
F1000Research

Open Peer Review

, Kent University UKCampbell Gourlay

, University of TorontoAmy A. Caudy

Canada

Discuss this article

 (0)Comments

2

1

METHOD ARTICLE

 single-copy plasmids for auxotrophySaccharomyces cerevisiae
compensation, multiple marker selection, and for designing

 metabolically cooperating communities [version 1; referees: 2
approved]
Michael Mülleder ,    Kate Campbell , Olga Matsarskaia , Florian Eckerstorfer ,
Markus Ralser1,2

Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
Mill Hill Laboratory, The Francis Crick Institute, London, UK
Chalmers University of Technology, Gothenburg, Sweden

 Equal contributors

Abstract
Auxotrophic markers are useful tools in cloning and genome editing, enable a
large spectrum of genetic techniques, as well as facilitate the study of
metabolite exchange interactions in microbial communities. If unused
background auxotrophies are left uncomplemented however, yeast cells need
to be grown in nutrient supplemented or rich growth media compositions, which
precludes the analysis of biosynthetic metabolism, and which leads to a
profound impact on physiology and gene expression. Here we present a series
of 23 centromeric plasmids designed to restore prototrophy in typical 

 laboratory strains. The 23 single-copy plasmidsSaccharomyces cerevisiae
complement for deficiencies in  genes andHIS3, LEU2, URA3, MET17 or LYS2
in their combinations, to match the auxotrophic background of the popular
functional-genomic yeast libraries that are based on the S288c strain. The
plasmids are further suitable for designing self-establishing metabolically
cooperating (SeMeCo) communities, and possess a uniform multiple cloning
site to exploit multiple parallel selection markers in protein expression
experiments.
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Introduction
Auxotrophic markers are single gene perturbations of essential 
metabolic pathways, that are exploited in the efficient selection 
of strains, plasmids and genome editing. Further, they are used 
in a diverse spectrum of genetic technologies, as their selec-
tion is efficient, their use economic, and in contrast to antibiotic 
selection markers, they do not revert by mutation1–3. In budding 
yeast, auxotrophic marker alleles important for histidine, leucine, 
uracil, methionine, lysine, adenine and tryptophan metabolism 
have been crossed or cloned into the popular S. cerevisiae labora-
tory strains. Harbouring 5 auxotrophic marker mutations, his3Δ1, 
leu2Δ0, ura3Δ0, lys2Δ0 or met17Δ04–9, strains derived from the 
S288c background served as the parents of the yeast gene-deletion 
collection5, and subsequent genetic libraries that are based on 
this principle. These libraries include gene deletion mutants5,10,11, 
genetically introduced GFP, GST, and TAP fusions12–14, transposon 
insertion mutants15, decreased abundance by mRNA perturbation 
(DAmP) mutants16, Tet-promoter controlled expression17 and the 
ts-alleles for essential genes18,19. Furthermore, systematic strain 
collections of other fungal species including Schizosaccharomyces  
pombe20,21 and the pathogens Candida glabrata22, Candida  
albicans23 or Neurospora crassa24, all involve use of auxo-
trophic markers as well. As a result, auxotrophic backgrounds are  
omnipresent in a large number of functional genomic experiments, 
and have been used in a countless number of small-scale experi-
ments, resulting in their ubiquity across yeast molecular biology 
literature.

