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Abstract

Although human musical performances represent one of the most valuable achievements of mankind, the best musicians
perform imperfectly. Musical rhythms are not entirely accurate and thus inevitably deviate from the ideal beat pattern.
Nevertheless, computer generated perfect beat patterns are frequently devalued by listeners due to a perceived lack of
human touch. Professional audio editing software therefore offers a humanizing feature which artificially generates
rhythmic fluctuations. However, the built-in humanizing units are essentially random number generators producing only
simple uncorrelated fluctuations. Here, for the first time, we establish long-range fluctuations as an inevitable natural
companion of both simple and complex human rhythmic performances. Moreover, we demonstrate that listeners strongly
prefer long-range correlated fluctuations in musical rhythms. Thus, the favorable fluctuation type for humanizing interbeat
intervals coincides with the one generically inherent in human musical performances.
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Introduction

The preference for a composition is expected to be influenced

by many aspects such as cultural background and taste.

Nevertheless, universal statistical properties of music have been

unveiled. On very long time scales, comparable to the length of

compositions, early numerical studies indicated ‘‘flicker noise’’ in

musical pitch and loudness fluctuations [1,2] characterized by a

power spectral density of 1=f type, f denoting the frequency. In

reverse, these findings lead physicists to create so-called stochastic

musical compositions. Most listeners judged these compositions to

be more pleasing than those obtained using uncorrelated noise or

short-term correlated noise [1].

Rhythms play a major role in many physiological systems.

Prominent examples include wrist motion [3] and coordination in

physiological systems [4–8]. An enormous number of examples for

1=f -noise in many scientific disciplines, such as condensed matter

[9,10], econophysics [11], and neurophysics [12–14] made general

concepts explaining the omnipresence of 1=f -noise conceivable

[15–19]. However, to mention only a few, studies of heartbeat

intervals [20–23], gait intervals [7,24], and human sensorimotor

coordination [4–6,8,25] revealed long-range fluctuations signifi-

cantly deviating from 1=f b noise with b&1. Negative deviations

from b~1 involve fluctuations with weaker persistence than flicker

noise which is superpersistent. Thus the scaling exponent b is

important for characterizing the universality class of a long-range

correlated (physiological) system.

An ancient and yet evolving example of coordination in

physiological systems are human musical performances. The

neuronal mechanisms of timing in the millisecond range are still

largely unknown and subject of scientific research [18,26–31].

However, the nature of temporal fluctuations in complex human

musical rhythms has never been scrutinized as yet. In this article,

we study the correlation properties of temporal fluctuations in

music on the timescale of rhythms and their influence on the

perception of musical performances. We found long range

correlations for both simple and complex rhythmic tasks and for

both laypersons and professional musicians well outside the 1=f

regime. On the other hand, our study unveils a significant

preference of listeners for long-range correlated fluctuations in

music.

We analyzed the deviations from the exact beats for various

combinations of hand, feet, and vocal performances, by both

amateur and professional musicians. The data includes complex

drum sequences from different musical bands obtained from a

recording studio. While intentional deviations from an ideal

rhythmic pattern play an important role in the interpretation of

musical pieces, we focused here on the study of ‘natural’ (i.e.

unintended intrinsic) deviations from a given rhythmic pattern of

given complexity. In order to measure the deviations of human

drumming from a rhythmic reference pattern we took a

metronome as a reference and determined the temporal

displacement of the recorded beat from the metronome click. A

simple example of a recording is shown in Fig. 1: Here a test
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person had to follow the clicks of a metronome (presented over

headphones) beating with one hand on a drum. Fig. 1A shows an

excerpt of the audio signal and Fig. 1B the time series of deviations

{dn}.

The recordings of beat sequences for several rhythmic tasks

performed by humans are compiled in Table 1. In all recordings

the subjects were given metronome clicks over headphones, a

typical procedure in professional drum recordings. We used the

grid of metronome clicks to compute the time series of deviations

of beats and offbeats of complex drum sequences (tasks Idrum).

