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A B S T R A C T   

Species distribution modelling (SDM) is an important tool to examine the possible change in the 
population range and/or niche-shift under current environment and predicted climate change. 
Monotheca buxifolia is an economically and ecologically important tree species inhabiting 
Pakistan and Afghanistan in dense patches, and species range is contracting rapidly. This study 
hypothesize that predicted climate change might remarkably influence the existing distribution 
pattern of M. buxifolia in the study area. A total of 75 occurrence locations were identified 
comprising M. buxifolia as a dominant tree species. The Maximum Entropy (MaxEnt) algorithm 
was utilized to perform the SDM under current (the 1970s–2000s) and two future climate change 
scenarios (shared socioeconomic pathways: SSPs 245 and 585) of two time periods (the 2050s and 
2070s). The optimal model settings were assessed, and simulation precision was assessed by 
examining the partial area under the receiver operating characteristic curve (pAUC-ROC). The 
results showed that out of 39 considered bio-climatic, topographic, edaphic, and remote sensing 
variables which were utilized in the preliminary model, 6 variables including precipitation of 
warmest quarter, topographic diversity, global human modification of terrestrial land, normal-
ized difference vegetation index, isothermality, and elevation (in order) were the most influential 
drivers, and utilized in all reduced SDMs. A high predictive performance (pAUC-ROC; >0.9) of all 
the considered SDMs was recorded. A total of about 67,684 km2 of geographical area was pre-
dicted as suitable habitat (p > 0.8) for M. buxifolia, and Pakistan is the leading country (with 
about 54,975 km2 of suitable land area) under the current climate scenario. Overall, the existing 
distribution of the tree species in the study area might face considerable loss (i.e. rate of change 
%; − 27 to − 107) in future, and simultaneously a northward (high elevation) niche shift is pre-
dicted for all the considered future climate change scenarios. Hence, development and imple-
mentation of a coordinated conservation program is required on priority basis to save the tree 
species in its native geographic range.  
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1. Introduction 

Climatic, topographic, edaphic, and anthropogenic factors influence the geographical distribution pattern of the plant species, and 
vegetation structure and composition [1]. A continuous increase in global temperatures is reported by Inter-governmental Panel on 
Climate Change since the very beginning of the 20th century. The average land surface temperature (LST) has climbed by 0.85 ◦C 
worldwide, especially from the late 1800s–2012s, and amount of greenhouse gas emission has also been dramatically increased [2]. 
The relative concentration of CO2, CH4, and N2O gases in the atmosphere has also reached to their highest over the last 800,000 years 
[3]. Human-induced climate change is becoming more evident in the form of increasing anomalies in both temperatures and pre-
cipitation. These variations are inducing a greening trend in some mountainous areas of the sub-continent due to high precipitation at 
one end [4,5], while drought and water shortage at the other parts of the world on the other hand. Abnormal environmental variations 
mainly climatic and anthropogenic ones disrupt multiple ecosystem functions including plant recruitment, phenology, soil properties, 
and assist in spreading plant diseases, and pest and parasite invasions etc [6]. 

In species distribution modelling (SDM), different environmental limitations of a species are evaluated in space and time by 
adopting either single or multiple statistical algorithms simultaneously [7,8]. The commonly used tools include generalized linear and 
additive models (GLMs and GAMs), and machine learning techniques (e.g. maximum entropy (MaxEnt), random forest (RF), boosted 
regression tree (BRT) and artificial neural networks (ANNs), etc.) [9]. Among these, MaxEnt tool is the most popular one, and works on 
the postulate of maximum entropy i.e. “how much choice is involved in the selection of an event” [10]. MaxEnt requires species 
presence data only, and also works efficiently even with the low number of species presence records, and has a user-friendly interface 
[5]. Another advantage of MaxEnt algorithm includes the restriction of the value of each environmental variable to its factual average 
[11,12]. The number and types of environmental variables, sampling effort, sampling bias, and amount and extent of species 
occurrence data affect prediction probabilities [11], and MaxEnt relatively can handle these issues more adequately than the other 
modelling tools. Species distribution models (SDMs) can predict high occurrence probability for individual species at some geographic 
space/places [7,13], which depict an existence of more optimal environmental conditions, and can be called as a suitable habitat [14]. 

The species niche concept provides a basis for the development of BIOCLIM (the first SDM package) [15,16]. The WorldClim 
databases have provided an important source of global climatic data for SDM studies [17,18]. The WorldClim data were developed 
using ANUSPLIN, a climatic interpolation method, developed initially for BIOCLIM and a set of 19 bioclimatic variables prepared in 
1996 for a revised version of BIOCLIM [19]. Predictive distribution modelling of different valuable plant species has been conducted by 
many workers to forecast the impact of expected climate change on biodiversity [20–22]. Such studies are valuable for the timely 
development and execution of conservation planning and management. Additionally, species response in the form of growth and 
survival can be assessed under predicted future climate change scenarios like SSPs 126, 245, 370 and 585 for multiple time periods 
including say 2030s (2020s–2040s), 2050s (2040s–2060s), 2070s (2060s–2080s) and 2090s (2080s–2100s), etc. This data comes 
under the sixth phase of the Coupled Model Intercomparison Project (CMIP6) based on global anticipated greenhouse gas emission and 
socio-economic development scenarios. 

