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Abstract: HIV can traverse the BBB using a Trojan horse-like mechanism. Hidden within infected
immune cells, HIV can infiltrate the highly safeguarded CNS and propagate disease. Once integrated
within the host genome, HIV becomes a stable provirus, which can remain dormant, evade detection
by the immune system or antiretroviral therapy (ART), and result in rebound viraemia. As ART
targets actively replicating HIV, has low BBB penetrance, and exposes patients to long-term toxicity,
further investigation into novel therapeutic approaches is required. Viral proteins can be produced
by latent HIV, which may play a synergistic role alongside ART in promoting neuroinflammatory
pathophysiology. It is believed that the ability to specifically target these proviral reservoirs would
be a vital driving force towards a cure for HIV infection. A novel drug design platform, using the
in-tandem administration of several therapeutic approaches, can be used to precisely target the
various components of HIV infection, ultimately leading to the eradication of active and latent HIV
and a functional cure for HIV. The aim of this review is to explore the pitfalls of ART and potential
novel therapeutic alternatives.
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1. Introduction

Infection with human immunodeficiency virus (HIV) was once considered to be near-
certainly fatal. Approximately 40 million people are currently infected worldwide by HIV,
including approximately 2 million children under the age of 15 [1]. Antiretroviral therapy
(ART) has changed the landscape of the morbidity and mortality of HIV infection, providing
HIV-infected (HIV+) individuals with a means to achieve long-term viral suppression
within peripheral circulation while also quelling viral activity within the CNS. Most HIV+

patients undergo lifelong treatment with ART due to the aggressive nature of HIV infection
and the potential for rebound viraemia [2]. Evidence suggests that the antiretroviral drugs
(ARVds) commonly used to treat HIV infection can be toxic within the CNS and can result
in the development of various pathophysiologies [3–14]. While ART can control and inhibit
actively replicating HIV, the virus can persist undetected within the host genome in the
form of a latent, replication-competent provirus, which can later become reactivated [2,15].
Thus, the current review focuses on pitfalls of ART, including the inability to specifically
target the latent HIV provirus, long-term toxic exposure, and limited BBB penetrance, along
with novel therapeutic approaches aimed at mitigating these concerns (Figure 1).
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the CNS. Created with BioRender.com. Abbreviations: ART = antiretroviral therapy; HIV = human 

immunodeficiency virus. 
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Figure 1. The enigma of persisting latent HIV provirus despite ART. Actively replicating and latent
forms of HIV can infiltrate the CNS, resulting in neuroinflammatory pathophysiology. While ART
can target active HIV, it is unable to target latent proviral reservoirs. The in-tandem use of ART and
novel therapeutic approaches is required to target and eliminate both active and latent HIV within
the CNS. Created with BioRender.com. Abbreviations: ART = antiretroviral therapy; HIV = human
immunodeficiency virus.

2. HIV Infection within the CNS
2.1. The Blood-Brain Barrier

The blood-brain barrier (BBB) is the crucial anatomic and biochemical interface respon-
sible for regulating the microenvironments between peripheral circulation and the central
nervous system (CNS) [16–18]. These highly regulated microenvironments are required for
neural signaling and the maintenance of homeostasis within the CNS. Additional barriers
including the blood–cerebrospinal fluid (CSF) barrier and the arachnoid barrier provide
additional supportive functions in maintaining CNS homeostasis, but are not as crucial
nor do they occupy as large of a surface area as the BBB. As such, the BBB is at the front
line of defense in protecting the highly safeguarded CNS from the entrance of toxins and
pathogens, including HIV and medications such as ART, adding an element of challenge to
drug discovery and design.

At the BBB, a monolayer of cerebral microvascular endothelial cells (CMECs) forms
the framework of capillary walls, which are interlocked by tight junctions (TJs) made up
of proteins including claudin-5, occludin, and submembranous zona occludnes-1 (ZO-1).
These TJs facilitate the regulation of BBB and CNS homeostasis by linking together CMECs,
preventing the passage of many paracellular molecules into the brain parenchyma, while
also providing a cytoskeletal matrix of intercellular protein filaments arranged as a series
of membranous and submembranous barricades that enable the structural and functional
maintenance of barrier integrity. CMECs are peripherally surrounded by a basement
membrane (basal lamina), pericytes, astrocytic end-feet, and neurons, which together
comprise the neurovascular unit and serve to strengthen barrier function and integrity
at the BBB [18]. Pericytes and astrocytes have important roles in maintaining structural
integrity at the BBB as they can modulate levels of TJ protein expression and vesicle
trafficking in CMECs [19] and contribute to various aspects of CMEC phenotype, including
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development, proliferation, migration, and survival [17,19]. Interestingly, pericytes are also
able to regulate the expression of BBB-specific genes in CMECs, influencing overall BBB
integrity [20].