Each of the different drummers performed simultaneously with

their feet (for bass drum and hi-hat) and hands. Furthermore we

analyzed the recordings of vocal performances of four musicians

(tasks Ivoice), consisting of short rhythmic sounds of the voice

according to a metronome at 124 beats per minute (BPM). Short

phonemes (such as [‘dee’]) were chosen to obtain well separated

peaks in the envelopes of the audio signal. For comparison with

less complex sensorimotor coordination tasks [4,6,8,25,28,32] we

have also included recordings of test subjects tapping with a hand

on a drumhead (tasks Itap). We recorded tapping at two different

meters for each test subject, 124 BPM and 180 BPM, omitting so-

called ‘glitches’, i.e. deviations larger than 100 ms. These glitches

occurred in less than 0:5% and do not substantially affect the long

term behavior we seek to quantify.

We focused on the extraction of possible long-range correlations

(LRC) from the recorded signals. A signal is called long-range

correlated if its power spectral density (PSD) asymptotically scales

in a power law, S(f )*1=f b for small frequencies and 0vbv2.

The power law exponent b measures the strength of the

persistence. The signal is uncorrelated for b~0 (white noise),

while for b~2 the time series typically originates from integrated

white noise processes, such as Brownian motion. For bv1 the

Wiener Khinchin Theorem links the PSD to the autocorrelation

function of the time series {dn} which also decays in a power law

C(t)*tb{1. For the superpersistent case b~1 the correlation

function does not decrease within the scaling regime whereas

bw1 indicates instationarity of the time series.

We applied various methods that measure the strength of LRC

in short time series, namely detrended fluctuations analysis (DFA)

[21,33], zero padding PSD method [34], and maximum likelihood

estimation (MLE) (see Methods for details). DFA involves

calculation of the fluctuation function F (s) measuring the average

variance of a time series segment of length s. For fractal scaling

one finds F (s)*sa, where a is the so-called Hurst exponent, which

is a frequently used measure to quantify LRC [33]. The DFA

exponent a is related to the power spectral exponent b via

b~2a{1 [35].

Results

We found LRC in musical rhythms for all tasks and subjects

(summarized in Table 1) that were able to follow the rhythm for a

sufficiently long time. Fig. 2C shows typical fluctuation functions

for several time series of deviations {dn}. The power law scaling

indicates 1=f b-noise. The obtained power spectral densities display

exponents b in a broad range, 0:2vbv1:3 (Fig. 2 A–B). This

strongly indicates that a (conceivable) unique universal exponent is

very unlikely to exist (cf. the confidence intervals for b). For the sets

Ivoice and Itap we recorded musicians and non-musicians with

different musical experience ranging from laypersons to profes-

sionals. Our findings suggest that it is not possible to assign a

correlation exponent (a or b) to a certain musician, as a single

person may perform differently, which is quantified by both power

law exponents a and b (see, e.g. tasks no. 20 and 21 in Fig. 2B,

which corresponds to beating on a drum at different metronome

tempi). A systematic study of a possible dependence of the

correlation exponents on the nature of the task would be

interesting in itself but is beyond our focus here.

Although a musician does not necessarily intend to optimize

synchrony with the metronome, the lowest values of the standard

deviation of the time series were found for experienced musicians

(s&12 ms, average standard deviation �ss&21 ms). We observed

the trend that small values of s correlated with small values of b
and therefore conjecture that on average, the more a person

Figure 1. Demonstration of the presence of temporal devia-
tions and LRC in a simple drum recording. A professional
drummer (inset) was recorded tapping with one hand on a drum
trying to synchronize with a metronome at 180 beats per minute (A).
An excerpt of the recorded audio signal is shown over the beat index n
at sampling rate 44:1 kHz. The beats detected at times Sn (green lines,
see Methods) are compared with the metronome beats (red dashed
lines). (B) The deviations dn~Sn{Mn fluctuate around a mean of
{16:4 ms, i.e. on average the subject slightly anticipates the ensuing
metronome clicks. Inset: The probability density function of the time
series is well approximated by a Gaussian distribution (standard
deviation 15:6 ms). Our main focus is on more complex rhythmic tasks,
however (see Table 1). A detrended fluctuation analysis of {dn} is shown
in Fig. 2C (middle curve).
doi:10.1371/journal.pone.0026457.g001

Nature of Fluctuations in Human Musical Rhythms
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synchronizes with the metronome clicks, the lower the exponent b.