In order for a metabolic gene to function as an auxotrophic  
marker, it needs to be part of a metabolic pathway for which the 
cells possess an extracellular uptake and a sensing mechanism for 
the product of the interrupted pathway. Auxotrophic marker muta-
tions are hence associated with metabolites that are readily taken 
up from the environment. This includes the metabolites exchanged 
between cells in communal growth, in particular amino acids25. The 
biosynthesis of amino acids accounts for up to half of the meta-
bolic flux towards biomass, with amino acids making up to 2/3rds 
of the total mass of polar metabolites26,27. As a consequence, a 
shift from self-synthesis to uptake, as enforced by auxotrophy, is 
not without biological consequence. In fact, most of the genome-
wide gene expression is sensitive to epistatic interaction within the  
Saccharomyces metabolic-genetic background28. The physiologi-
cal effects arising from auxotrophy and complemented marker  
genes have been highlighted by several yeast labs for more than a 
decade2,29–33. Most importantly, to grow auxotrophic strains, amino 
acids and nucleotides need to be added to the growth medium.  
Nutrient supplementation affects not only the interrupted path-
way itself, but the biosynthesis of other essential compounds, in  
particular the enzymatic cofactors, due to the metabolic network 
responding to perturbation at the systems levels, and hence, affect-
ing multiple metabolic pathways in parallel2,34,35. Cell growth 
has consistently shown to be affected by nutrient supplementa-
tion, reflecting the variation in energy costs between biosynthesis 
and uptake/incorporation of the provided nutrients2,34. In batch  
cultures, supplements are also consumed at different rates33. As 
a consequence, nutrient availability changes during batch cul-
ture growth, rendering cells physiologically different between 
growth phases. In classic molecular biology, the use of a matched  

auxotrophic background as a wild-type control has been con-
sidered sufficient to account for the effects of auxotrophy2.  
Transcriptomic, proteomic and metabolomic analysis of comple-
mented auxotrophs show however that this is not the case; the  
metabolic background deficiencies interact epistatically with 
the majority of the coding genome and in a context dependent 
manner. The biological explanation for this phenomenon is that 
metabolism is intrinsically intertwined with the gene expres-
sion machinery and is dependent on metabolic flux distribution. 
The same gene deletion introduced in a different auxotrophic 
background can hence cause an entirely different transcriptional 
response, so that a matched parent background is not able to 
compensate for these effects28.

We here present a series of single copy plasmids derived from the 
pHLUM minichromosome, which can be used for restoring pro-
totrophy as well as for testing the metabolic capacity of budding 
yeast, by compensating for the possible combinations of his3,  
leu2, ura3, met17 (or lys2) deficiencies. For their use in S. cere-
visiae, the plasmids contain a centromeric origin for single copy 
expression and express the marker genes under native S. cerevi-
siae promoter sequences39. To exploit multiple markers to reduce 
the plasmid segregation problem for protein expression experi-
ments, we further introduced the uniform multiple cloning site of 
the pRS300 vector series. For cloning and manipulation in E. coli, 
the shuttle vectors contain a bacterial high-copy replication origin 
(pUC) and an ampicillin antibiotic resistance marker. Finally, the 
pHLUM series of the plasmid contains an N-terminal fragment 
(α-peptide) of the E. coli beta galactosidase (lacZ), for blue-white 
selection in appropriate cloning strains40, and an F1 origin for use 
in phage libraries. These plasmids can be used for complementing 
unused auxotrophies in laboratory yeast stains, to express proteins 
exploiting multiple parallel selection markers, and to study metabo-
lite exchange interactions in synthetic yeast communities.

Materials and methods
Strains, media and cultivation conditions
Escherichia coli strain DH5α was used as plasmid host and strains 
containing the recombinant plasmids were selected on LB medium 
with ampicillin (100 µg/ml) and grown at 37°C. Two commonly 
used S. cerevisiae strains in the S288c background, BY4741 (MATa 
his3Δ1 leu2Δ0 met17Δ0 ura3Δ0) and BY4742 (MATα his3Δ1 
leu2Δ0 lys2Δ0 ura3Δ0)4, were used to test for genetic complemen-
tation of auxotrophic requirements by the plasmids created. The 
strains were grown in YPD (2% Glucose, 20 g/l peptone (Bacto™), 
10 g/l yeast extract (Bacto™)) or synthetic minimal (SM) medium 
(2% glucose, 6.8 g/l yeast nitrogen base), as indicated. To enable 
growth of auxotrophic strains, the SM medium was supplemented 
with 20 mg/l histidine, 60 mg/l leucine, 20 mg/l uracil, 20 mg/l 
methionine and/or 50 mg/l lysine as indicated.