M. buxifolia (Falc.) A. DC., locally known as “Gurguri” is one of the important broadleaved tree species of the family Sapotaceae. It 
is a native of the remnant forests and is narrowly distributed predominantly along the border areas of both Pakistan and Afghanistan 
[23,24]. The fruit of this species is laxative, digestive, and commonly found effective against the urinary tract diseases. Despite the 
presence of many valuable plant species, M. buxifolia is the most chosen one in the north-western parts of Pakistan. This is probably due 
to its high socio-economic value in the prevailing culture [25]. This tree species is used as fuel-wood, timber-wood, highly palatable by 
the camels and goats, and also used in fencing and as a windbreaker around the fruit gardens and cultivated cropland [3]. M. buxifolia is 
economically valuable for local inhabitants of rough and tough mountainous areas. The communities residing in remote mountainous 
areas usually have poor conventional horticultural and agronomic activities. Therefore, due to multi-purpose usage, this tree species is 
facing severe anthropogenic pressure which resulted in reduction of its distributional range and population size dramatically during 
the last few decades [4]. These ever-increasing anthropogenic activities and predicted climate change might be leading threats to this 
species in near future in the area [3]. 

Keeping this into consideration, this study was designed to explore and predict the potential habitat suitability and distribution 
pattern of M. buxifolia using SDM tools under varying climatic conditions. The main objectives of this study include to answer the 
following un-explored questions, 1) which environmental variables predominantly influence the M. buxifolia distribution? 2) Iden-
tification of core geographical areas that are ecologically and environmentally suitable for this tree species under current and predicted 
future climate change scenarios? 3) Will the ecological niche of the species dwindle and/or shift under the predicted future climate? 
The findings of this study will not only help in identification and mapping of core geographical areas with high habitat suitability for 
the considered species but might also help in delimiting the potential conservatory areas, and in maintaining the sustainable growth of 
the dependent local communities. 

2. Material and methods 

2.1. Study area 

Pakistan and Afghanistan are the two neighboring countries whose geographic space (especially border areas) have optimal 
environmental conditions necessary for the growth and survival of M. buxifolia. Ecologically, this tree species is a niche specialist and 
distributed in dense patches but at spatially distinct locations having unique environmental conditions. This tree species is frequently 
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reported from different geographic areas including the Hindukush Mountains especially the bordering areas of both countries, and 
western Himalaya [25]. Pakistan has a land area of about 882,364 km2, spanning between 60◦55′–75◦30′ E longitude and 
23◦45′–36◦50′ N latitude [26]. The country has immense variety in its climate, topography (elevation gradient ranging from 0 to 8611 
m asl) and biodiversity [23,27]. As far as Afghanistan is concerned, the species is primarily distributed in the eastern parts adjoining 
north-western Pakistan, and the area on both sides have strikingly similar climatic conditions. Due to continuous geopolitical conflicts 
in Afghanistan, this study collected the species occurrence data from Pakistan only but extensively covered the border areas. Hence, 
the existing core areas of the considered species are thoroughly surveyed to get location data, and SDM was performed by selecting an 
extent of X-Min: 68, X-Max: 77, Y-Min: 29, Y-Max: 37 to clip the environmental variables for both current climate and future pro-
jections. The forests of this species are found on moderate to steep slopes with ecologically unique microhabitats [3]. These mixed 
forests are comprised of patches of evergreen, deciduous, and broad-leaved trees and shrub species. Hence, occasionally, these forests 
develop into a dense ground cover of steppe vegetation in the area. The various landscapes serving as the preferred ecologically 
suitable habitat for M. buxifolia are presented in Fig. 1. 

2.2. Species occurrence data 

Preliminary field and botanical literature surveys were conducted in 2016 to get familiarity with M. buxifolia habitat and distri-
bution range. Local knowledgeable community members and forest offices were also contacted to get help in search of M. buxifolia 
locations. Finally, a total of 75 sites were recognized fulfilling the following two conditions; a) species should be uniformly distributed 
over an area of more than 1 ha, and b) study locations should be dominated by the M. buxifolia in terms of its relative abundance 
comparative to coexisting species [28]. The geographical coordinates of the diagonal intersection point (1-ha plot) at each site were 
collected by a handheld GPS device from March 2017 to August 2019. These coordinates were used as presence locations to build the 
SDM. Different taxonomic databases like POWO (URL: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:915493-1; 
accessed: 25-11-2022) suggests that M. buxifolia is a synonym of Sideroxylon mascatense (A.DC.) T.D.Penn. Though, this tree species is 
also reported from some parts of Africa (Somalia, Ethiopia) and Arabian Gulf countries (Kingdom of Saudi Arabia, Qatar and Yemen), 
however, primarily detected as a highly scattered tree species (low relative density) in these arid areas, and do not meet the set two 
conditions of this study as mentioned above. Therefore, this study includes 75 occurrence locations of the target tree species repre-
senting the core areas of the species. A buffer analysis was also performed, and a circular buffer zone with 1 km2 radius (as envi-
ronmental data used in this study has a spatial resolution of about 1 km2) was created around each species presence point to confirm 
spatial and environmental distinctiveness (i.e. to maintain the minimum ground distance of 2 km2 between any two closely located 
presence points, and to delimit one presence point in any pixel). The modeled predictions were mapped by using ArcGIS (ver. 10.3), 
whereas SDM was done by using open source MaxEnt (ver. 3.4.4) software (Source: https://biodiversityinformatics.amnh.org/open_ 
source/maxent/). 