Hence, the degree of correlations in the interbeat time series would

shrink with increasing external influence. In finger tapping

experiments [8,25] LRC were found even without the usage of a

metronome [4], i.e., for weak external influence. On the other

hand, in the extreme case where the test subject is triggered

completely externally (as in reaction time experiments), LRC were

entirely absent [4].

In order to probe nonlinear properties in the time series, we

applied the magnitude and sign decomposition method [36,37].

The analysis showed strong evidence for an absence of nonlinear

correlations in the data (see Methods and Fig. S2). Thus the

applied methods of analysis designed to characterize linear LRC

are appropriate for the time series of deviations that we have

studied here.

Humanizing music
Do listeners prefer music the more the rhythm is accurate? In

order to modify precise computer-generated music to make it

sound more natural, professional audio software applications are

equipped with a so-called ‘humanizing’ feature. It is also

frequently used in post-processing conventional recordings. A

humanized sequence is obtained by the following steps (see

Methods for details): First, a musical sequence with beat-like

characteristics is decomposed into beats [38], which are then

shifted individually according to a random time series of deviations

{dn}. The decomposed beats are finally merged again using

advanced overlap algorithms.

We found that the humanizing tools of widely used professional

software applications generally apply white noise fluctuations to

musical sequences. Based on the above results we have studied the

question whether musical perception can be influenced by

humanizing using different noise characteristics. Therefore, a song

was created and humanized with 1=f b-noise with b~1 (‘version 1=f ’),

and white noise (‘version WN’), where the time series of deviations have

zero mean and standard deviation s1=f ~sWN~15 ms. Vocals

remained unchanged, as well as all other properties of the versions

such as pitch and loudness fluctuations, which have been shown to

affect the auditory impression [1,2]. Listeners were able to

discriminate between the two versions, see Fig. 3. We observed a

clear preference for the 1=f humanizing over the white noise

humanized version, see the audio example in the Supporting

Information where we compare the two versions.

Rating of humanized music
Next, we describe our empirical analysis on the preference of

listeners for 1=f and WN (white noise) humanized music, cf. Fig. 3.

Two segments of the song under investigation, which were about

30 seconds long, were used. The two versions, 1=f and WN of a

segment were played three times to participants. Thus they

listened to a total of six pairs (three times the pairs for the first

segment, followed by pairs of the second segment). The order of

the exact and the 1=f version was randomized across the six pairs,

with each version being played the first in three out of six times.

For each pair of segments participants were asked one of two

questions: (1) ‘‘Which sample sounds more precise?’’ or (2) ‘‘Which sample

do you prefer?’’ Half of the participants first made their preference

judgments for all six pairs before they reheard the same six pairs

and were asked which of the two versions sounded more precise.

The second half of the participants received the same tasks in

reversed order. No feedback was provided regarding which of the

two versions was more precise.

In total 39 members of Göttingen choirs volunteered for the

study; 16 male and 23 female (average age 25:5 years, s~5:8).

Participants were asked to assess their musical expertise on a scale

from 1 (amateur) to 6 (professional). Participants rated their

musical expertise on average as 3:8 (s~0:9). For both tasks

(preference and precision) the relative frequency of choosing the

1=f version was computed for each participant. The mean relative

frequency with respect to preference for the 1=f version was 0:641
(SEM~0:040). A t-test revealed that these choices deviated

significantly from chance (t(38)~3:49, pv0:002), which indicates

that participants clearly preferred the 1=f version over the white

noise version. In addition they considered the 1=f version to be

more precise (t(38)~7:10, pv0:001) with frequency 79:1%

(SEM~0:041).

Table 1. Set of complex rhythmic tasks exhibiting LRC.