Plasmid construction 
For site directed mutagenesis the Quikchange Lightning kit  
(Agilent) was used according to manufacturer guidelines, taking  
50 ng of plasmid DNA as a template and 6.3 µM of each oligonu-
cleotide (primers O09-O12, Table 1) to a total volume of 25 µl. The 
manufacturer’s recommended cycling parameters, with a 2.5 min 
extension time, were followed.
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All other enzymes for molecular cloning were purchased from New 
England Biolabs (NEB) and used as instructed. Genomic DNA 
was extracted from yeast with repeated freeze-thawing of cells in a 
lysis buffer as per previous publication36. DNA from genomic and 
plasmid templates was amplified with Phusion High-Fidelity DNA 
Polymerase (Finnzymes) supplemented with the CES combinato-
rial enhancer solution to increase primer specificity as described 
previously37.

Plasmids were isolated both from E. coli and S. cerevisiae with 
the QIAprep Spin Miniprep Kit (Qiagen). For the latter, a Qiagen 
protocol (Michael Jones, Chugai Institute for Molecular Medicine, 
Ibaraki, Japan, https://www.qiagen.com/gb/resources/resourcede
tail?id=5b59b6b3-f11d-4215-b3f7-995a95875fc0&lang=en) was 
used. The protocol employs 425–600 μm acid-washed glass beads 
(Sigma) for mechanical lysis (30 sec, 6.5 M/s in a FastPrep®-24 
Instrument (MP Biomedicals)). For homologous recombination 
to construct pLUK, two complementary primers were designed 
with 5’ and 3’ leader sequences homologous to plasmid 5’ and 3’ 
of the HIS3 marker gene (primers O15-O16, Table 1). The oligo-
nucleotides were annealed by heating to 95°C then gradual cooling 
to RT. The plasmid pHLUK was linearized by cutting inside the 
HIS3 sequence with MscI. The yeast strain BY4741 was trans-
formed with 100 ng of cut vector and 500 ng of annealed prim-
ers and was selected on SM medium supplemented with histidine. 
Clones with successful homologous recombination events were 
identified by failure to grow on SM medium without histidine.

Yeast transformation 
Yeast strains were transformed with a high efficiency lithium  
acetate, PEG, salmon sperm protocol using 300 ng of plasmid per 
reaction38.

Results
Generation of the plasmid backbone for pHLUM (version 2) 
series, to complement auxotrophies in BY4741 and isogenic 
strains
For the genetic complementation of the commonly used auxo-
trophic lesions in HIS3, LEU2, URA3 and MET17 we have pre-
viously constructed the pHLUM minichromome (Addgene ID 
40276)33. The plasmid is based on pRS31339, contains a centromer, 
and an autonomous replication sequence, and the HIS3 marker 
as derived from the pRS313 backbone. The additional marker 
genes LEU2, URA3 and MET17 were cloned from other popu-
lar yeast plasmids (pRS42539, p426GPD41 and pRS4114 and were 
placed between unique restriction sites, so that they can be indi-
vidually excised33, primers O01 - O06, Table 1). The three-gene 
insert is flanked by BamHI and XhoI and unique restriction sites  
AscI and SphI were designed between LEU2/URA3 and URA3/
MET17, respectively, to allow for selective excision of the  
individual markers. However, in this original version of pHLUM, 
the HIS3 marker cannot be removed in a straightforward manner.