There are several pathways that restrict the entry of drugs into the CNS. Molecules
that can diffuse or be transported through the endothelium, including ART, can be actively
removed via efflux pumps including P-glycoprotein, multidrug resistance proteins, and
organic anion transporters [3]. This provides a challenge for ART in reaching therapeutic
concentrations within the CNS, allowing for the possibility of rebound viraemia. It is, how-
ever, essential to note that several factors can modulate the expression of these transport
proteins, such as inflammatory, genetic, and drug-induced interactions [3], which can result
in increased transport of ART across the brain endothelium, leading to increased toxic
exposure. Of particular interest is the role of P-glycoprotein in limiting entry into the CNS
for ARVds. Substantial effort has been made to dissect the regulatory mechanisms modu-
lating the expression and/or activity of this protein. Exposure of capillaries to low levels of
proinflammatory factors, such as lipopolysaccharide (LPS), tumor necrosis factor (TNF)-α,
or endothelin-1 (ET-1), was demonstrated to cause a rapid loss of P-glycoprotein transport
function with no change in protein expression. On the other hand, a prolonged exposure
to proinflammatory factors, including TNF-α, had an opposing effect, i.e., upregulating P-
glycoprotein expression via complex mechanisms that shared common signaling elements,
such as TNF receptor 1, endothelin receptors, protein kinase C, and nuclear factor-κB (NF-
κB) [21]. The role of inflammatory factors in the modulation of P-glycoprotein activity has
been confirmed in several literature reports (reviewed in [22]). Interestingly, P-glycoprotein
is also involved in the immune inflammatory response in the CNS by regulating microglia
activation and mediating immune cell migration [23]. We demonstrated that exposure to
HIV-1 Tat protein resulted in overexpression of P-glycoprotein both at mRNA and pro-
tein levels in brain endothelial cells and brain microvessels via mechanisms involving
NF-κB, intact lipid rafts, and activation of Rho signaling [24,25]. Similar upregulation
of P-glycoprotein was demonstrated upon exposure to HIV [26]. In addition, induction
of P-glycoprotein in human brain microvessel endothelial cells was demonstrated upon
treatment with ARVds via the mechanisms involving human pregnane X receptor (hPXR)
and/or human constitutive androstane receptor (hCAR) [27].

Hydrophobicity and low molecular weight are positively correlated with BBB penetra-
tion [3,28]; however, efflux pumps may still actively remove these substances from the brain
parenchyma. The inability of certain antiretroviral drugs (ARVds) to reach therapeutic
concentrations within the CNS may play a role in the potential for rebound viraemia. Thus,
future methods of drug delivery must be investigated and optimized to bypass the classical
diffusion and transport mechanisms of ART across the BBB.

2.2. A Trojan Horse Mechanism for HIV Infection of the CNS

HIV attacks the immune system by infecting and eliminating cells that express the
CD4 receptor (CD4+ cells) and coreceptors, including the C-C motif receptor 5 (CCR5) and
C-X-C motif receptor 4 (CXCR4). The HIV genome can integrate into the host genome of
many cell types; however, there are two major cellular reservoirs: CD4+ T lymphocytes
and macrophages. CD4+ T cells are crucial for combating infection and maintaining
immune responses, homeostasis, and memory, and as such, are associated with several
inflammatory and autoimmune diseases [29]. Macrophages are derived from monocytes
and myeloid cells of hematopoietic origin [23]. In the CNS, microglia and partially pericytes
are cells of myeloid origin. These cells, along with astrocytes, can all be directly infected
by HIV [30–34]. Indeed, a 12 h incubation period with two strains of HIV resulted in the
cellular entry of HIV and low-level replication of HIV in human brain pericytes, astrocytes,
and CMECs [35].

HIV can infiltrate the CNS early in the course of infection. HIV evades detection by the
immune system primarily by using HIV+ CD4+ T cells and cells of the monocytic lineage in
a Trojan horse approach to traverse the BBB [35] (Figure 2). The free virus is also able to cross
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the BBB through TJ openings that can result from HIV-induced dysfunction of CMECs [16].
In addition, HIV+ pericytes were shown to stimulate dysregulation of BBB integrity via
decreased TJ protein expression [34]. This HIV-induced increase in BBB permeability
can lead to the activation of microglial cells and uncontrolled migration of immune cells
into the CNS, which are capable of causing neuroinflammation, loss of neural tissue, and
infection due to the influx of pathogens [36]. In addition, studies have shown that CMECs
can undergo apoptosis during HIV infection [16,34], which increases BBB permeability
and can promote the infiltration of HIV+ cells and virions into the CNS. Intriguingly, HIV-
specific proteins, such as transactivator of transcription (Tat), are capable of inducing CMEC
dysfunction and subsequent BBB dysregulation [37–39], enhancing the infiltration of HIV
across the BBB. The entry of HIV into the CNS can result in neuropathological dysfunctions
ranging from sub-clinical and minor cognitive impairments or motor deficits to HIV-
associated neurocognitive disorders (HAND), including dementia [40]. ART administration
is negatively correlated to TJ protein expression and BBB permeability [19,36,41], illustrating
the need for drug design to maximize the efficiency of BBB crossing and to overcome
toxicities associated with the administration of ART.
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Figure 2. Proposed mechanisms of BBB infiltration of HIV. At the HIV+ BBB, infected CD4+ T cells
and monocytes can cross by several proposed mechanisms. The predominate method centers around
HIV using infected CD4+ T cells and monocytes as a Trojan horse to paracellularly infiltrate brain
parenchyma. HIV+ monocytes can also transcellularly pass through CMECs at the BBB. As HIV
infection progresses in the CNS, increased BBB permeability and decreased expression of TJ proteins
can provide a pathway for HIV to paracellularly invade the brain parenchyma. Created with BioRen-
der.com. Abbreviations: HIV+ = human immunodeficiency virus-infected; TJs = tight junctions.
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2.3. Elusive Latent Proviral Reservoirs within the CNS

The integration of reverse-transcribed viral DNA into the host genome is a crucial step
in propagating both the active and dormant forms of HIV (Figure 3). Once integrated, the
proviral DNA serves as the transcriptionally competent viral unit and the central source
of viral protein production. The gene expression of HIV is controlled by promoter and
enhancer sequences where transcription factors, including NF-κB, can bind, promoting
RNA polymerase II activity, ultimately resulting in increased virus-specific protein lev-
els [15]. Transcriptional inactivity of the HIV proviral DNA results in the latent proviral
stage of HIV, where the virus can remain dormant in the host genome as a transcriptionally
incompetent reservoir for later reactivation.
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Figure 3. Potential endpoints of positive-sense HIV RNA after integration into host genome. Once
integrated into the host genome, (+)-sense HIV RNA can persist as either latent provirus, which is
capable of being reactivated, or actively replicating HIV, which can be deactivated. Created with
BioRender.com. Abbreviations: (+)-sense = positive-sense; HIV = human immunodeficiency virus;
RNA = ribonucleic acid.