Rhythmic set Task no. Task description Tempo (BPM) Exponent a Exponent b

Idrum 1 complex pattern 190 1:1 1:1

2 complex pattern 132 0:8 0:8

3 periodic pattern 124 1:1 1:4

4 periodic pattern 124 1:1 1:2

5 periodic pattern 124 1:1 1:3

6 tapping with stick 124 1:0 0:9

7 tapping with stick 124 1:0 1:0

Ivoice 8 voice 124 0:7 0:4

9 " 124 0:7 0:4

10 " 124 0:6 0:2

11 " 124 0:7 0:5

Itap 12{27 tapping with hand 180, 124 see Fig. 2B see Fig. 2B

The exponents a shown in the table were obtained using DFA and the exponents b~2a{1 were computed via the PSD. In the set Idrum~(1{7) the complexity of
rhythmic drum patterns decreases from tasks no. 1 to 7. In tasks no. 1,2 we analyzed real drum recordings that are taken from popular music songs, the two drummers
are different persons. Tasks no. 3{7 were performed by a third (different) drummer, where no. 3{5 consisted of a short rhythmic pattern (that included beats and off-
beats) repeated continuously by the drummer. We analyzed the fluctuations of both beats and off-beats (no. 3) of the pattern and in addition we considered the
fluctuations of the beats (task no. 4) and off-beats (no. 5) separately. See main text for a description of Ivoice and Itap .
doi:10.1371/journal.pone.0026457.t001

Nature of Fluctuations in Human Musical Rhythms
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Discussion

This study provides strong evidence for LRC in a broad variety

of rhythmic tasks such as hand, feet, but also vocal performances.

Therefore these fluctuations are unlikely to be evoked merely by a

limb movement. Another observation rather points to mechanisms

of rhythmic timing (‘internal clocks’) that involve memory

processes: We found that LRC were entirely absent in individuals

who frequently lose rhythm and try to reenter following the

metronome. The absence of LRC plays an important role as well

in other physiological systems, such as heartbeat fluctuations

during deep sleep [22]. While LRC in heartbeat intervals are

reminiscent to the wake phase, they were found only in the REM

phase of sleep, pointing to a different regulatory mechanism of the

heartbeat during non-REM sleep.

Here, the loss of LRC may originate from a resetting of memory

in the neurophysical mechanisms controlling rhythmic timing (e.g.

neuronal ‘population clocks’, see [29,30,39] for an overview on

neurophysical modeling of timing in the millisecond regime). In

the other cases, the existence of strong LRC shows that these

clocks have a long persistence even in the presence of a

metronome. In cat auditory nerve fibers, LRC were found in

neural activity over multiple time scales [12]. Also human EEG

data [13] as well as interspike-interval sequences of human single

neuron firing activity [14] showed LRC exhibiting power-law

scaling behavior. We hypothesize that such processes might be

neuronal correlates of the LRC observed here in rhythmic tasks.

In conclusion, we analyzed the statistical nature of temporal

fluctuations in complex human musical rhythms. We found LRC in

interbeat intervals as a generic feature, that is, a small rhythmic

fluctuation at some point in time does not only influence fluctuations

shortly thereafter, but even after tens of seconds. Listeners as test

subjects significantly preferred music with long-range correlated

temporal deviations to uncorrelated humanized music. Therefore,

these results may not only impact applications such as audio editing

and post production, e.g. in form of a novel humanizing technique

[40], but also provide new insights for the neurophysical modeling

of timing. We established that the favorable fluctuation type for

humanizing interbeat intervals coincide with the one generically

inherent in human musical performances. Further work must be

undertaken to reveal the reasons for this coincidence.

Methods

Beat detection
Let the recording be given by the audio signal amplitude A(t).

