the 12,000 testing deviation spectra (1,000 FBC spectra for
each of the 12 testing genome sequences). The MLAs were
trained and tested similarly for the pDNA. For the gDNA, the
labels used for classifying were: B. fragilis, C. jejuni, E. hirae,
E. coli, E. fergusonii, K. pneumoniae, S. enterica, S. aureus, S.
pneumonia, and S. pyogenes. The other two species, K. aerogenes,
and M. tuberculosis are used to investigate how the MLAs
group unknown species. For the pDNA, the labels used for the
individual classification tests were: KPC, NDM, VIM, IMP and
No Resistance; and the labels used for the group classification
tests were: Resistance and No Resistance.

For both the gDNA and pDNA, the FBC deviation spectra
were created with the following parameters: k = 10; r = [102;
103; 104; 105; 106]; m = [0, 0.01, 0.05, 0.1, 0.25, 0.33, 0.5, 0.75,
0.9, 1]; and s = 1000; where k is the size of the k-mer, r is the
number of pyramid tips for generating the sample FBC spectra, m
is the fractional error rate, and s is the number of FBC deviation
spectra created per DNA sequence (genome or plasmid). All 50
combinations of r and m were tested.

From the machine learning python package, Sci-kit learn
(version 0.20.3) (Pedregosa et al., 2011), 11 different MLAs
were tested from the following categories: linear MLAs, decision
tree learning algorithms, Naïve Bayes learning algorithms,
discriminant analyses, and a neural network. For this initial
study, default parameters were used for all of these algorithms.
Each of these classification models were chosen for their
ability to fit data with positive and negative values and to
fit data to the model using out-of-core fitting, except for the
discriminant analyses (see Supplementary Material for further
details). Presented in the results is the best algorithm from
each category; the results of the other algorithms are in the
Supplementary Material.

Model Performance Testing and
Statistical Analysis
The robustness of each classification model was studied by
measuring the predictive accuracy as a function of the parameters
of the simulated BOC data. For each optical sequencing read
number (r) and each error rate (m), the performance of the
model was quantified by the predictive accuracy and a confusion
matrix, which keeps track of the true positives, true negatives,
false positives, and false negatives for the sample (Powers, 2011).
The accuracies and confusion matrix presented for each MLA
are the average of 10 trials (n = 10) for the given r and m.
Three different cutoff accuracies (95% for species, 90% for group
plasmid, and 75% for individual plasmid) for the never-before-
seen sequences were chosen as criteria for assessing the effects of
the different error rates and sequencing read numbers.

Simulation
To generate large amounts of simulated experimental data on
which to test the different MLAs, the data were produced
using code written in Python 3.7 as described above. Reference
genomes were downloaded directly from the NCBI RefSeq

database. All code used for running the simulation is available
at: https://github.com/rlwphd/DNAFingerprints. While these
simulations were tested only on plasmids having a carbapenem
antibiotic resistance gene, the simulation will work for any set
of antibiotic resistance genes in which the full sequence of the
gene-containing plasmid is known.

RESULTS

Principal Component Analysis
Figures 3, 4 visually display the first two principal components
for the deviation spectra of the species and resistance genes. For
species, the PCA data are visually distinct, even when significant
noise is added to the BOC data. For resistance gene detection,
the PCA could not produce a clear distinction. Details are
discussed below.

For both bacterial species and antibiotic resistance gene
identification, it is noted that the PCA produced in all cases
contains an arch effect, which indicates that the principal
components are not completely independent of each other and
are thus not completely orthogonal to each other (Morton et al.,
2017). Since the PCA assumes independence and orthogonality
between the principal components, it is not completely reliable as
a means of identification without first adjusting for the arch effect.
However, PCA was used here to reveal the extent of differences
that might be learned by the MLAs.