The HIV provirus can exist in three forms: latent, which is transcriptionally silent;
intact, producing active virions; or defective, producing viral proteins but not able to
successfully replicate [42] (Figure 4). Intact and latent HIV proviral reservoirs have the
potential to cause rebound viraemia, whereas defective provirus does not. It is important to
note that while defective HIV provirus is not replication-competent, these malfunctioning
viral DNA sequences can produce viral HIV proteins, which can propagate pathogenesis.
Furthermore, cells latently infected with HIV can release exosomes containing viral mRNA
and protein, hijacking intercellular communication networks as a means to reactivate latent
reservoirs, transmit infection, and further disease development [43], presenting another
target required to fully eradicate infection with HIV.

HIV can exist as a latent proviral reservoir in several cell types, namely CD4+ T cells
and cells of monocytic lineage. Cells that are latently infected with HIV provirus can evade
detection by the immune system and may be replicated via the homeostatic proliferation
of their host cell [42]. Although microglial cells are the primary reservoir cell type within
the CNS [44], there is novel evidence depicting astrocytes and pericytes as constituents
of these dormant HIV cellular reservoirs [31,32]. For example, integrated viral DNA has
been discovered in microglia and pericytes within the CNS tissue of post-mortem HIV+

patients [30,42], illustrating the likelihood of myeloid-derived reservoir sites within the
brain. Intriguingly, novel research indicates a key role for neurons, as opposed to non-
neuronal cell lines, in the stimulation of HIV latency in microglia [45]. In addition, neurons
can prevent the emergence of active HIV from latency and neuronal damage can induce
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replication and activation of HIV [45]. As cells of the myeloid lineage are long-lasting and
recent investigation has illustrated both inductive and preventative roles for neurons in
HIV latency, it is crucial to further investigate the functional properties of HIV latency.
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Figure 4. Proposed forms of HIV proviral reservoir. HIV provirus can persist in three forms:
latent, being transcriptionally silent; intact, producing active HIV virions; or defective, containing
genetic mutations resulting in viral protein synthesis. Created with BioRender.com. Abbreviations:
HIV = human immunodeficiency virus.

Activating the transcriptionally silent, latent HIV proviral reservoir can be achieved
with the use of histone deacetylase inhibitors. Histone deacetylase inhibitors promote the
acetylation of histones and consequential chromatin relaxation, facilitating the accessibility
of transcription factors to DNA and enabling transcription of the viral genome via RNA
polymerase II recruitment. For example, pericytes in the latent stage of HIV infection that
were treated with histone deacetylase inhibitors and tumor necrosis factor (TNF) exhibited
a significant increase in HIV-1 RNA and HIV p24 protein production, illustrating that
pericytes can alternate between the latent and active viral stages [30]. The mechanisms
underlying HIV proviral transcriptional silencing and reactivation are not yet fully un-
derstood. Recent investigation has revealed a method of measuring and discerning the
intact versus defective proviral HIV genome [46], which is a crucial step toward curing
HIV infection. Specific targeting of the latent proviral reservoir remains the central obstacle
in achieving complete viral eradication from HIV+ individuals.

Perivascular spaces in the CNS also contain populations of cells capable of harboring
HIV. In a macaque model, perivascular macrophages and microglia were shown to har-
bor SIV genomes, which could be reactivated, even after observed antiretroviral therapy
suppression [47]. While there is still debate regarding the role that macrophages play in
active viral reservoirs of HIV, findings in mice confirm the possible importance of this
cell type. Indeed, studies indicated that HIV persists in humanized myeloid-only mice
independent of other possible reservoir-capable cell types, such as T-cells, supporting the
role of macrophages in HIV replication and formation of viral reservoirs. This mouse
model is generated by transplanting CD34+ hematopoietic stem cells into immunodeficient
nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice, which are char-
acterized by an absence of functional T and B cells [48,49]. Furthermore, there is mounting
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evidence that macrophages play an important role in their susceptibility to HIV even after
ART initiation (reviewed in [28]).

Evidence indicates that viral entry can occur through the choroid plexus [50,51]. It
is well-known that resident macrophages, i.e., the cells that frequently become infected
with HIV in the CNS, can line the epithelium of the choroid plexus [52]. As a separate
dynamic reservoir for HIV accumulation, the choroid plexus provides a possible path
for neuro-invasion events and a conduit for future ART drug delivery. It should also
be noted that HIV trafficking via the choroid plexus barrier is coordinated by the high
amount of multidrug resistance proteins and P-glycoprotein expressed on the surface [53].
Paradoxically, the P-glycoprotein pump is oriented in a way that opposes the action of
P-glycoprotein efflux transporter located in the BBB, whereby it prevents substrates and
other molecules from escaping the CSF. This complex relationship further accentuates CNS
and BBB homeostasis in trafficking therapeutics to the CNS (reviewed in [28]).

