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Bridging Systems Medicine and Patient Needs
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While there is widespread consensus on the need both to change the prevailing research and development (R&D) paradigm
and provide the community with an efficient way to personalize medicine, ecosystem stakeholders grapple with divergent
conceptions about which quantitative approach should be preferred. The primary purpose of this position paper is to contrast
these approaches. The second objective is to introduce a framework to bridge simulation outputs and patient outcomes, thus
empowering the implementation of systems medicine.
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Traditional approaches to biomedical research and pharma-
ceutical innovation have patently failed to make an optimal
use of the vast quantity of knowledge available in the scien-
tific literature. Serendipity, rather than the knowledge of
disease-perturbed dynamical biological networks, is still the
major driver of therapeutic innovation, and the dearth of truly
innovative treatments reaching the market each year is a
prime example of our failure to employ the principles of sys-
tems medicine.1 However, novel and effective diagnostic
techniques and therapeutic modalities as well as a more effi-
cient use of available treatments will come from the deploy-
ment of the many new strategies and technologies of
systems medicine. The emergent application of quantitative
and systems-driven sciences to biomedical research pro-
vides a structured context to improve translational research.

In their attempts to improve drug research and develop-
ment (R&D) and come up with a practical approach to per-
sonalizing medical decisions, ecosystem stakeholders
(academia, drug producers, regulators, and payers) grapple
with divergent conceptions about which quantitative
approach should be preferred. The essence of this contro-
versy lies in the current deployment of large population-
driven clinical studies—where, for example, 30,000 patients
are given drug or placebo and the results are abstracted
into curves that inform one about how the average popula-
tion behaves and how successful the drug has been. This
averages patients who differ strikingly both genetically and
in their environmental exposures. Systems medicine ana-
lyzes the dynamic data cloud that surrounds each patient
and uses this to derive “actionable possibilities” that can
improve wellness or avoid disease for each patient. Once
30,000 individual data clouds have been analyzed they can
be aggregated into groups that are relevant to drug respon-
siveness or other features—and this analysis is based on
each individual and not an averaged population.2

These divergent conceptions are further fueled by a num-
ber of factors: the paucity of epistemological thinking per-
vading the ecosystem, the growing clout of computer
science in biopharmaceutical R&D (blind applications of big
data without the relevant domain expertise), the absence to

date of an established standard to bridge in silico simula-
tion outputs and clinical outcomes, a lack of emphasis on
the importance of optimizing wellness for the individual, the
poor understanding of the comparative merits of current
biosimulation techniques, as well as the large number of
terms denoting overlapping activities (bioinformatics, sys-
tems biology, systems medicine, pharmacometrics, systems
pharmacology, model-informed drug development, etc.).

The primary purpose of this position paper is to contrast
these approaches by explaining their respective limitations.
The second objective is to introduce a standard framework
to bridge simulation outputs and patient outcomes, thus
empowering the implementation of systems medicine by
combining the best elements of existing approaches into an
integrated one. In the first part of the article, we briefly
review the emergence of systems thinking in biomedical
sciences from a historical perspective (more thorough
reviews have previously been published3). The second sec-
tion gives an overview of current approaches and their con-
ceptual limitations. The third section details the hallmarks
of human biology in systems thinking. The fourth section
introduces the original approach based on the Effect Model
law, which bridges the gap between systems medicine and
patient needs. The penultimate section provides an applica-
tion of this framework to coronary heart disease. The final
section outlines perspectives of this new approach in the
context of drug R&D.

QUANTITATIVE APPROACHES IN A
HISTORICAL PERSPECTIVE

When the limitations of reductionism in biology became
obvious,4 researchers started to show growing interest in
modeling and computer-based applications in support of a
paradigm shift. In 2001 Hood and colleagues advocated a
systems approach to biology. In their view, a systems-
based deciphering of a living organism needs insight into
its structure—gene interactions, biochemical pathways,
mechanisms by which they arrange cellular properties and
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intercellular interactions—its dynamics, how it behaves over
time—and its controlling mechanisms, its design.5

In the late 1990s, thanks to advances in genome explora-
tion and expression technology, Hood and others paved the
way for functional genomics.6 Years before that, Hood had
foreseen that technology would eventually streamline the
process to the point where a single test would enable the
exploration of the whole body functioning.7 The idea was to
look beyond gene structure and arrangement to account for
their functions. This marked the birth of “omics.” The dis-
covery of the role of regulatory gene networks in the devel-
opment of organisms led to the view that genes governed
the functioning of living systems.8

More recently, Hood and colleagues have argued that
healthcare embodies both optimizing wellness and avoiding
disease—and that the most effective way to achieve these
goals is to generate virtual data clouds for each individual
of billions of data points from many different types of data
(molecular, cellular, physiological, phenotypic, etc.) that can
be integrated to create insights into the “actionable possi-
bilities” that for each patient will optimize wellness and
avoid disease.2,9 Along these lines, a group of 107 patients
were put through a 10-month longitudinal wellness study
with complete genome sequences and blood, stool, and
urine assays taken every 3 months. The integrative data
from these studies appears transformational. This study
embodies all of the principles of P4 medicine—predictive,
preventive, personalized, and participatory. A key point is
that this type of study will also show the earliest disease
transitions—and create the possibility for early diagnostics
and therapeutics to change them for each individual from a
disease back to a wellness trajectory.