Bacterial Species
For the bacterial species, we found that the PCA revealed
significant differences between the various species, even with a
90% error rate for 106 reads. As a control, using a 100% error rate
produced no differences (data not shown) because the PCA yields
the same value for all species, regardless of the number of reads.
We selected E. coli and E. fergusonii, two genetically very similar
bacteria, as a stringent test for sensitivity and discrimination.
Because of the similarity of E. coli and E. fergusonii, the graphical
plot can only reveal the difference between these two species for
error rates of 0–33% for 105 reads and 0–90% for 106 reads (see
difference between Figures 3A,B). Figure 3 contains an example
of a non-overlapping (significantly different) PCA (A) and an
overlapping (some difference to no difference) PCA (B). Figure 3
shows the PCA of the FBC deviation spectra data for the bacteria
species for 25% error at 106 reads (A) and at 104 reads (B) (see
Supplementary Material for additional PCA figures). This figure
shows that with enough BOC reads even in the presence of error,
there exists significant differences between the species when using
only the first two principal components. This indicates that the
FBCs of each of these 12 species are distinct enough that the
MLAs should be able to easily classify each species, potentially
perfectly, even in the presence of noise, even differentiating very
similar species such as E. coli and E. fergusonii.

Antibiotic Resistance Genes
For the plasmids, the PCA revealed that there is a greater
spread across the plasmid sequences with no clear differences
using only two principal components for any number of
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FIGURE 2 | FBC spectra and deviation from bias FBC for Klebsiella aerogenes (H), Klebsiella pneumoniae (�), and Escherichia coli ( ). The x-axis shows the range
of the 286 different FBC 10-mers starting with A0T0G0C10 and ending with A10T0G0C0. The A, T, G, and C’s are color-coded on a light to dark scale with the lightest
shade representing 0 and the darkest shade representing 10. (A) Y-axis shows the frequency at which that FBC 10-mer appears in the genome sequence as a
fraction of the total FBC 10-mer count; the black line indicates the normal random bias calculated from all possible FBC 10-mers. (B) Y-axis represents the deviation
from normal randomness of the FBC 10-mer frequencies calculated by subtracting the bias from the frequencies counted in (A). The graph shows that even closely
related sequences have significantly different FBC spectra.

reads, even with no error. This is not surprising because the
antibiotic resistant gene content could be affecting less than
1% of the FBC deviation spectrum (800 bases on a 200,000-
base plasmid) for some of the samples. This indicates that
the MLAs will need to detect the small resistance gene signal
from a dominating background. In addition to a low signal
competing with a strong background, there is a wide range of
different DNA signatures in plasmids, increasing the complexity
of the task. Figure 4 highlights this varying range of DNA
signatures; both control plasmids and plasmids containing
resistance genes span the entire space of the PCA plot. Neither the

individual resistance categorization (Figures 4A,B) nor the group
resistance categorization (Figures 4C,D) provided any insights
into clustering or separation. Figure 4 shows the PCA of the
FBC spectra data for the plasmids for 0% error at 106 reads
(A&C) and at 104 reads (B&D) (see Supplementary Material for
additional PCA figures).

Classification Using MLAs
The outputs from 1000s of simulated SERS-BOC experiments
were produced to examine a wide range of combinations of error
rates and the number of reads from pyramid tips. The simulation
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FIGURE 3 | Visualization of bacterial species principal component analysis. Each of the 12 species tested is clustered individually. There are 1000 data points per
species and each datum represents a single experiment with random error. The clusters indicate the distinctions in the FBC spectra. (A) 106 BOC reads; (B) 104

BOC reads. The error rate is 25% for both (A,B). In both (A,B), the darker triangles represent the never-before-seen genomes for the given species with the lighter
circles representing the genomes trained on. The two additional triangles represent the extra species that the MLAs try to categorize according to the learning from
the other nine species.

creates hypothetical BOC reads from different bacterial genomes
or plasmids which are then converted to FBC deviation spectra
and handed to the different MLAs for categorizing. Simulating
the experiments allows us to show feasibility and test the
robustness of the algorithm in the presence of noise and genetic
variation, and to examine the device as a diagnostic tool for
bacteria classification and resistance profiling.