3. Pitfalls of ART: Focus on the CNS

There are many shortcomings associated with ART, the current standard therapeutic
approach in treating HIV infection. While ART has provided HIV+ patients with a means
to control the actively replicating virus and decrease patient mortality rates, there are
still several key issues that must be overcome when administering ARVds, e.g., limited
BBB penetrance, toxic exposure, and the inability to target latent proviral HIV reservoirs,
particularly in the CNS. A drug’s ability to traverse the BBB is dependent on an array of fac-
tors, including molecular size, polarity, protein–protein intractability, and physicochemical
properties [54]. Moreover, drug-induced modulation of transport protein expression may
increase the penetrability of brain endothelium to ART and, in turn, expose the CNS to a
higher level of toxicity [54]. Taken together, alternative routes of delivery and mechanisms
of CNS entry need to be further explored to achieve concentrations sufficient for optimizing
the therapeutic effects of ART while minimizing any toxic side effects.

3.1. ART Does Not Protect against Latent HIV Infections

Latent proviral HIV reservoirs are established early in the course of infection and
cannot be targeted by traditional therapeutic approaches, specifically ART, making them
a primary obstacle in attaining a cure for HIV infection [54]. ART does, however, have
the capability to target several stages within the viral replication cycle of HIV (Table 1)
(Figure 5). Though this is sufficient to suppress levels of actively replicating HIV and
maintain viraemia, latent HIV provirus does not actively replicate and therefore is not a
therapeutic target of ARVds. Additionally, the limited BBB penetrance of traditional HIV
therapeutics presents a significant obstacle in not only delivering effective doses, which are
required for maintaining suppression of viraemia within the CNS in particular, but also in
designing novel therapeutics to target latent HIV proviral reservoirs within the CNS.

Despite several years of ART treatment, HIV provirus can persist within the chromo-
somal DNA of latently infected CD4+ T cells [28]. These potent proviral reservoirs are
established within hours of infection and are extremely stable, having an average half-life
of approximately 44 months [55,56]. Currently, virologic suppression of HIV infection has
been defined as having a viral load of fewer than 20 copies per milliliter [57], which can be
achieved through lifelong adherence to an ART regimen. Interestingly, many HIV+ patients
who have successfully gained control of the infection via ART experience intermittent
episodes of detectable viraemia (blips) [58], which have been shown to be correlated to
HIV reservoir size [59]. Specifically, HIV+ patients undergoing treatment regimens with
protease inhibitor-based combination ART (cART) have exhibited a higher degree of resid-
ual viraemia [57], indicating the inability of ART to target the HIV provirus. In one study,
a majority of the simian immunodeficiency virus (SIV)-infected (SIV+), ART-suppressed
macaques contained latently infected brain macrophages [60]. Remarkably, latent HIV
provirus can persist even when viral RNA is not detectable [60]. Taken together, further
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investigation is required to elucidate and understand the mechanisms underlying latent
HIV proviral persistence despite ART.

Table 1. Antiretroviral drug classes, function, examples, and dosage reference.

ARVd Class Function Drug Examples CPE Score Side Effects Adult Dosage Schedule

Nucleoside reverse
transcriptase inhibitor

(NRTI)

Inhibits reverse
transcriptase, blocking

production of viral
DNA

Lamivudine (3TC) 2 Nausea, dizziness, lactic acidosis,
pancreatitis, IRIS

300 mg once or 150 mg
twice daily

Zidovudine (ZDV) 4
Nausea, dizziness, lactic acidosis, liver
problems, myopathy, severe anemia,

neutropenia, IRIS, lipoatrophy
250–300 mg twice daily

Emtricitabine (FTC) 3 Nausea, dizziness, lactic acidosis, IRIS,
possible HBV flare up 200 mg daily

Tenofovir (TFV) 1
Nausea, dizziness, lactic acidosis,

kidney problems including kidney
failure

300 mg daily

Non-nucleoside reverse
transcriptase inhibitors

(NNRTI)

Binds to and blocks HIV
reverse transcriptase,

blocking production of
viral DNA

Efavirenz (EFV) 3

Nausea, dizziness, mental health
problems, liver problems, severe rash,
nervous system issues, seizures, IRIS,

lipodystrophy, hyperlipidemia

600 mg daily with a
NRTI or PI

Nevirapine (NVP) 4
Nausea, dizziness, severe liver

problems, skin rash, IRIS,
lipodystrophy syndrome

200 mg twice daily

Fusion inhibitors (FI)

Inhibits viral binding or
fusion of HIV to host

target cells preventing
the entry of HIV

Albuvirtide * (ABT) ND Nausea, headache, diarrhea, rashes,
hyperlipidemia ND

Enfuvirtide (T20) 1 Allergic reaction, nausea, headache,
pneumonia, neuralgia, IRIS 90 mg twice daily

Protease inhibitors (PI)

Blocks proteases
required for proteolytic
cleavage of precursors

necessary viral
replication

Atazanavir (ATV) 2

Nausea, dizziness, heart arrhythmia,
severe rash, liver problems,

life-threatening drug interaction,
chronic kidney disease, kidney stones,

gallbladder problems, IRIS,
lipodystrophy, increased bleeding in

hemophiliacs, diabetes, and
hyperglycemia

300 mg with 100 mg
RTV daily

Darunavir (DRV) 3
Nausea, dizziness, liver problems

sever skin reactions, diabetes,
hyperglycemia, lipodystrophy, IRIS

600–800 mg with 100
mg RTV daily

Ritonavir (RTV) ⊥ 1

Nausea, dizziness, pancreatitis, heart
arrhythmia, severe allergic reactions,

liver problems, hyperlipidemia,
hyperglycemia, IRIS, lipodystrophy,
increased bleeding in hemophiliacs,

gastrointestinal problems

600 mg twice daily

Integrase strand transfer
inhibitors (INSTI)