Fig. 1. A collection of few images representing distribution of Monotheca buxifolia forests at the different study locations in the Hindu Kush 
mountain range, Pakistan. 
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2.3. Environmental data collection 

As plant species distribution is influenced by a variety of environmental factors say climatic, topographic, edaphic and anthro-
pogenic, hence, predictor variables data was selected accordingly. A total of thirty-nine predictor variables were used in preliminary 
distribution model of M. buxifolia to seek their influence and contribution (%). These include 19 bioclimatic variables Product: Coupled 
Model Inter-comparison Project Phase 6 (CMIP6); File format: Geo-Tiff (.tif); Resolution: 30 arc-seconds (ca: 1 km2) available at 
WorldClim database (URL: https://www.worldclim.org/data/worldclim21.html) [18], 10 different edaphic variables (mean values of 
0–30 cm soil depth; Source: https://soilgrids.org/), 7 topographic variables (Google Earth Engine Data Catalog), 2 anthropogenic 
variables including population density and global human modification of terrestrial land (Source: Google Earth Engine Data Catalog 
contributed by Conservation Science Partners), and NDVI (mean value (2001–2020) of the growing season (April–August)), the detail 
of the predictor data is presented in Table S1. The global human modification of terrestrial systems data set depicts human modifi-
cation of the terrestrial lands, and comprise of continuous 0–1 metric raster data. It reflects the proportion of a landscape as a 
human-induced modified region considering the physical extents of 13 important anthropogenic stressors/factors say population 
density, built up areas, cropland, livestock, major and minor roads, tracks, railroads, mining, industries, oil wells, wind turbines, power 
lines and night time lightings (source years: 2000–2016) [29]. The predictors’ data is resampled to bioclimatic variables resolution 
(~1 km2), if required, before running SDMs to match the pixel size of each variable. The future projection data (i.e. two predicted 
future climate change scenarios including SSPs 245 and 585 of time periods the 2040s–2060s = the 2050s and the 2060s–2080s = the 
2070s) with 30 s resolution was obtained (Source: https://www.worldclim.org/data/cmip6/cmip6_clim30s.html) [22]. This future 
data belongs to three global climate models (GCMs) including 1. BCC-CSM2-MR; 2. CanESM5; 3. CMCC-ESM2, and the mean valued 
future prediction raster files were created and compared to seek the possible impact of predicted future climatic variations. 

2.4. Predictor data filtration and variables selection 

In the first step of SDM of the tree species, a preliminary MaxEnt model was run with default settings using all the considered 
variables to obtain the variables’ importance. A threshold value of >1% contribution was used to screen the variables. The variables 
with more contribution than the selected threshold value were used to evaluate for their pairwise correlation analysis (threshold value 
of ±0.7 for the Pearson’s correlation coefficient) in the second step. Any two variables if found correlated above threshold, the one 
least contributing was removed. This two-step procedure help to reduce the multicollinearity effects of the covariates in the final 
reduced models [26], as use of environmental variables giving redundant information (highly correlated) results in model over-fitting. 
This sequential procedure help in selecting the highly contributing but least correlated predictor variables for the final 
reduced-uncorrelated model. Accordingly, implementing the two thresholds mentioned above, six variables including precipitation of 
warmest quarter (Bio18), topographic diversity, global human modification of terrestrial land, normalized difference vegetation index, 
isothermality (Bio3), and elevation were retained. Pairwise correlation plots of the final selected variables for the reduced models were 
developed (Fig. S1) by using “ggplot2” and “reshape2” packages in R statistical software. 

2.5. Model calibration and optimization 

The SDMs calibration and optimization is an important step in predictive distribution modelling for better and more reliable 
prediction probabilities [22]. For optimal SDMs, multiple varying combinations of feature classes (FC: L = Linear; Q = Quadratic; P =
Product; H = Hinge; and T = Threshold), and regularization multiplier (RM) values can be assessed [30]. For this, “ENMeval”, “rJava”, 
“raster”, “mass”, “dismo”, and “rgdal” packages in R statistical software were utilized. This study targeted a total of 48 different models 
with varied combinations of FC and RM values (six FC groups including L, LQ, H, LQH, LQHP, and LQHPT; and eight RM values: 0.5–4, 
interval: 0.5). The other selected options in this testing include10 k-fold cross-validation with 10,000 background points. Therefore, 
the optimal MaxEnt model settings were identified based on threshold-dependent (i.e., omission rate) evaluation metrics. Additionally, 
a two-dimensional kernel density estimation was made to generate the bias file to be used in all SDMs. 

After identifying the appropriate and optimal MaxEnt settings, the other model run options include selection of complementary log- 
log (clog-log), response curves of the predictor variables, Jackknife testing to seek the importance of the explanatory variables, random 
seed, multivariate environmental similarity surfaces (MESS) analysis when projecting, 10 replicate runs, 10 percentile training 
presence threshold, and 500 random iterations (i.e. use of different set of occurrence locations for training and testing on each iter-
ation). Similarly, MaxEnt analyzes the environmental conditions of the randomly distributed background points (10,000 point in 
current study), and compare them with the conditions of species presence records for determining the differences in habitat suitability 
(presence probability) of the species [31]. All the remaining options in MaxEnt were retained by default in the model. 

2.6. Model validation and prediction probability classification 

The SDMs performance can be independently evaluated by assessing the values of different accuracy measures like area under 
receiver operating characteristics curve (AUC-ROC), true skill statistics (TSS), Kappa statistics, AUC-ratios, and partial AUC-ROC 
values [18,20]. Multiple pros and cons (especially dependence on prevalence) of the first three accuracy measures have been re-
ported from time to time [32]. Hence, this study calculated all the five accuracy measures mentioned above for comparative 
assessment of the SDMs. The pAUC-ROC values were calculated by using 95% confidence intervals. The values of AUC-ROC, pAU-
C-ROC and Kappa statistics varies from 0 to 1, TSS from − 1 to +1, and AUC ratios from 0 to 2. The higher values (>0.9 or more close to 
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1 in case of first four measures and >1.8 or more close to 2 in case of AUC ratios) represent excellent model performance [33]. This 
mean that larger the partial areas under ROC curve, the better would be model performance [34,35]. Model accuracy values can be 
visualized in the form of graphs by plotting sensitivity verses specificity at different prediction probability threshold values. The curve 
values permit the comparison among the multiple models to seek their relative prediction performance [11]. All the model accuracy 
values were computed by using “spm”, “SDMTune”, and “pROC”, packages in R statistical software. 