The results detailed below showed that the best algorithms
from each category are: Passive-Aggressive Classifier (PA, linear
machine learning algorithm); Extra Trees Classifier (ET, decision
tree algorithm); Gaussian Naïve Bayes (GNB, Naïve Bayes

algorithm); Linear Discriminant Analysis (LDA, discriminant
analysis algorithm); and the neural network (NN, whose default is
100 layers and the number of nodes determined by the number of
input features). The results for each of these MLAs are presented
below and the results for the other MLAs can be found in
Supplementary Tables 1–3.

Bacterial Species
The MLA analysis showed that we were able to accurately classify
greater than 96% of the simulated unseen bacterial genome data
sets (1000 samples per species) using the ET, LDA and NN MLAs
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FIGURE 4 | Visualization of the individual and group plasmid principal component analysis. The plasmid FBC spectra cannot be distinguished using only two
principal components (500 FBC spectra per plasmid). (A) Individual 106 BOC reads; (B) Individual 104 BOC reads; (C) Group 106 BOC reads; (D) Group 104 BOC
reads. The error rate is 0% for (A–D). In (A–D), the darker squares represent the never-before-seen plasmids for the given resistance type with the lighter circles
representing the plasmids trained on. The non-resistant plasmids are represented by a darker diamond for the never-before-seen plasmids with a lighter triangle for
training plasmids.

FIGURE 5 | Species model accuracy for different number of BOC reads and error rates. The accuracy of the five MLAs is shown with (A) 10% error, and (B) 25%
error in identifying the never-before-seen bacterial species sets at different number of BOC reads. The accuracy of the five MLAs is shown with (C) 104 BOC reads,
and (D) 103 BOC reads in identifying the never-before-seen bacterial species sets at different error rates. The red line represents 95% accuracy threshold.
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FIGURE 6 | Confusion matrix for the five MLAs for species identification. r = 104, m = 0.10. The x-axis represents the label predicted by the algorithm and the y-axis
represents the true label.

employing as low as 104 BOC reads and up to 50% error. The
PA MLA was the worst algorithm and never got better than
78% accuracy (see Supplementary Material for detailed table).
As for the best algorithms, even at 90% error, the LDA and
NN could accurately classify greater than 98% of the bacterial
species at 105 BOC reads. This surprising result at very high
noise levels is postulated to occur because random error added
to the BOC generates random noise in the FBC spectrum, but
the deviation spectrum has the bias spectrum subtracted out
which removes random noise. Thus, the MLA models working
on the FBC deviation spectra operate on data with a good
signal-to-noise level, even up through 90% random error in the
original BOC data.

The results suggest that a SERS-BOC device only needs
a 100 × 100 pyramid array (∼104 reads per experiment) to
accurately identify bacterial species. Figure 5 shows the MLA
accuracy for an error rate of 10% (A) and 25% (B) for all of the
BOC reads. This figure shows that greater than 97% accuracy is

maintained at 104 BOC reads for both 10 and 25% error. Figure 5
also shows how the various MLAs hold up to error for 104 BOC
reads (C) and 103 BOC reads (D).

The confusion matrix for the MLAs shows how the models
mislabel the species they were trained on, and how they label
the two species which are not defined in the model. Figure 6
shows the species confusion matrix for the five MLAs for 104