Prevents the integration
of HIV DNA into host

DNA

Dolutegravir (DTG) ND Nausea, dizziness, allergic reactions,
liver problems, IRIS, sleep problems

50 mg once or twice
daily

Raltegravir (RAL) 3
Nausea, dizziness, severe skin

reactions, allergic reactions, liver
problems, IRIS

1200 mg daily or
400–800 mg twice daily

Chemokine coreceptor
antagonists

Blocks coreceptors
(CCR5/CXCR4)

preventing the entry of
HIV

Maraviroc
(MVC)—CCR5 3

Nausea, dizziness, liver problems,
heart problems (including heart
attack), skin reactions, allergic

reactions, postural hypotension, IRIS,
possible increased risk of other

infections or cancer

150 mg, 300 mg, or
600 mg twice daily

depending on
concomitant
medications

Leronlimab * (PA14) ND
Diarrhea, headache, swollen lymph
nodes, hypertension, local injection

site reactions
ND

CD4 attachment
inhibitors/post-

attachment
inhibitors

Binds to host CD4
receptor blocking HIV
attachment and entry

Ibalizumab-uiyk
(IBA) ND Nausea, dizziness, IRIS, diarrhea,

rashes

Loading dose of
2000 mg and

maintenance doses of
800 mg every two

weeks

UB-421 * (mAb dB4) ND Rash, hives, increased eosinophil
count, elevated liver enzyme levels ND

Abbreviations: CPE = CNS penetration efficiency; CCR5 = C-C motif chemokine receptor 5; CXCR4 = C-X-C
motif receptor 4; HBV = hepatitis B virus; HIV = human immunodeficiency virus; mAb = monoclonal antibody;
mg = milligram; ND = not yet determined; TAG = triacyglyceride; IRIS = immune reconstitution inflammatory
syndrome. * = In clinical trials. ⊥ = Used clinically as pharmacokinetic enhancer to inhibit metabolism of CYP3A
enzymes and increase bioavailability of PIs.
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Figure 5. HIV infection of CD4+ T cell and points of ARVd intervention in the HIV replication
cycle. (1) HIV binds to the CD4 receptor and CCR5/CXCR4 co-receptors. This can be blocked
by attachment inhibitors, post-attachment inhibitors, and CCR antagonists. (2) Fusion of the HIV
and host cellular membrane occurs. This can be blocked by fusion inhibitors. (3) Entry of viral
proteins into the host cell. This can be blocked by fusion inhibitors. (4) Reverse transcription
of HIV RNA into proviral HIV DNA. This can be blocked by nucleoside/non-nucleoside reverse
transcriptase inhibitors. (5) Integration of HIV DNA into the host genome. This can be blocked
by integrase strand transfer inhibitors. (6) Transcription of HIV RNA. (7) Translation of HIV RNA
into viral proteins. (8) Assembly of immature HIV. (9) Budding of immature HIV into the host cell
membrane. (10) Release and maturation of HIV. This can be blocked by protease inhibitors and
maturation inhibitors. Created with BioRender.com. Abbreviations: ARVd = antiretroviral drug;
CD4 = cluster of differentiation 4; CCR5 = C-C motif receptor 5; CXCR4 = C-X-C motif receptor 4;
DNA = deoxyribonucleic acid; FI = fusion inhibitor; HIV = human immunodeficiency virus; INSTI =
integrase strand transfer inhibitor; Tat = transactivator of transcription.

3.2. ART Has Limited BBB Penetrance

The ability of ARVds to infiltrate the CNS has been hierarchically categorized by
CNS penetration efficiency (CPE), which ranges from low (i.e., CPE of 1) to high (i.e.,
CPE of 4) [36] (see Table 1). When jointly administered, ART can have a cumulative
CPE score varying from low (i.e., CPE < 8) to high (i.e., CPE > 8) [29]. Several chemical
and physiological properties determine the ability of ARVds to cross the BBB, including
pharmacodynamics, pharmacokinetics, and structural characteristics of the drugs (e.g.,
lipophilic or ligand-receptor interactions), which can alter their half-life and biodistribution.
There is a debate centered around what combination of ARVds is ideal for overcoming the
challenge of BBB penetrance and optimizing the therapeutic benefits while minimizing
potential toxicities associated with ART. ARVds with a higher CPE score (i.e., better CNS
penetration) may be advantageous for regulating HIV infection within the brain; however,
these drugs may also result in a higher level of toxic exposure as they are able to reach
higher levels in the brain [61]. Additionally, the limited ability of ARVds to penetrate the
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BBB may permit low levels of active HIV replication, potentially increasing latent reservoir
size and the chance of rebound viraemia.

3.3. ART-Induced CNS Toxicity

Long-term administration of ARVds places patients at an increased risk of toxic expo-
sure, which can result in neurodegeneration, inflammation, and co-/multi-morbidities such
as cardiovascular, metabolic, and neurological diseases [40,54,61–71]. The comorbidities
and long-term toxic exposure associated with ART can lead HIV+ patients to switch or
discontinue their medication regimens, ultimately resulting in rebound viraemia. For
example, the use of ART has been shown to impact various aspects of cellular function
within the CNS (see Table 2), in particular, inducing neurotoxic effects [71] and reducing
the viability of endothelial cells exposed to ART even at relatively low concentrations [2].
ART-induced vascular toxicity can result in decreased TJ protein expression and BBB
dysregulation [3]. Primary CMECs that were treated with Efavirenz exhibited decreased
claudin-5 expression and localization to the cellular membrane, which was attenuated via
the inhibition of endoplasmic reticulum (ER) stress prior to ART exposure [36]. Notably, it
was found that the use of ART induced oxidative damage and mitochondrial dysfunction
in endothelial cells [3,11,12,41,72] and neurons [4,71,73] (see Table 2). These ART-mediated
effects stimulate the induction of inflammasomes and lead to an increase in inflammatory
cytokines [10,74,75], which can result in a loss of BBB integrity and increased permeability
via decreased TJ protein expression [76].