The averaged prediction output of the 10 replicates runs with values varying from 0 to 1 were classified into five equal-sized 
categories as suggested many workers [22,32]. These include HSC-5 (Very high habitat suitability class: p > 0.8), HSC-4 (high 
habitat suitability class: p > 0.6–≤0.8), HSC-3 (moderate habitat suitability class: p > 0.4–≤0.6), HSC-2 (least habitat suitability class: 
p > 0.2–≤0.4), and HSC-1 (no habitat suitability class: p < 0.2). The use of such equal-sized prediction probability classes is relatively 
more intuitive, especially when comparing future prediction maps showing pairwise HSCs inter-conversions [36]. Univariate analysis 
of variance (ANOVA) and Tukey’s post-hoc test was performed to seek the significant difference among the five groups (current and 
four future climate change options). The detailed methodology utilized in this study is presented in the flow diagram (Fig. 2). The total 
area (km2) under each classified category was calculated by using map algebra in ArcGIS ver 10.3. The rate of change of each classified 
category (HSC-1–HSC-5) were computed to compare future prediction probabilities with respect to current probability values. 
Similarly, all the 75 studied locations were used to develop the extent of occurrence of the tree species using alpha hull method, and the 
“ConR” package in R statistical software. 

3. Results 

3.1. Model performance and variables significance 

The maximum entropy algorithm was employed to anticipate the potential niche range and distribution pattern of economically 
important broadleaved M. buxifolia under current (1970s–2000s), and projected future (2050s and 2070s) climate change scenarios 
(SSPs 245 and 585). Ecological niche modelling (ENM) evaluation for the optimal model results suggested that a combination of LQH 
features coupled with RM value of 1.5 was the most appropriate for better SDMs performance. The predicted area and average 
omission rate of M. buxifolia showed that the model performed significantly better than the random when tested for omission. The 
results also depicted that the mean omission rate on the test data was best matched to the predicted omission rate along varying 
cumulative threshold values. Similarly, pAUC-ROC value for the test data represents “fit of the model”, and predictive reliability. This 
study recorded the pAUC-ROC value of 0.978 or 97.8% (Fig. S2) for the test data under the current climate, and revealed an excellent 
model fit, optimal performance, and reliability. Similarly, pAUC-ROC values of >0.9 or 90% were recorded for all the future climate 
change scenarios considered in this study. Other accuracy measures targeted in this study like AUC-ROC, TSS and Kappa even 
responded better than pAUC-ROC values for each considered prediction model (Table S2). 

The Jackknife testing shows the importance of explanatory variables in the prediction models. The order of importance of the six 
predictor variables in regularized training gain under the current climate scenario is presented in Fig. 3. The results showed that each 
selected explanatory variable contributed to the improvement of the model prediction. The reason might be the removal of highly 
collinear and least influential variables, and optimal model settings. The order of importance (with only variable) results depicted that 
Isothermality (Bio3) is the leading variable followed by precipitation of the warmest quarter (Bio18), global human modification of 
terrestrial land, elevation, NDVI, and topographic diversity. As far as the maximum training gain is concerned (without variable), 
precipitation of the warmest quarter (Bio18), topographic diversity, and NDVI were recorded as the most important variables. This 
means that there would be a maximum decrease in the training gain in case of removing Bio18 from the model (Fig. 3). 

Percent contribution and permutational importance of the environmental variables are presented in Table 1. Based on percent 
contribution of the variables (in order) include precipitation of warmest quarter (Bio18: 30.3%), topographic diversity (Tdiv: 24.6%), 

Fig. 2. Flow-chart depicting methodology employed in SDM of Monotheca buxifolia in the study area.  

F. Ali et al.                                                                                                                                                                                                              



Heliyon 9 (2023) e13417

6

global human modification of terrestrial land (gHM: 23.2%), NDVI (9.2%), isothermality (Bio3: 7.6%) and elevation (5.1%). Similarly, 
permutation-based order of importance was led by elevation (38.1%) followed by precipitation of warmest quarter (Bio18: 28.9%), 
topographic diversity (16.3%), isothermality (Bio3: 9.3%), global human modification of terrestrial land (gHM: 4.2%) and NDVI 
(3.3%). 

3.2. Variables response curves 

The MaxEnt model response curves are developed by using the corresponding variable values only, and presented in Fig. 4. In these 
response curves, x axis is represented by the variable value, and y axis by the predicted probability of the modeled tree species. The 
results depicted that optimal environmental conditions for the highest predicted probability of M. buxifolia occurrence include the 
geographic areas having isothermality (Bio3) range of 35–39%, precipitation of warmest quarter (Bio18) as 100–300 mm, elevation as 
500–1500 m above sea level, moderate level of gHM as 0.4–0.6, NDVI ( × 10,000) as (3000¬4500), and high topographic diversity 
index range as 0.6–0.9. 