In order to improve the usefulness of the minichromosome, we 
decided to redesign the plasmid backbone, replacing all 4 marker 
genes but leaving the multiple cloning site of pRS313 intact. With 
a site directed mutagenesis strategy, we added an AatII restriction 
site 5’ and XhoI and BamHI sites 3’ of HIS3 (primers O09-O10, 
Table 1). In the same reaction we eliminated the BamHI and XhoI 
recognition sites from the multiple cloning site by exchanging two 

bases and preserving the sequence of the lacZ α-peptide (primers 
O11-O12, Table 1). With the new restriction sites available and the 
absence of XhoI and BamHI in the multiple cloning site, the DNA 
fragment containing LEU2, URA3 and MET17 could be excised 
from pHLUM with XhoI and BamHI and integrated 3’ of the HIS3 
gene on the modified pRS313 vector. The resulting plasmid was 
named pHLUM (plasmid HIS3 LEU2 URA3 MET15) (version 2). 
It maintains 8 unique endonuclease recognition sites in the 
multiple cloning site and the capacity for colorimetric lacZ 
complementation assays (Figure 1A).

Generation of the plasmid backbone for pHLUK series, to 
complement auxotrophies in BY4742 isogenic strains
In the typical MATα derivatives of the S. cerevisiae gene dele-
tion collection (i.e. BY4742), LYS2 is deleted while the MET17 
marker is wild-type. We used pHLUM (version 2) as a template 
and exchanged the MET17 marker with LYS2 to create an ana-
loguos vector series (pHLUK). The LYS2 coding sequence con-
tains recognition sites for both XhoI and BamHI. We therefore 
removed the BamHI site from pHLUM (version 2), and intro-
duced at the same position a recognition sequence for PmeI.  
To this end we synthesised two complementary oligonucleotides 
(O13-O14, Table 1) and annealed them by heating to 95°C and  
gradual cooling to RT to yield a small double stranded DNA  
segment containing a PmeI site and cohesive ends to the BamHI 
digested pHLUM (version 2). The digested vector was dephospho-
rylated with Antarctic phosphatase (NEB), the annealed primers 
phosphorylated with polynucleotide kinase (NEB) and then ligated 
by T4 DNA ligase abolishing the recognition site for BamHI. 
Next, we amplified the LYS2 gene from BY4741 genomic DNA 
(O07-O08, Table 1) including the promoter and terminator regions 
according to the yeast promoter atlas42. Primer O07 contained 
recognition sites for SalI and MluI and primer O08 for SphI 
(Table 1). The modified plasmid was digested with XhoI and 
SphI and the MET17 marker replaced with the LYS2 PCR product 
digested with SalI/SphI. The cohesive ends of SalI and XhoI DNA 
fragments are compatible and abolish their recognition sites upon 
ligation. The MluI site allows digestion of the vector between LYS2 
and HIS3 and excision of either marker (Figure 1B).

Generation of pHLUM and pHLUK derivatives possessing 
all marker combinations
The unique endonuclease recognition sites between each of 
the marker genes facilitated the creation of the 21 derivatives of 
pHLUM (version 2) and pHLUK containing between 1 and 3 
marker genes, in all possible combinations. The marker genes were 
excised by digestion with appropriate endonucleases, the 3’ and 5’ 
overhangs were removed or filled in with T4 DNA polymerase and 
the plasmid ligated with T4 ligase (Table 2, Figure 2). The plasmid 
pLUK was generated using homologous recombination in yeast.

The completed plasmids were re-sequenced, which led to some cor-
rections compared to the Genebank deposited version of pRS313 
(GenBank: U03439.1) (Supplementary material). Successful 
genetic complementation of auxotrophic markers is illustrated  
upon transforming BY4741 and BY4742 strains, with the generated 
plasmids, and subsequent scoring of their growth on selective media 
for histidine, leucine, uracil and methionine or lysine, respectively. 
The plasmids restored all auxotrophies in BY4741 and BY4742 
in the desired combination (Figure 3). Further, we tested the 
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Table 2. A plasmid series to complement auxotrophic markers HIS3, LEU2, URA3, 
MET17 or LYS2, in 23 possible combinations. 