BOC reads and 10% error. While most of the species in this
study are not closely related (see Supplementary Material for
details), the best three MLAs only had problems distinguishing
between E. coli and E. fergusonii, which are genetically very
similar (same genus). The ET had a sensitivity rate of 82%
for E. coli and a specificity rate of 94% for E. fergusonii when
comparing the two genomes. The LDA had a sensitivity rate of
92% for E. coli and a specificity rate of 100% for E. fergusonii
when comparing the two genomes; meaning that the LDA could
correctly identify E. fergusonii but not E. coli. The NN had
a sensitivity rate of 93% for E. coli and a specificity rate of
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100% for E. fergusonii when comparing the two genomes. All
other genomes trained on had 100% identification for the ET,
LDA, and NN MLAs. As for the classification of the two extra
species (K. aerogenes and M. tuberculosis), all three MLAs identify
M. tuberculosis as K. pneumoniae (unrelated) 100% of the time.
K. aerogenes was identified as both K. pneumoniae (same genus)
and S. enterica (same family) by all three MLAs. Other details are
found in Figure 6.

Antibiotic Resistance Genes
In the study of the individual resistance categorization
(distinguishing four carbapenem resistance genes), the MLAs
had difficulty achieving better than 75% accuracy. Only with 105

BOC reads (or more) did the ET algorithm attain better than 75%
accuracy, and even this algorithm only achieved 80% accuracy
at best. The LDA and ET algorithms had similar accuracy at 104

reads (see Figure 7D) but the LDA did not perform as well at
105 reads (Figure 7C). The GNB and PA MLAs were the worst
but were still able to achieve 64% accuracy (see Figure 7 and
Supplementary Material for a detailed table). Figure 7 shows the
MLA accuracy for an error rate of 10% (A) and 25% (B) for all of
the BOC reads for the individual scenarios. Figures 7A,B show
that greater than 75% accuracy is maintained at 105 BOC reads
for both 10 and 25% error. Figure 7 also shows how the MLAs
hold up to error for 105 BOC reads (C) and 104 BOC reads (D).

For the group resistance categorization, the MLA analysis was
able to accurately classify 90% of the simulated unseen data set
using the ET, LDA and NN MLAs down to 104 BOC reads and
up to 50% error. The GNB MLA performed the worst of those
examined but was still able to achieve 86% accuracy (see Figure 8
and Supplementary Material for detailed table). Figure 8 shows
the MLA accuracy for an error rate of 10% (A) and 25% (B) for
all of the BOC reads for the group scenario. Figure 8 shows that
greater than 90% accuracy is maintained at 104 BOC reads for
both 10 and 25% error. Figure 8 also shows how the MLAs hold
up to error for 105 BOC reads (C) and 104 BOC reads (D).

The ET MLA model for the individual resistance
categorization maintains 74% accuracy for up to 25% error
for 104 BOC reads and maintains 80% accuracy for up to 25%
error for 106 BOC reads. The individual results suggest that a
SERS-BOC device would need to be at least a 100× 100 pyramid
array (104 reads per experiment), but a 1,000 × 1,000 pyramid
array (106 reads per experiment) would be optimal for the
best results to accurately identify antibiotic resistance genes on
plasmids. For the group resistance categorization, the three best
MLA models maintain good signal-to-noise levels up through
50% error. The group results suggest that a SERS-BOC device
with a 100 × 100 pyramid array would be sufficient to accurately
identify whether any carbapenem resistance gene was present in
the presence of 50% experimental noise.

The confusion matrix for the MLAs shows how the models
mislabel the plasmids, which allows us to calculate the false-
negative rate for the antibiotic-resistant plasmids as a group,
as well as the sensitivity of each individual plasmid. The false-
negative rate metric is clinically important as it is incorrectly
labeling resistant plasmids as not being resistant, which could
result in the wrong (ineffective) antibiotics being given to the

patient, possibly leading to death. The sensitivity metric shows
which type of resistance gene is harder to identify. Figure 9
shows the confusion matrix for the five MLAs for 105 BOC reads
and 10% error for the plasmid sets for individual identification.
Figure 10 shows the confusion matrix for the five MLAs
for 105 BOC reads and 10% error for the plasmid sets for
group identification.