Table 2. Known effects of ART on cells of the CNS.

Cell Type Impact from ART References

Astrocyte

↓ Mitochondria function and
metabolism
↓ MMPs

↑ Senescence
↑ ER stress

[3,13,77]

Endothelial Cell

↓ Viability
↓ Mitochondria function

↓ Autophagosome formation
↓ TJPs

↑ ROS production
↑ ER stress

↑ Inflammatory cytokine production

[3,12,36,75,78,79]

Microglial Cell

↓ Lysosomal function
↓ Autophagosomal function

↑ ROS production
↑ Expression of pro-inflammatory

cytokines

[10]

Neuron

↓ Axonal length
↓ Neurogenesis
↑ Neuronal death
↑ Oxidative stress

↑ ROS accumulation

[4,73,80,81]

Neural Progenitor Cell

↓ Cell proliferation
↓ Mitochondrial function

↑ Senescence
↑ ROS production
↑ MMP production

[82–84]

Oligodendrocyte

↓ Maturation
↑ ROS production
↑ Oxidative stress
↑ Lysosomal stress

[85,86]

Pericyte ↓ Coverage [87]

Abbreviations: ER = endoplasmic reticulum; MMP = matrix metalloproteinase; ROS = reactive oxygen species;
TJPs = tight junction proteins.

The use of ART has been linked to mitochondrial toxicity [3,6,8,9,11,88,89] and ox-
idative stress [3,4,8,9,11,72]. ART-induced mitochondrial dysfunction may be explained,
at least in part, by genetic or epigenetic modulations to mtDNA [74], which impair mito-
chondrial function and can increase oxidative stress. In particular, protease inhibitors and
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nucleoside reverse transcriptase inhibitors (NRTIs) are known to induce mitochondrial
damage [3,4,70,90–93]. Exposure to NRTIs has been shown to reduce levels of mtDNA and
dysregulate the mitochondrial proteome via the inhibition of polymerase-γ [3,90,92,93].
ART-treated mice exhibited modulated expression of mitochondrial transcription factor A
(TFAM) [6]. TFAM occupies roles in the regulation of mitochondrial biogenesis and well
as protecting mtDNA [6,94]. A decrease in TFAM observed in neurons of ARV-treated
mice supports the notion that mitochondrial biogenesis may be dysregulated by ART.
Additionally, NRTIs have been shown to inhibit telomerase, a crucial reverse transcriptase
in charge of the de novo production of repeats in telomeric DNA, at therapeutic concentra-
tion [92,93]. The inhibition of telomerase can result in downstream interferences in mtDNA
replication [93], which can lead to increased mitochondrial aging [91,92] and, ultimately,
BBB dysfunction.

Mitochondria are the major source of reactive oxygen species (ROS) production in most
mammalian cells, which can occur via the dysregulation of complexes I, II, and III [95–97].
Complex I is responsible for the oxidation of nicotinamide adenine dinucleotide (NADH),
a crucial step in the electron transport chain, which has been shown to be inhibited in
a dose-dependent manner by ARVds [3]. The inhibition and concomitant dysregulation
of complex I by ART illustrate a possible mechanism for ART-mediated increase in ROS
levels. Protease inhibitors are known to increase oxidative stress through the impairment
of mitochondrial function, resulting in mitochondrial damage [4,89,91]. ROS provides a
common point of activation for many downstream signaling pathways, which can directly
mediate BBB function [98,99], TJ modification [98–101], and matrix metalloproteinase
activation [102]. Therefore, ROS are potentially key mediators in the breakdown and
dysfunction of the BBB in ART-treated HIV+ patients. Exposure to ART was shown to
increase the production of nitric oxide, which resulted in subsequent inflammation [3]. This
may be particularly damaging to BBB integrity as nitric oxide synthase activation results in
BBB breakdown [103].

Interestingly, a novel study published by our group hints at the metabolic function of
certain tight junction proteins, including occludin [104,105], which may result in crosstalk
between metabolic function and BBB permeability. Specifically, occludin has NADH ox-
idase enzymatic activity, which regulates the expression and stimulation of the histone
deacetylase sirtuin 1 (SIRT-1). As histone deacetylase inhibitors activate the latent HIV
provirus, histone deacetylase, therefore, inhibits latent proviral activation, resulting in
a negative correlation between occludin and HIV transcription. In fact, the silencing of
occludin in various HIV+ cell types resulted in a significant increase in viral transcrip-
tion via SIRT-1 activation [104]. Thus, further investigation is required to elucidate the
signaling pathways tethering metabolic, transcriptional regulation, and BBB permeability
functionality of TJ proteins, specifically in the context of ART.