3.3. Distribution pattern under current climate 

The MaxEnt predicted probability output was classified into five categories, mapped, and analyzed for land area calculation. Under 
the current climate scenario (1970s–2000s), a total of about 67,684 km2 geographic area is predicted as suitable (having required 
environmental conditions for Monotheca tree species) in three neighboring countries including Pakistan, Afghanistan and India. The 
extent of occurrence (EOO) of the species was recorded as about 60,632 km2 which is quite close to the total suitable geographic area 
for the species in the study area as mentioned above. However, this difference of about 7000 km2 might be due non-availability and 
inclusion of species occurrence data from Afghanistan. Additionally, the majority of this 7000 km2 of the geographic area came under 
least to moderate suitability (low predicted probability) classes. This also represents that historically the species might exist at these 
locations in the past (Fig. 5). Accordingly, out of the total suitable land area, about 7326 km2 was predicted under very high suitability 
class (HSC-5), about 11,835 km2 under high suitability class (HSC-4), about 16,575 km2 under moderate suitability class (HSC-3), and 
about 31,949 km2 under least suitability class (HSC-2) (Table 2). Based on countries, Pakistan is detected as the most suitable one 
having the majority of geographic areas with optimal environmental conditions required for the growth and survival of the considered 
tree species. About 7041 km2 of the land area of Pakistan (out of a total of 7326 km2 under HSC-5) is detected under HSC-5 (Table 2). 
Accordingly, Afghanistan has about a land area of 253 km2, and Jammu and Kashmir, India has about 32 km2 under HSC-5. Similarly, 
the land area under other habitat suitability classes say HSC-2 to HSC-4, and their patterns for these three countries are predicted like 
HSC-5 under the current climate scenario. 

As far as the predicted microhabitats are concerned, Pakistan is detected as the leading host with multiple locations having optimal 

Fig. 3. Jackknife test of regularized training gain of the six most influential environmental variables and their importance detected in current 
climate (1970s–2000s) predictive model of M. buxifolia in the study area. 

Table 1 
Contribution (in percent) and permutation importance of the six bioclimatic variables in the predicted potential distribution pattern of M. buxifolia in 
the study area.  

Code Variable Percent contribution Permutation importance 

Bio18 Precipitation of Warmest Quarter 30.3 28.9 
Tdiv Topographic diversity 24.6 16.3 
gHM Global Humana Modification dataset (CSP gHM) 23.2 4.2 
NDVI Normalized Difference Vegetation Index × 10,000 9.2 3.3 
Bio3 Isothermality (BIO2/BIO7) ( × 100) 7.6 9.3 
Elevation Elevation 5.1 38.1  
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Fig. 4. MaxEnt model response curves of the six bioclimatic variables used in the species distribution modelling of M. buxifolia.  
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environment for the Monotheca, and these include northwestern districts (allied to Pakistan-Afghanistan international border called 
Durand line) Bajaur, Malakand, Mohmand, Orakzai, Waziristan, Chitral, and Khyber, etc. The other important districts include Lower 
and Upper Dir, Swat, Karak, Hangu, Kohat, Buner Kohistan, Mianwali and salt range area in the Pothohar plateau. Afghanistan districts 
that have optimal environmental conditions include Achin, Sherzad, Jani Khel, Sabari, and Musa Khel whereas small land areas of 
Kupwara, Rajouri, Reasi, Srinagar, and Doda districts of Jammu and Kashmir, India. Hence, these microhabitats (locations) are 
represented by unique optimal environmental conditions and resulting rich biodiversity, and suitable for the modeled tree species. 

3.4. Future prediction and distribution 

A total of four SDMs based on two projected future climate change scenarios (i.e. SSPs: 245 and 585), and two time periods (the 
2050s and 2070s) were targeted to seek the impact on habitat suitability variations of M. buxifolia on a temporal scale. The results 
predicted that all the future climate change options might remarkably influence the existing predicted probability of occurrence 
negatively. Hence, under all the studied future climate change scenarios, the ecological niche of the tree species is predicted to reduce 
enormously, especially from the present core geographical areas (Fig. 6 and Table 2). In addition to niche contraction, it is also 
detected that the core geographical areas (microhabitats) might become limited to northern parts of the study area only. These 
predictions for the future will test the dispersal and invasion capabilities of the tree species. Till now, no study has reported the invasive 
behavior of the species, and secondly, to invade the novel habitat as predicted, the species might need to cross Karakorum-Himalaya- 
Hindu Kush mountain ranges which might be an uphill task. However, the growing anthropogenic influence especially along the trade 
routes like China’s One Belt One Road, and China Pakistan Economic Corridor projects might facilitate the species. 

A total of about 51,810 km2 of the geographical area is predicted a suitable habitat for the tree species under SSPs 245 of the 2050s, 
representing a change of − 27% compared to current climate. Similarly, a change of − 68%, − 59%, and − 107% were predicted under 
SSPs 585 in the 2050s, SSPs 245 in 2070s, and SSPs 585 in 2070s respectively. Hence, under all the studied future climate change 
scenarios, existing core areas of Pakistan are predicted to face the majority of impact. A negative rate of change was recorded for both 
Pakistan and Afghanistan under all future climate change options whereas a positive rate was noted for Jammu and Kashmir, India 

Fig. 5. Map displaying ecological niche variations of M. buxifolia under current climate (1970s–2000s) scenario in the study area.  
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depicting a northward shift of habitat suitability of the considered species (Fig. S3 and Table 2). All the pairwise inter-conversions of 
HSCs under projected future climate change options are presented in Fig. S3. 

3.5. MESS analysis and ANOVA 

Multivariate environmental similarity surfaces analysis was performed to seek the geographic distribution pattern of analogous 
environmental conditions for the considered tree species under future climate change scenarios (Fig. 7). The optimal environmental 
conditions in the study area are predicted to contract more and more in order from SSPs 245 in 2050s to SSPs 585 in 2070s, and 
reasonably match with the predicted probabilities of occurrences. The prediction probability values of the 75 occurrence sites of 
M. buxifolia comprising one current and four future climate changes scenarios were extracted. The significant difference among the 
group means of all the five climatic conditions was tested by using ANOVA. The results depicted that there was a significant (p-value 
<0.05; F value: 58.28) group mean difference, and post-hoc testing results depicted that the prediction probabilities might signifi-
cantly dwindle under all the studied future climate change scenarios (Fig. 8). Hence, these variations in the predicted probabilities 
under projected future climatic variations might significantly affect the M. buxifolia distribution pattern, range, and niche shift in the 
study area. 