The sensitivity rate at 105 BOC reads and 10% error is the
values on the diagonal on the confusion matrices shown in
Figures 9, 10. The clinically important false negative rates at
105 BOC reads with 10% error from the individual carbapenem
resistance identification are 0.50% for LDA, 1.00% for ET, 1.25%
for NN, 2.50% for PA, and 4.75% for GNB. The false-negative
rates at 105 BOC reads with 10% error from the grouped
carbapenem resistance identification are 2.6% for LDA, 4.5% for
ET, 5.4% for NN, 5.9% for GNB, and 8.2% for PA. Thus, the
LDA MLA appears best at avoiding false-negative errors when
identifying resistance genes on plasmids, while the ET most
accurately identifies the resistance genes.

DISCUSSION

This research is the first of its kind and validates the SERS-BOC
instrument (currently in development) as an excellent predictor
of genetic signatures, even in the presence of genetic mutations
and experimental noise. The use of FBC deviation spectra was
able to achieve greater than 99% accuracy in classifying bacterial
species using several types of MLAs.

We were able to detect individual antibiotic resistance genes
on plasmids from their FBC deviation spectra with 80% accuracy
and to detect the presence of a carbapenem resistance gene with
94% accuracy using MLAs. The implications of our research
suggest that the use of MLA classifiers on fractional base
composition data generated from a SERS-BOC type instrument
(Sagar et al., 2018) has tremendous potential in accurately
identifying both bacterial species and antibiotic resistance genes.
With respect to bloodstream infection diagnosis, the creation of
FBC models has the potential to help determine the bacterial
species and the antibiotic-resistance profile associated with a
bloodstream infection in a cost-efficient and time-efficient way,
thus improving the outcomes for patients. Of most import, the
false negative evaluations for carbapenem resistance genes were
less than 3% using the LDA algorithm with 105 BOC reads.

We note with surprise the lack of spread within a species
data cluster in PCA analysis even when introducing a 25%
error rate. This indicates that the inclusion of error does not
introduce enough variance to cause these species to have overlap
in the principal component space until the number of BOC
reads get low (102 and 103 reads). Because we are sampling at
least a million different k-mers to generate the FBC spectrum,
the distribution of any single training sample does not deviate
significantly from the FBC of the non-mutated genome. The
high number of reads available on a 1-million-pyramid SERS
array would enable this high predictive ability, and may be more
than necessary. Even with experimental error causing deviation
from the reference FBC, the FBCs of different species are distinct
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FIGURE 7 | Individual antibiotic-resistance model accuracy for different number of BOC reads and error rates. The accuracy of the five MLAs is shown with (A) 10%
error, and (B) 25% error in identifying the never-before-seen plasmid sets for individual identification. The accuracy of the five MLAs is shown with (C) 105 BOC
reads, and (D) 104 BOC reads in identifying the never-before-seen plasmid sets for individual identification. The red line represents a 75% accuracy threshold.

FIGURE 8 | Group antibiotic-resistance model accuracy with different number of BOC reads and error rates. The accuracy of the five MLAs is shown with (A) 10%
error, and (B) 25% error in identifying the never-before-seen plasmid sets for group identification. The accuracy of the five MLAs is shown with (C) 105 BOC reads,
and (D) 104 BOC reads in identifying the never-before-seen plasmid sets for group identification. The red line represents a 90% accuracy threshold.
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FIGURE 9 | Confusion matrix for the five MLAs for individual identification of the plasmid sets. r = 105, m = 0.10 The x-axis represents the label predicted by the
algorithm and the y-axis represents the true label.

enough that the simulated experimental noise had no negative
effect on clustering in principal component space. The random
error in BOC data from genomic mutation and experimental
noise in the FBC spectra are subtracted out since we know what
the random spectrum looks like. Thus, random errors reduce the
signal levels but have little effect on noise levels.