The degradation, clearance, and removal of proteins from cells is a crucial process that
converges on three primary organelles: the endoplasmic reticulum (ER), autophagosome,
and the lysosome. The exposure of CMECs to ARVds was shown to induce ER stress
and autophagy disruption [78], which has been associated with cellular dysfunction and
increased permeability in several disease models [36]. For example, ART-treated CMECs
exhibited a significant decrease in the expression of the secreted form of alkaline phosphate,
which is an indication of ER stress. The elevated expression of stress-indicating ER proteins,
including inositol-requiring enzyme 1a and pancreatic ER eukaryotic initiation factor 2a
(eIF2a) kinase (PERK), further confirmed ER stress in ART-treated CMECs [78]. PERK
was also shown to be upregulated in ART-treated astrocytes [76]. Downstream mediators
of these stress-indicating ER proteins were also altered by ART exposure in CMECs [78].
Specifically, increased phosphorylation of eIF2a, which is carried out by PERK, was shown
in ART-treated CMECs [78,106] and astrocytes [77]. This effect can result in the decline of
a cell’s ability to withstand stressful insults by leading to a reduction in de novo protein
synthesis [107].
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Autolysosomes are formed from the fusion of autophagosomes and lysosomes and
ultimately ensure the completion of autophagy and clearance of misfolded or aggregated
proteins [108]. Autophagy is known to be influenced by ER stress and has been shown
to be impacted by ART exposure [36]. Light chain 3B (LC3B) is a commonly utilized
marker of autophagic function, which is processed from LC3BI (16kDa) to LC3BII (14kDa)
upon autophagic activation [78]. Exposure of CMECs to ART was shown to result in
decreased processing from LC3BI to LC3BII [78], indicating an ART-induced decrease in
autophagic activity. ART was shown to interrupt the maturation stage of autophagy by
impairing lysosomal function, ultimately inducing defects in autophagosome-lysosome
fusion. Specifically, ART-treated microglia were shown to exhibit impaired lysosomal
functioning, which resulted in the accumulation of autophagosomes [10]. In addition,
ART was shown to stimulate lysosomal membrane permeabilization, decreased levels
of lysosomal-associated membrane protein 2 [10], lysosomal deacidification [10,85], and
decreased expression of cathepsin D [10], all of which contribute to lysosomal-mediated
autophagy dysfunction and the activation of microglial cells. Interestingly, heat shock
protein family A was shown to attenuate ART-mediated lysosomal impairments [10],
illustrating promise in moderating the toxic effects associated with ARVds.

It is important to note that the ART-induced products of mitochondrial, ER, and autolyso-
somal stress can result in the induction of inflammasomes, including the nucleotide-binding
oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome [109,110],
which produces inflammatory cytokines such as interleukin-1b (IL-1b) and IL-18, whose
discharge by caspase-1 mediates apoptosis [111,112], suggesting a possible means for
ART-induced neuroinflammation. The NLRP3 inflammatory pathway responds to the
presence of damage-associated molecular patterns (DAMPs), which are produced as a
result of ART-induced organelle stress [113]. Remarkably, ART-mediated apoptosis was
shown in endothelial cells, which was measured by upregulation in the expression of the
pro-apoptotic cytokine pro-caspase-3 [73], which serves an important role in cell death. Fur-
thermore, time-dependent ART-mediated upregulation in the mRNA of pro-inflammatory
cytokines IL-1β, IL-6, and TNF was recently discovered in microglial cells [10]. Exposure
to ART was also reported to increase in Aβ peptides [114,115] and Aβ deposition [116], as
shown in the CSF of HIV+ individuals compared to those not utilizing the therapy [115].
These results correspond to elevated levels of Aβ in HIV+ individuals [114–116] and war-
rant further investigations on the impact of ART on cognitive functions and/or accentuated
aging frequently observed in HIV+ patients [117].

4. Novel Strategies in Developing HIV Therapeutics

It is largely agreed that the eradication of HIV is dependent on the ability to target
and eliminate both the latent viral reservoir and persistent low-level replication of active
virions or inhibit infection with HIV altogether. This demands novel approaches, such as
an effective vaccine, allogenic hematopoietic stem cell transplantation (allo-HSCT), gene
therapy, and nanotherapeutics, or even a combination of these approaches. The tandem
deployment of these novel therapeutic approaches can also serve to mitigate the long-term
toxicity observed in ART-treated HIV+ patients.

4.1. CNS Targeting of Latent HIV Provirus

Targeting the latent HIV proviral reservoir has been attempted by using a “shock and
kill” paradigm, which works by inducing the activation of HIV from latency (shock) and
then eliminating HIV viral reservoir cells (kill) [118–120]. The kill phase of this paradigm
primarily centers around the immunologic elimination of viral reservoir cell sites. As
transcription factors such as NF-kB are known to induce HIV replication [15,121], acti-
vators of this pathway have been used to shock latent HIV reservoirs into a reactivated
state [47,122]. Another approach utilized an activator of the cytokine IL-15 [123] as a shock
mechanism, which has been shown to activate the transcription of HIV [124]. This strategy
can be combined with the suppression of immune components that have an apparent,
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albeit unknown, role in the stabilization of HIV latency [124]. It is important to note that
while NF-kB activation is a promising shock strategy to reactivate latent HIV reservoirs,
inducers of this pathway have low efficacy in acting as latency-reversal agents, often lead-
ing to toxic exposure that restricts the clinical application of this potential therapeutic
approach [125]. In addition, the reactivation of latent HIV alone is not sufficient to decrease
the size of the HIV reservoir, and the kill phase of this paradigm primarily centers around
the immunologic elimination of viral reservoir cell sites, which requires optimization [126].