4. Discussion 

M. buxifolia is one of the economically important broad-leaved native tree species of Pakistan, and eastern adjoining parts of 
Afghanistan [37]. This tree species provides a wide range of ecosystem services (i.e. fruits, income source, fodder, fuel, fencing, etc.) to 
the local communities [25]. The illegal logging of the species is severely disrupting the local ecosystem’s functioning for nearly a 
decade, and war and terror in this hotspot are further intensifying the issue [38]. Due to owing multiple usages, ever-increasing 
overexploitation has resulted in the rapid decline of the species population size, and local communities consequently lose linked 
ecosystem services [38,39]. Anthropogenic disturbances and climatic variations beyond the tolerance limit having intense effects on 
the population density of plant species [40,41]. The conservation of microhabitats supporting the valuable plant species is needed on 
an urgent basis for continuous and sustainable provisioning, and regulatory ecosystem services. Accordingly, this study was carried out 

Table 2 
Potential distribution (area in km2) of M. buxifolia in different habitat suitability classes (HSCs) under current and future climate change scenarios.  

Climate scenario Country HSC-1 (p 0–0.2) HSC-2 (p 0.2–0.4) HSC-3 (p 0.4–0.6) HSC-4 (p 0.6–0.8) HSC-5 (p 0.8–1) Total suitable area 

Current climate Afghanistan 643001 4546 3244 1816 253 9859 
SSPs 245 (2050s) Afghanistan 644649 4188 1893 1263 867 8211 
Rate of change (%) 0 − 8 − 54 − 36 123 − 18 
SSPs 585 (2050s) Afghanistan 645715 3909 1639 1039 559 7145 
Rate of change (%) 0 − 15 − 68 − 56 79 − 32 
SSPs 245 (2070s) Afghanistan 644803 4666 1537 1328 527 8057 
Rate of change (%) 0 3 − 75 − 31 73 − 20 
SSPs 585 (2070s) Afghanistan 647178 3509 1444 643 86 5682 
Rate of change (%) 1 − 26 − 81 − 104 − 108 − 55 
Current climate J&K, India 98537 2273 415 130 32 2850 
SSPs 245 (2050s) J&K, India 93686 5756 1229 496 219 7701 
Rate of change (%) − 5 93 109 134 193 99 
SSPs 585 (2050s) J&K, India 97431 3006 594 251 105 3956 
Rate of change (%) − 1 28 36 65 120 33 
SSPs 245 (2070s) J&K, India 97638 2715 654 264 116 3749 
Rate of change (%) − 1 18 46 70 129 27 
SSPs 585 (2070s) J&K, India 99796 1387 162 31 10 1591 
Rate of change (%) 1 − 49 − 94 − 143 − 112 − 58 
Current climate Pakistan 826938 25130 12916 9889 7041 54975 
SSPs 245 (2050s) Pakistan 846014 16306 7397 5675 6520 35899 
Rate of change (%) 2 − 43 − 56 − 56 − 8 − 43 
SSPs 585 (2050s) Pakistan 858727 11722 6069 3685 1709 23186 
Rate of change (%) 4 − 76 − 76 − 99 − 142 − 86 
SSPs 245 (2070s) Pakistan 856170 13326 5674 4209 2534 25743 
Rate of change (%) 3 − 63 − 82 − 85 − 102 − 76 
SSPs 585 (2070s) Pakistan 866009 10597 3725 1302 281 15904 
Rate of change (%) 5 − 86 − 124 − 203 − 322 − 124 
Current climate Total 1568476 31949 16575 11835 7326 67684 
SSPs 245 (2050s) Total 1584350 26251 10519 7434 7606 51810 
Rate of change (%) 1 − 20 − 45 − 46 4 − 27 
SSPs 585 (2050s) Total 1601872 18637 8302 4975 2374 34288 
Rate of change (%) 2 − 54 − 69 − 87 − 113 − 68 
SSPs 245 (2070s) Total 1598611 20707 7865 5800 3176 37549 
Rate of change (%) 2 − 43 − 75 − 71 − 84 − 59 
SSPs 585 (2070s) Total 1612982 15493 5331 1977 378 23178 
Rate of change (%) 3 − 72 − 113 − 179 − 297 − 107  
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Fig. 6. Map displaying the impact of the considered future climate change scenarios on the potential distribution of M. buxifolia in the study area (A: SSPs 245 (the 2050s); B: SSPs 585 (2050s); C: SSPs 
245 (2070s) and D: SSPs 585 (2070s)) Colors coding for each HSCs are same as in Fig. 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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Fig. 7. Map depicting results of multivariate environmental similarity surfaces analysis for M. buxifolia under projected climate change scenarios in the study area (A: SSPs 245 (2050s); B: SSPs 585 
(2050s); C: SSPs 245 (2070s) and D: SSPs 585 (2070s)). 
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to predict the potentially suitable habitat for M. buxifolia under varying climate change scenarios. Similar work of predicting suitable 
habitats has also reported on various plant species including Olea ferruginea [42], Stipa purpurea [6], Taxus wallichiana [32], Juglans 
regia [32]. 