We define the occurrence of a sound (or beat) at time Sn in the

audio signal by

Sn~argmax
t[Jn

jA(t)j ð1Þ

where Jn is the time interval of interest. Given the metronome

clicks Mn~M0znT , where T is the time interval between the

Figure 2. Evidence for long-range correlations in time series of deviations for the rhythmic tasks of table 1. The tasks correspond to
complex drum sequences (Idrum) and rhythmic vocal sounds (Ivoice) (A) and are compared to hand tapping on the drumhead of a drum (Itap) (B). The
time series analysis reveals Gaussian 1=f b-noise for the entire data set. The exponents b obtained by different methods, maximum likelihood
estimation (incl. confidence intervals), detrended fluctuation analysis (DFA) and PSD show overall good agreement. Task indices separated by vertical
dashed lines in Fig. 2B are recordings from different test subjects each recorded at two different metronome tempi: 124 BPM (even index) and 180
BPM (odd index). In (C) a DFA analysis for three representative time series is shown, corresponding to drumming a complex pattern where hands and
feet are simultaneously involved (top), and tasks taken from Itap (middle) and Ivoice (bottom curve). The upper two curves are offset vertically for
clarity. The curves clearly exhibit a power law scaling F (s)*sa and demonstrate LRC in the time series. The total length of the time series is N*1000.
doi:10.1371/journal.pone.0026457.g002
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clicks and n~1,2 . . ., and given the sounds at times Sn, then the

deviation dn%T is obtained by the difference

dn~Sn{Mn: ð2Þ

The time series of interbeat intervals fIng is given by

In : ~Sn{Sn{1~Tzdn{dn{1. The beat detection according

to Eq. 1 is suitable in particular for simple drum recordings due to

the compact shape of a drum sound A(t) (see Fig. 1): The envelope

of A(t) rises to a maximum value (‘‘attack phase’’) and then decays

quickly (‘‘decay phase’’) [38]. Thus, if the drum sounds are well

separated, a unique extremum (Sn,A(Sn)) can be found. In

contemporary audio editing software, typically the onset of a beat

is detected [38], which is particularly useful when beats overlap.

We used onset detection to find the temporal occurrences of

sounds for humanizing musical sequences, as explained in the

section ‘‘preparation of humanized music’’.

We generalized definition Eq. 2 in order to consider deviations

of a sequence from a complex rhythmic pattern (instead of from a

metronome) as shown in Fig. S1.

Audio example of humanized music
We created audio examples to investigate experimentally,

whether there is a preference of listeners for LRC in music.

Two segments of the pop song ‘‘Everyday, everynight’’, which are

about 30 seconds long, were used. The song was created and

humanized for our study in collaboration with Cubeaudio

recording studio (Göttingen, Germany). An audio example consists

of two different versions of the same segment of the song, played

one after the other. You can listen to an audio example in the

Supporting Information section (Audio S1). First, sample A, then

sample B is played, separated by a 5 sec pause. The two samples

differ only in the rhythmic structure, all other properties such as

pitch and timbre are identical.

The first part (sample A) of the audio example (Audio S1) in the

Supporting Information was humanized by introducing LRC

(using Gaussian 1=f -noise), while for sample B the conventional

humanizing technique using Gaussian white noise was applied.

While the samples used in the experiments on music perception

contained also vocals, in this audio example vocal tracks were

excluded for clarity.

Preparation of humanized music
Here we provide details on how the music examples were

prepared. For our study, a song was recorded and humanized in

collaboration with Cubeaudio recording studio using the profes-

sional audio editing software ‘Pro Tools’ (Version HD 7.4). The

song of 4 : 05 min. length has a steady beat in the eighth notes at

250 BPM, leaving a number of N&1000 eighth notes in the whole

song. First, the individual instruments were recorded separately, a

standard procedure in professional recordings in music studios.

This leads to a number of audio tracks while some instruments,

such as the drum kit, are represented by several tracks. Then the

beats which are supposed to be located at the eighth notes (but are

displaced from their ideal positions) were detected for each

individual track using onset detection [38] implemented in Pro

Tools. The tracks are cut at the detected onsets of beats, resulting

in N&1000 audio snippets for each track. Next, the resulting

snippets were shifted onto their exact positions, which is

commonly called ‘100% quantization’ in audio engineering. This

procedure leads to an exact version of the song without any

temporal deviations. At this stage humanizing comes into play. In

order to humanize the song, we shifted the individual beats

according to a time series of deviations fdng, where n~1 . . . N.

For example, if d3~{20 ms, then beat snippet no. 3 is shifted

from its exact position by 20 ms ahead (for all tracks). We

generated two time series fdng, one is Gaussian white noise used

for ‘‘version WN’’, while the other consists of Gaussian 1=f noise

to generate ‘‘version 1=f ’’. The snippets of the shifted beats are

then merged in Pro Tools. The whole procedure was done for

each audio track (hence, for each instrument). Finally, the set of all

audio tracks is written to a single audio file.