A more recent “block-and-lock” paradigm has provided an alternative promise into a
possible method for eradication of the latent HIV proviral reservoir. The “shock-and-kill”
paradigm aims to entirely eradicate latent proviral reservoir sites, whereas the “block-and-
lock” method is deployed to permanently silence all HIV proviruses, even after the termina-
tion of ART [126]. Permanent silencing of the HIV genome can be accomplished by targeting
different components of the transcriptional machinery, including the use of a Tat inhibitor to
silence the transcription and reactivation of HIV [126]. Indeed, it was shown that treatment
with the Tat inhibitor didehydro-cortistatin A (dCA) was able to delay and reduce rebound
viraemia in mice [127]. Other elements of viral transcription that can be targeted and inhib-
ited in the “block-and-lock” paradigm include heat shock protein 90 (HSP90) [118], Janus
kinus-signal transducer and activator of transcription (Jak-STAT) [119,120], mammalian
target of Rapamycin (mTOR) [128], p21-activated kinase (PAK) [129], rapidly accelerated
fibrosarcoma kinase (Raf) [129], and bromodomain-containing protein 4 (BRD4) [130],
among several other proposed targets of HIV transcription.

Additional approaches for targeting latent HIV proviral reservoirs predominately
revolve around gene-therapy methods, including clustered regularly interspaced short
palindromic repeats-associated protein nuclease-9 (CRISPR/Cas-9) [15,131–133], broadly
neutralizing antibodies (bNAbs) [134], and transcription activator-like effector nucleases
(TALENs) [135]. CRISPR/Cas9-based systems have been used to precisely target latent
HIV proviral DNA [15,136]. Similarly, TALENs have been utilized to accurately target
latent HIV DNA, being more effective and having less off-target editing than CRISPR/Cas9-
based systems [135]. Interestingly, the use of bNAbs in mice was shown to obstruct the
development of the latent HIV proviral reservoir [134]. In fact, consistent with data from
human and macaque studies, mice treated with bNAbs 4 days post-HIV infection exhibited
viremia approximately 34% less often, which took longer to establish than in mice treated
with ART [118]. Major advantages of CRISPR, TALEN, and bNAb-based platforms, besides
their ability to specifically target latent HIV proviral DNA, are their pliability in design for
individual target sites, high editing capabilities, and minimal toxic exposure [135].

4.2. Obstructing Infection by HIV

Along with precisely targeting the latent HIV provirus, the inhibition of infection by
HIV has proven possible with the use of novel techniques such as allo-HSCT [137,138].
Allo-HSCT is focused predominantly on a homozygous deletion (CCR5D32/D32) within
the C-C motif receptor 5 (CCR5) coreceptor, which is a crucial mediator in the cellular entry
and subsequent infection of HIV. Indeed, CD4+ T cells lacking this receptor exhibit impaired
binding to HIV, ultimately inhibiting downstream viral infection and providing resistance
to HIV [139]. There have been reported cases of a functional, ART-free possible HIV cure by
using allo-HSCT [137,138,140], including the Berlin patient. In a similar case of allo-HSCT,
the Essen patient, rebound viraemia quickly occurred after the interruption of ART [130]. It
was determined that the Essen patient had been co-infected with an alternative, pre-existing
HIV variant, albeit at low levels, able to transmit the infection through the C-X-C motif
receptor 4 (CXCR4) coreceptor [141]. This type of CXCR4 tropic switch may occur later
in the course of HIV infection [142,143] and presents a significant challenge that needs
to be considered in therapeutic design strategies, specifically regarding the use of gene
therapy to cure HIV infection. In addition, risks including graft-versus-host interactions
may occur [142].
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5. Concluding Comments

While ART has provided HIV+ patients with a means to control the infection and
live relatively normal lives, there are still several pitfalls and shortcomings that need to be
further improved and investigated. For example, ART cannot target or eradicate the latent
HIV provirus, ultimately failing to cure infection with HIV. A long-term regimen of ART
places HIV+ patients at the risk of developing toxicity and the subsequent domino effect of
pathogenesis, specifically in the CNS. In addition, ARVds have limited BBB penetrance,
hindering delivery to the CNS, and failing to target another crucial component within
the landscape of HIV infection. On the plus side, ART has the capability of targeting
various elements within the HIV replication cycle of active virions, which is necessary to
suppress viraemia.

A multimodal approach utilizing the in-tandem administration of several novel anti-
HIV therapies may be an effective strategy in designing a cure for HIV infection (Figure 6).
The use of these novel approaches in concert may prove to be less toxic and/or more
effective than the use of ART alone [135,144]. A recent study demonstrated the use of
magneto-electric nanoparticles bound with a CRISPR/Cas-9-based system to cross the
BBB and inhibit latent HIV infection in microglial cells [131]. Additional studies have
investigated the use of nano-formulations developed for the delivery of ART [145–147]
and combining ART with mitochondria-targeted antioxidant therapy [148]. Specifically,
nano-based drug-delivery systems have been developed for the delivery of tenofovir [146],
and graphene quantum dot-based systems have been used to inhibit HIV replication
similarly to NNRTIs [147]. As the investigation continues to deepen our understanding
of the crucial elements that may provide systemic eradication of HIV infection, it is clear
that new avenues of therapeutic innovation are required. Taken together, the use of these
modern approaches illustrates the promise of novel therapeutic strategies in augmenting
traditional ART, providing a higher degree of targeting efficiency and ultimately curing
HIV infection.
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Figure 6. Novel approaches for the eradication of HIV within the CNS. A novel, multimodal drug de-
livery platform for anti-HIV therapeutics can result in the discovery of a functional HIV cure, allowing
for the eradication of actively replicating HIV, latent proviral reservoirs, and specific targeting of the
highly safeguarded CNS. Created with BioRender.com. Abbreviations: ART = antiretroviral therapy;
bNAbs = broadly neutralizing antibodies; CNS = central nervous system; CRISPR/Cas-9 = clustered
regularly interspaced short palindromic repeats-associated protein nuclease-9; HIV = human immun-
odeficiency virus; TALENs = transcription activator-like effector nucleases.
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