Multiple machine learning distribution modelling algorithms like MaxEnt, RF, BRT and the ANN has been developed and used to 
identify the hotspot areas for conservation and management. These tools also help in developing a plan to mitigate the impact of 
predicted adverse future climate changes [34,43]. MaxEnt is the most suitable independent tool, even better than the ensemble 
modelling approach. By adjusting through tuning of RM values, it can avoid model overfitting, and work better in case of small sample 
size compared to other approaches [44]. It can capture required information even from the small non-linear data having complex 
interactions [45,46]. It is also comparatively impervious to a moderate degree of sampling bias [47], and presence-background data 
limitations [11,48]. Accordingly, this study opted for the use of the maximum entropy algorithm in MaxEnt to forecast the prediction 
probabilities for the considered tree species under current and projected future climate change scenarios. Additionally, another 
limitation of this study include; as this study targeted the potential distribution of the considered tree species from the core distribution 
areas only, the full climatic adaptability of the tree species needed to be explored to save the species in its entire native range. 

On a regional scale, climate and topography are the leading factors that affect species abundance and distribution pattern, however, 
at the micro-environment level, physiochemical characteristics of the soil might be more important [3,49], or even interspecific 
competition, biological traits, and anthropogenic disturbances [50,51]. Similarly, interspecific relationships coupled with climate 
warming are also important drivers of the high upslope shift rate of the tree line in high elevation areas [52]. This study was focused on 
predicting the habitat suitability variations and mapping for the M. buxifolia under current and future potential climate change options 
(Figs. 5 and 6). SDM is mostly used to document, and predict the habitat suitability of conifers and evergreen broad-leaved tree species 
around the globe [53–55]. In all these studies, MaxEnt predictions were proved very informative under a variety of future climate 
change conditions. Based on the literature, this study utilized a total of 39 bioclimatic, topographic, edaphic, anthropogenic, and 
remote sensing variables to predict the habitat suitability of the considered tree species in the region. Such inclusion of a broad 
spectrum of predictor variables in the SDMs, might further enhance the accuracy of prediction [56]. Hence, SDM represents a useful 
macro-ecological tool to explore the interrelationships of environment and species distribution [54]. 

The performance of the predictive SDMs are evaluated by using multiple accuracy measures like AUC-ROC, TSS, Kappa statistics, 
pAUC-ROC, and AUC ratios. The first three measures are frequently criticized due to their dependence on prevalence [22], therefore, 
we use of multiple measures for comparative assessment. This study detected the pAUC-ROC values for the considered SDMs as > 0.9, 
and represent excellent model fit and performance. AUC-ROC value of more than 0.9 are also reported for Taxus wallichiana [53], 
Acacia modesta and Pinus wallichian [54], Juglans regia and Taxus baccata [21]. In spite of pAUC-ROC, AUC-ROC values are sensitive to 
the prevalence and extent of the study area, hence, should be interpreted carefully. Similarly, the number and types of predictor 
variables strongly influence the model output and are associated with model over-fitting. Similarly, model tuning, and search and use 
of optimal model settings is another important step in SDMs development. 

The relative contributions of the predictor variables were assessed by using Jackknife tests (Fig. 4). Our results depicted that 
precipitation of the warmest quarter (Bio18: 30.3%), topographic diversity (Tdiv: 24.6%), global human modification of terrestrial 
land (gHM: 23.2%), NDVI (9.2%), isothermality (Bio3: 7.6%) and elevation (5.1%) (In order; Table 1) were the most influential drivers 
of predicted niche variations of the considered tree species. The role of these climatic variables are found very prominent in distri-
bution of Paeonia veitchii species in China [57], which matches to the findings of this study. Precipitation of the warmest quarter was 

Fig. 8. Tukey’s post-hoc test results depict the significant difference in the predicted probabilities of occurrences of M. buxifolia under different 
climate change scenarios at the studied locations. 
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detected as the leading variable in the distribution of Taxus wallichiana [58]. Similarly, isothermality represents the proportion of 
mean diurnal range to annual temperature range. Hence, day and night, and summer and winter temperature differences strongly 
influence the considered tree species. This means that the predicted northwards niche shift for M. buxifolia in the Hindu 
Kush-Himalayan mountainous (HHM) region would be chiefly influenced by temperature and precipitation variation. Similar findings 
were also reported by Su et al. [59] and Li et al. [33], who communicated the role of temperature and precipitation factors in Taxus 
wallichiana distribution. Malekian and Sadeghi [60], reported the significant contribution of precipitation of the warmest quarter for 
Persian squirrel distribution in Iran. Similarly, topographic variables strongly influence the species distribution pattern either directly 
or indirectly via controlling soil moisture, radiation intensity, differential evapotranspiration, etc [1]. This study also recorded the 
prominent role of topographic diversity and elevation in niche variation of the considered tree species. Global human modification of 
terrestrial land dataset represents an index comprising intensity of land use land cover changes, traffic intensity, night-time lighting, 
infrastructure, industrial and mining activities [49,61], and a useful variable linked to anthropogenic activities. Additionally, NDVI 
variable is functionally more relevant to evaluate the forest plant species for their potential distribution under future climate change 
scenarios and often yield better model performance [62,63], which supports the findings of the current study. 

Based on model predictions under the current climate scenario, this study has detected the majority of suitable habitats (locations 
with optimal environmental conditions for M. buxifolia) in Pakistan and Afghanistan. The same findings were reported by Ali et al. [4] 
while working on carbon stock of M. buxifolia forests along the altitudinal gradient in Pakistan. Species distribution modelling (SDM) 
and resultant habitat suitability maps are very important prerequisites for the conservation programs [63,64]. The findings of this 
study showed that the potential distribution and habitat suitability of M. buxifolia is very high in the north-western and north-eastern 
parts of Pakistan and Afghanistan respectively. Different districts of Pakistan like Dir Upper, Dir lower, Mohmand, Malakand, Bajaur, 
and Khyber were detected as very high suitability areas for M. buxifolia, and found in the Hindu Kush and Suleiman mountains ranges 
of the north-west of Pakistan. These core mountainous geographical areas have a very delicate ecosystem functioning, and adverse 
environmental changes can disrupt the balance and biodiversity. 