Plasmid Addgene 
ID Marker genes Parental plasmid Cloning 

strategy

pHLUM 
(version 2) 64166 HIS3 LEU2 URA3 MET17 pRS313 and pHLUM 

(ID 40276) SD, RE

pHLU 64167 HIS3 LEU2 URA3 pHLUM (version 2) RE, BE

pHLM 64168 HIS3 LEU2 MET17 pHLUM (version 2) RE, BE

pLUM 64169 LEU2 URA3 MET17 pHLUM (version 2) RE, BE

pHUM 64170 HIS3 URA3 MET17 pHLUM (version 2) RE, BE

pHL 64171 HIS3 LEU2 pHLUM (version 2) RE, BE

pHU 64172 HIS3 URA3 pHUM RE, BE

pHM 64173 HIS3 MET17 pHLUM (version 2) RE, BE

pLU 64174 LEU2 URA3 pHLUM (version 2) RE, BE

pLM 64175 LEU2 MET17 pLUM RE, BE

pUM 64176 URA3 MET17 pHUM RE, BE

pL 64177 LEU2 pHLUM (version 2) RE, BE

pH 64178 HIS3 pHLUM (version 2) RE, BE

pM 64179 MET17 pLUM RE, BE

pU 64180 URA3 pLU RE, BE

pHLUK 64181 HIS3 LEU2 LYS2 URA3 pHLUM (version 2) AP, RE, BE

pHLK 64182 HIS3 LEU2 LYS2 pHLUK RE, BE

pHUK 64183 HIS3 URA3 LYS2 pHLUK RE, BE

pLUK 64184 LEU2 URA3 LYS2 pHLUK HR

pUK 64185 URA3 LYS2 pHUK RE, BE

pLK 64186 LEU2 LYS2 pHLK RE, BE

pHK 64187 HIS3 LYS2 pHLUK RE, BE

pK 64188 LYS2 pHK RE, BE

SD, site directed mutagenesis; RE, restriction endonuclease; BE, blunt end ligation; HR, homologous 
recombination; AP, annealed primer cloning

Figure 1. pHLUM (version 2) and pHLUK. Physical maps of pHLUM (version 2) and pHLUK minichromosomes, the centromeric parents 
for the generated S. cerevisiae vector series. pHLUM (version 2) expresses HIS3, LEU2, URA3 and MET17 to complement auxotrophies in 
BY4741/MATa strains of the knock-out collection, while pHLUK expresses HIS3, LEU2, URA3 and LYS2, for the BY4742/MATα series.

Page 6 of 12

F1000Research 2016, 5:2351 Last updated: 24 OCT 2016



Figure 2. A plasmid series to restore prototrophy in derivatives of BY4741 and BY4742. (A) The plasmids are generated from pHLUM 
(version 2) containing HIS3, LEU2, URA3 and MET17, and (B) pHLUK containing HIS3, LEU2, URA3 and LYS2 expressed under control of 
S. cerevisiae promoter and terminator sequences. Unique restriction sites between the marker genes and in the multiple cloning site (M) are 
indicated in the parent pHLUM (version 2) and pHLUK (Figure 1). Loss or acquisition of unique restriction sites is highlighted in the individual 
vector maps.
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conditions, so that cells retain the vector even in the absence of 
selection pressure33. Further, we tested for copy number effects, 
and found that the expression of HIS3, LEU2, MET15 and URA3 
from the minichromosome fully suffices the biosynthetic needs33. 
A situation in which all cells are provided with a high concentra-
tion of nutrients, as would occur with media supplementation, may 
also be less native to cells community where, usually, a certain 
fraction of cells are dependent on metabolite exchange25,45. For 
the typical experiment, the constraints arising from segrega-
tion of a single-copy minichromosome that restores auxotrophy, 
are hence much smaller compared to the problems caused by 
the use of nutrient supplemented media and auxotrophic strain 
backgrounds.