The MLA analysis shows how robust the species model is at
handling experimental noise in the FBC, allowing for substantial
error rates while maintaining its predictive power. Again, one
reason why the model can still accurately classify species even
with high error rates is that the experimental noise mimics the
random bias distribution. Since we subtract out this random bias
before running the machine learning classifier, we are essentially
“subtracting out” the effects of the mutation or noise, and what is
left is a smaller size of the accurate FBC, which the MLA can still
use to accurately classify the species of bacteria. For example, 106

BOC reads with 90% random errors still leaves 105 good reads
once the randomness is subtracted.

This study challenged the algorithms with much more random
error in the data than expected in actual experiments. The largest
source of error is anticipated to be wrong assignment of the

BOC values due to spectroscopic noise. Currently the accuracy of
calling correct BOC is about 90% (Sagar et al., 2018), but accuracy
is improving with time and experience and optical quality. Thus
25% error is probably a gross overestimate of actual experimental
error, which we anticipate will be on the order of 10% or less.
Random point mutations in bacteria are far less than 0.1% and
have no bearing on the accuracy of species identification.

Plasmids come in all different sizes ranging from 2,000 to
200,000 bp long (and longer), and the carbapenem-resistant
genes are about 800 bp. This means that the FBC that comes from
the resistant genes has varying weight upon the FBC spectrum
of the entire plasmid, which would explain why there is so much
spread from one resistant plasmid to another in the PCA analysis.
The ability for the MLAs to learn from that 800-bp region
amongst all of the other data and noise shows great promise for
this type of antibiotic resistance gene identification. Overall, the
never-before-seen results show that the good performance of the
models is not a result of overfitting; rather, the models are actually
learning how to recognize the characteristic signatures in an FBC
deviation spectrum when a specific target gene is included. Of
course the application of the algorithm for antibiotic resistance
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FIGURE 10 | Confusion matrix for the five MLAs for group identification of the plasmid sets. r = 105, m = 0.10 The x-axis represents the label predicted by the
algorithm and the y-axis represents the true label.

identification requires knowledge of an antibiotic resistance gene
sequence, so this technique would not identify novel antibiotic
resistance evolved by mutations.

In a real-world application, these models would need to be
tuned to perform optimally, but the low sensitivity of the accuracy
to error rates ranging from 0 to 90% proves the robustness of the
models in dealing with noise. As previously stated, we postulate
that this robustness stems from the subtraction of randomness
from within the data set. A high number of BOC reads with
high random error is similar to a model having less SERS-BOC
readings, which our results show is still effective down to the 104

BOC reads. Additional sources of error in a real-world setting
could include DNA contamination (human or bacterial), lack of
good separation between plasmids and genomes (which would
make the resistant genes on plasmids less distinguishable), and
untested or new bacterial species causing the blood infections.
We anticipate the continued development of the SERS-BOC
instrument that will provide real BOC data from which FBC data
can be created to further test our assumptions and postulates.

Further application of this method could go beyond analyzing
bacterial bloodstream infections into other clinical scenarios
that need fast and reliable analysis of only a few key genes
of known sequence.

There are known limitations to this study. The first and
foremost is that all of the data had to be simulated because
a large enough device to produce experimental data are still
being developed. Another limitation is that only a single group
of antibiotic resistance genes (carbapenem resistant genes) was
tested. Therefore, the results cannot be broadcasted to other
groups of resistance genes or to identifying other genes. Also,
this technique can only identify antibiotic resistance through
known DNA sequences. Another limitation is the limited number
of bacterial species used. Because of the focus on testing the
technology for clinical use in bloodstream infections, a select
group of bacterial species was used for this initial study. Future
studies will test the ability of this technique to identify between all
species. This study also did not tune the MLAs or perform a cost-
benefit analysis to identify the factors influencing the accuracy of
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the MLAs. However, this study provides the initial groundwork
for further exploration in using a SERS-BOC device to identify
species and genes based on 10-mer DNA sequences.
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