Probing correlations
A method tailored to probe correlation properties of short time

series is detrended fluctuation analysis (DFA) which operates in the

time domain [21,33]. The integrated time series is divided into

boxes of equal length s. DFA involves a detrending of the data in

the boxes using a polynomial of degree k (we used k~2
throughout this study). Thereafter the variance F (s) of the

fluctuations over the trend is calculated. A linear relationship in

a double logarithmic plot indicates the presence of power law

(fractal) scaling F (s)*sa. We considered scales s in the range

6vsvN=4, where N is the length of the time series. Once it is

statistically established by means of PSD and DFA that the spectral

density S(f ) is well-approximated by a power law, we use the

Whittle Maximum Likelihood Estimation (MLE) to estimate the

exponent b and determine confidence intervals. The MLE is

applied to S(f ) in the same frequency range as for the zero

padding PSD method [34], which is f �=Nvf vf �=2, where

f �~1=2 is the Nyquist frequency.

Moreover, we analyzed the data set with the magnitude and

sign decomposition method that reveals possible nonlinear

correlations in short time series [36,37]. In a first step the

increments of the original time series are calculated. Second, the

Figure 3. Perception analysis showing that 1=f humanized
music is preferred over white noise humanizing. The versions 1=f
and WN (white noise) were compared by 39 listeners. Two samples
were played in random order to test subjects, all singers from Göttingen
choirs, who were asked either one of two questions: (1) ‘‘Which sample
sounds more precise?’’ (red bar) or (2) ‘‘Which sample do you prefer?’’
(blue bar) The answers to the first question provide clear evidence that
listeners were able to perceive a difference between the two versions (t-
test, pv0:001). Furthermore, the 1/f humanized version was signifi-
cantly preferred to the WN version (t-test, p~0:0012).
doi:10.1371/journal.pone.0026457.g003

Nature of Fluctuations in Human Musical Rhythms
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increments are decomposed into sign and absolute value (referred

to as magnitude) and its average is subtracted. Third, both time

series are integrated. Finally, a DFA analysis is applied to the

integrated sign and magnitude time series, and the scaling of the

fluctuation function is measured. The magnitude series accounts

for nonlinear correlations in the original error time series.

Fig. S2 shows four typical fluctuation functions (DFA) for their

corresponding magnitude interbeat time series. The curves’ slopes

are close to a~0:5 (bold black line). More precisely, 89% (24 out

of 27) of the data set’s magnitude exponents am lie in the interval

½0:46,0:58�; three values for am have values slightly above 0:6 (each

data set has less than 1200 data points). Hence, the magnitude and

sign decomposition method indicates a lack of nonlinear

correlations in the original interbeat time series. Fig. S2 also

displays the sign decompositions of the fluctuation functions. For

small scales the curves have slopes below a~0:5, whereas those for

large scales have slopes around a~0:5. This behavior is

representative for the whole data set. As an expected consequence,

the sign decomposition shows small scale anticorrelations typically

found in gait intervals [7,24], together with a rather uncorrelated

behavior on larger scales.
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Supporting Information

Figure S1 Generalization of Eq. 2 in order to consider

deviations of a complex rhythm from a complex pattern (instead

of from a metronome), shown is a simple example. Beats at times

Sn (red vertical lines) and an ideal beat pattern with beats at times

Tn (black vertical lines) are compared. The resulting deviations

read dn~Sn{Tn. For illustration, the time is given in units of the

length of a quarter note L, leading to the rhythmic pattern shown

in the upper right corner.

(TIFF)

Figure S2 Probing nonlinear correlations in interbeat time series

(the number in the legend denotes the task index, cf. table I of the

article). Shown are plots of the root-mean-square fluctuation

function F(s) from second-order DFA analysis for (A) the

integrated magnitude series, and for (B) the corresponding

integrated sign series. The grey line has slope 0:2 indicating

anticorrelations. The black lines have slope 0:5 indicating no

correlations.

(TIFF)

Audio S1 Audio example: Pop song ‘‘Everyday, everynight’’.

First, the 1/f humanized version, then the white noise humanized

version is played.

(MP3)
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