To support the work with prototrophic yeasts, we present here 23 
minichromosomal vectors for restoring prototrophy in popular 
laboratory strains of budding yeast. These plasmids compensate 
for histidine (HIS3), leucine (LEU2), uracil (URA3), methionine 
(MET17) and lysine (LYS2) deficiencies and combinations thereof, 
which have been introduced into many yeast strains derived from 
the S288c background. Furthermore, the multiple cloning array 
is compatible with the widely used pRS300 plasmid series and  
provides unique restriction sites to facilitate cloning of genes of 
interest. The different marker genes of these vectors also enable 
expression analysis in various genetic backgrounds. The main 
intended application of these plasmids is to restore auxotrophy 
in laboratory strains and to be able to conduct experiments in  
minimal nutrient supplemented medium. In this way, the effect 
of amino acid and nucleotide biosynthetic metabolism, which is 
responsible for a major fraction of the metabolic flux of a cell, as 
well as has a profound impact on gene expression and physiology28, 
can be studied.

Another application for these plasmids is to study metabolic  
cooperation in self establishing yeast communities (SeMeCo). It 
has been known for a long time that a subpopulation of plasmid 
free cells can co-grow alongside plasmid containing cells, despite 
using nutrient selection2,46–48. In our lab we have exploited this prop-
erty to study metabolite exchange interactions between cells, and 
developed a system of self-establishing metabolically cooperating 
communities (SeMeCo) in which a series of auxotrophs cooperate 
to enable the growth of a yeast community25,45. This system exploits 
plasmid segregation, starting from an initially self-supporting cell, 
that grows progressively into an increasingly heterogeneous popu-
lation, which is able to proliferate on the basis of nutrient exchange 
occuring between yeast cells. The progressive self-establishment 
overcomes a failure that is typically observed when yeast auxo-
trophs are forced to establish a bilateral cooperation. Other than 
through self-establishment, this lethality is overcome by yeast cells 
being genetically modified to artificially overproduce metabolites 
needing to be exchanged. The synthetic communities generated in 
this way have been intensively studied and serve as a model for 
ecological metabolite exchange interactions49–52. The new vector  
series, having multiple auxotrophic markers on single centro-
meric plasmids, can support the design of such communities, as it  
removes the likelihood of recombination occurring when multiple 
plasmids are used in parallel, to obtain the desired auxotrophic 
background.

Figure 3. Transformation of BY4741 and BY4742 with the 23 
plasmids restores growth on selective media. (A) S. cerevisiae 
haploid strains, BY4741 (MATa his3Δ1 leu2Δ0 met17Δ0 ura3Δ0) 
and (B) BY4742 (MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0)4 were 
transformed with each of the 23 centromeric plasmids from the 
pHLUM (version 2) and pHLUK series and spotted onto synthetic 
minimal medium containing four or all five supplements of 20 mg/l 
histidine, 60 mg/l leucine, 20 mg/l uracil, 20 mg/l methionine or  
50 mg/l lysine, as indicated in black in left hand key. (C) Use of 
the plasmid series for colorimetric lacZ assays: DH5α transformed 
with the lacZ containing plasmid pUC19, the lacZ missing plasmid  
pET-20b(+) and pHLUM (version 2) (pHLUMv2), parent of 23  
plasmid series. A shift from white to blue on X-Gal containing LB 
medium due to the presence of a partial lacZ sequence.

functionality of the lacZ α-peptide sequence retained in the 
pHLUM (version 2) series for blue-white selection, by transform-
ing them in DH5α (Figure 3C). On X-Gal containing medium, a 
blue colour shift was observed.