This study targeted the predictive distribution modelling of M. buxifolia under projected future climate change options to seek 
influence on the species range, and possible niche shift as well. For this, a total of four future climate change scenarios (i.e. SSPs 245 
and 585 of 2050s and 2070s) were targeted and included as future projections in the SDMs (Fig. 6 and Fig. S3). Such research work can 
help in mitigating the impact of predicted environmental changes, and assist in developing future conservation programs for the core 
geographical area to save biodiversity [22,32]. Geographical locations having optimal environmental conditions (with a high pre-
dicted probability of finding a species) should be given priority by developing biodiversity protection laws, and sustainable utilization 
should be ensured for species growth and survival. This study predicted that the ecological niche of the considered tree species might 
shrink remarkably, and simultaneously become limited to northern parts of the study area. It is also predicted that overall habitat 
suitability, as well as each considered HSCs, might remarkably dwindle under all considered future climate change scenarios in 
Pakistan. Similarly, the same pattern has been observed for Afghanistan except for HSC-5. However, an opposite pattern to Pakistan 
was recorded for Jammu and Kashmir, India, possibly due to a northwards shift of the ecological niche of the tree species (Fig. S3). This 
study recommends the strict implementation of biodiversity protection laws and policies to ensure the sustainable exploitation of wild 
resources. Despite the fact that Billion Tree Tsunami (BTT) afforestation/reforestation project has been initiated in KPK, Pakistan since 
2014, this study recommends a coordinated multi-sectorial effort for conservation management, plantation/cultivation, and 
commercialization of biological resources [65]. This study also suggest the plantation of native M. buxifolia tree in the predicted highly 
suitable areas. This might result in better seedling growth and survival, and quick ecosystem restoration. 

5. Conclusions 

The predictive distribution modelling of M. buxifolia was performed considering current and future climate change scenarios (SSPs 
245 and 585 of the 2050s and 2070s), and the maximum entropy algorithm. A total of 39 different environmental variables influencing 
the target tree species were included in SDMs, out of which six were detected with a leading influential role. The fitness of the model 
was evaluated by inspecting the pAUC-ROC value, and showed excellent (>0.9) prediction performance. At the moment, a total of 
about 67,684 km2 geographic area is predicted as suitable for the considered tree species in Pakistan, Afghanistan and Jammu and 
Kashmir, India. Based on percent contribution of the predictor variables (in order), precipitation of warmest quarter (Bio18: 30.3%), 
topographic diversity (Tdiv: 24.6%), global human modification of terrestrial land (gHM: 23.2%), NDVI (9.2%), isothermality (Bio3: 
7.6%) and elevation (5.1%) were detected with a leading role in driving niche variations of M. buxifolia. The north-western part of 
Khyber Pakhtunkhwa (allied to the Durand line or Pak-Afghan border) in Pakistan and north-eastern parts of Afghanistan are included 
among the core habitat of the considered species. Interestingly, the species is not reported from Jammu and Kashmir, India till now but 
comprised optimal environmental conditions in some parts, and a suitable geographic area is predicted to expand under considered 
future climate change scenarios depicting northward niche shift, whereas, an opposite trend was predicted for both Pakistan and 
Afghanistan. ANOVA results for the five considered climate groups depicted that the probability of the presence of the tree species at 
existing 75 study locations will significantly (p-value <0.05) dwindle under all future (the 2050s, 2070s) climate change scenarios 
(SSPs 245 and 585). Hence, development, and implementation of the appropriate conservation programs are required on a priority 
basis to save the tree species, especially in Pakistan. Such conservation efforts will not only save the tree species in their native area but 
also help in better socio-economic activities. 
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[8] I. Gómez-Undiano, F. Musavi, W.L. Mushobozi, G.M. David, R. Day, R. Early, K. Wilson, Predicting potential global and future distributions of the African 
armyworm (Spodoptera exempta) using species distribution models, Sci. Rep. 12 (1) (2022) 1–12, https://doi.org/10.1038/s41598-022-19983-y. 

[9] H.S. Yuan, Y.L. Wei, X.G. Wang, Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China Fungal, 
Fungal Ecol. 17 (2015) 140–145, https://doi.org/10.1016/j.funeco.2015.06.001. 

[10] A. Khan, G.A. Bajwa, X. Yang, M. Hayat, J. Muhammad, F. Ali, A. Quddoos, A. Amin, T.U. Khan, A.U. Khan, Determining effect of tree on wheat growth and 
yield parameters at three tree-base distances in wheat/Jand (Prosopis cineraria) agroforestry systems, Agrofor. Syst. (2022) 1–10, https://doi.org/10.1007/ 
s10457-022-00797-w. 

[11] S.J. Phillips, R.P. Anderson, R.E. Schapire, Maximum entropy modeling of species geographic distributions, Ecol. Model. 190 (2006) 231–259, https://doi.org/ 
10.1016/j.ecolmodel.2005.03.0266. 

[12] J.N. Cardona, R.D. Loyola, Applying niche-based models to predict endangered-hylid potential distributions: are neotropical protected areas effective enough? 
Trop. Convers. Sci. 1 (2008) 417–445, https://doi.org/10.1177/194008290800100408. 
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