Discussion
Due to the physiological impact of auxotrophy one would in an ideal 
world conduct all yeast experiments in prototrophic backgrounds 
and, if the objective of the experiment is to study a physiological 
process, use cells grown in minimal nutrient medium. However, 
most existing Saccharomyces lab strain resources are auxotrophic, 
and a majority of genetic techniques depend on the ability to select 
with genetic markers. The switch to antibiotic resistance markers 
is not a viable alternative to auxotrophies in many cases, as antibi-
otics can be expensive, are prone to persistence of sensitive cells, 
and by interfering with translation or transcription, have strong bio-
logical effects on their own43,44. We have noticed in our previous 
work, that a useful workaround, or compromise, for many appli-
cations is to complement the unused auxotrophic marker muta-
tion with a multi-gene containing, single copy, centromeric single 
copy plasmid (minichromosome) that compensates for metabolic 
deficiencies present in the cell28,33. By nature, introducing an epi-
some adds a new constraint due to its segregation. However, we 
found that the four metabolic genes on the pHLUM minichromo-
some provide selective advantage also under nutrient-rich growth  
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Finally, the uniform multiple cloning site (MCS) in the plasmid 
series allows for the inclusion of marker proteins, such as GFP 
or beta-galactosidase, to track individual cell types in SeMeCo 
communities, that reveal phenotypic heterogeneity at the single 
cell level45. This MCS further allows the use of these plasmids for 
the recombinant expression of proteins. Here, one can profit from 
multiple auxotrophic markers on one plasmid to improve selection 
and reduce plasmid segregation rate, so that (as long as no disad-
vantageous protein is expressed) the plasmids can be maintained 
in rich medium in the absence of selection pressure33. This strat-
egy of using multiple markers in parallel can further be exploited 
to increase selection pressure, to counteract the well-known issue 
of clonal selection phenotypes, emerging when overexpressing  
recombinant proteins.

In summary, to test both the effects of prototrophy as well as the 
metabolic capacity of budding yeast, to design self-establishing 
metabolically cooperating communities, and to profit from multiple 
selection markers when expressing proteins, we present a series 
of centromeric plasmids that can compensate for histidine (HIS3), 
leucine (LEU2), uracil (URA3), methionine (MET17) or lysine 
(LYS2) deficiencies in 23 possible combinations. These vectors are  
accessible individually (Table 2) or as a Kit from Addgene (www.
addgene.org/kits/prototrophy/). We hope they benefit the commu-
nity when analysing the importance of biosynthetic metabolism 
for gene function, gene expression, physiology and metabolite 
exchange.
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The Ralser group has thoughtfully designed and created a comprehensive set of plasmids suitable for the
complementation of various combinations of the widely used leucine ( ), uracil ( ), methionine (leu2 ura3

, formerly known as ), histidine ( ), and lysine ( ) markers. Auxotrophy can havemet17 met15 his3 lys2
significant effects on a variety of phenotypes, as shown by this group and others (and as well-described in
the introduction). This new collection of plasmids provides a convenient source of auxotrophic markers
supplied from their endogenous promoters on a CEN/ARS plasmid, which is near single-copy in most
situations.

Not content to make a simple derivative of the pHLUM plasmid they previously created in order to build a
prototrophic version of the yeast deletion collection, the group went to significant efforts to preserve
several sites including BamHI and XhoI within the blue/white compatible multiple cloning site of their base
vector. These plasmids have been fully sequenced in collaboration with Addgene, revealing a handful of
mutations not present in the original (theoretical) sequence of the parent plasmid deposited in Genbank
more than a decade ago.

One minor point could be mentioned for clarity -

The introduction mentions supplementation of "nucleotides" but it is important to note that yeast cells do
not take up (phosphorylated) nucleotides directly. Instead, these are dephosphorylated by extracellular
phosphatases to nucleosides and then imported. There are also transporters that can efficiently take in
nucleobases such as uridine.
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The paper nicely describes the generation and testing of a useful plasmid set that allows
complementation of commonly used auxotrophic markers in the budding yeast system. The paper
provides clear and adequate descriptions of their construction and therefore represents a solid piece of
work that is ready for indexing as it is currently presented.
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