At the same time as Hood’s plea in the late 1990s, Noble
emphasized the need to bridge biochemistry and the whole
organism.10 Furthermore, he noted that the functioning of
living systems does not stem only from genes.11 Noble’s
intuition was later confirmed by an in silico experiment,
which also proved that living organisms share at least one
property with complex systems: their global functioning is
different (more or less) than the sum of their components
functions.12,13

Years later, once these early visions had begun to be put
in practice and genome exploration techniques had tremen-
dously improved, efforts emerged in favor of the P4 princi-
ple: predictive, preventive, personalized, and participatory
medicine. This extension of systems biology was coined
systems medicine.14 In the intervening period, the term sys-
tems physiopathology had been proposed by Boissel et al.
for modeling and in silico experimentation of disease
mechanisms.15

Biologists and pharmacologists did not wait for the emer-
gence of systems biology, systems physiopathology, predic-
tive pharmacology, or systems medicine to represent
quantitative dynamic basal biological phenomena with
mathematical symbolism: receptor–ligand interaction,
hemoglobin dissociation, enzyme–substrate reaction, com-
partment model for xenobiotic elimination, to quote a few,
have been modeled during the first half of the 20th century.
Later, mathematical models of more complicated biological
processes have fostered tremendous progress in the inter-

pretation of experimental data,16 the deciphering of biologi-
cal enigma,17 of the mechanism of drug cardiac toxicity,18

as well as the understanding of biological systems19 and
diseases, either with a phenomenological20 or a mechanis-
tic approach,21 and the discovery, development, and man-
agement of drugs,22 including preclinical in silico testing of
rare although potentially lethal toxicity.17 There is now
mounting empirical evidence that in silico approaches
incorporating disease models with pharmacokinetic/
pharmacodynamic (PK-PD) models add value to current
R&D methods.22,23

However, challenges have evolved. The issue now goes
well beyond the representation of a single biological phe-
nomenon where two biological entities are interacting or a
first-order elimination process is at play. Rather, it is to cap-
ture in a manageable way thousands of interacting biologi-
cal entities exhibiting a number of distinctive properties,
with various levels of integration, from gene expression up
to population, with differing time-scales.

CONCEPTUAL LIMITATIONS OF CURRENT
APPROACHES

These commendable efforts point in the same direction: an
improvement of our understanding of disease mechanisms
to support biomedical research. There is no doubt that,
thanks to the development of omics technologies, these
efforts have generated a wealth of new knowledge that has
led to profound revisions to biological thinking, our under-
standing of how life functions and diseases occur. Never-
theless, in the context of pharmaceutical innovation, drug
R&D and the progress towards more personalized medi-
cine, they exhibit a number of fundamental limitations and
have led to misunderstandings between the various stake-
holders involved. For instance, Schmidt acknowledges that
the exploitation of omics data yields great promise, but as
of today has largely failed to rise up to its claims.24

First, contemporary medicine focuses on the study of
patients suffering from well-advanced disease. The new
systems medicine allows a strategy for looking at the ear-
liest transition of wellness to disease—and opens the possi-
bility of developing new diagnostic and therapeutic reagents
to terminate a disease trajectory for each individual early,
returning them to wellness.

Second, these approaches rely on data as the primary
modeling material, not knowledge. While they often get
mixed up, there is a clear differentiation between data and
knowledge. The latter is extracted from the former, after
analysis, interpretation, and crosschecking. An illustration
of a piece of knowledge would be: “Myxobacteria communi-
cate with each other by direct cell contact through a bio-
chemical circuit known as the C-signaling system,” quoted
from Tomlin and Axelrod.25 In this particular instance, data
were, among others, the reversal frequencies with two
doses of C-factor and control in cell aggregation experi-
ments (as shown in figure 5 of ref. 26). This short example
underlines that, as in many cases, knowledge derives from
data. However, data and knowledge are not used with the
same tools. For instance, statistical regression cannot be
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applied to knowledge, whereas it is quite a standard tech-
nique to analyze data. Beyond exploitation tools, data and
knowledge have different status and scope. The former
have a validity, which is, strictly speaking, limited to the set-
ting they were collected in. The context therefore severely
constrains the ability to draw generic conclusions. On the
contrary, knowledge can reach a much more general valid-
ity status. If new data confirm it, it may well become a sci-
entific fact, which is no longer debated. However, the gap
between data and knowledge is not as wide as it would
seem. Techniques employed to extract knowledge from
data integrate some knowledge. Even a simple linear
regression is not fitted to data without prior knowledge of
the studied phenomenon. Nevertheless, it remains that
data and knowledge do not have the same properties, the
same potential, nor do they operate in the same way.

The attention of biologists has focused essentially on col-
lecting ever more data, with little regard for exploiting avail-
able knowledge.27 Because data are heavily time- and
context-dependent, it makes for a less reliable material to
model human biology. We would favor the rigorous analysis
and curating of knowledge available in the scientific litera-
ture, which is doubling in quantity every decade since the
1950s.26 A lot of information is already out there, scattered
across multiple publications in heterogeneous fields of
expertise. The postmortem evaluation of a number of avoid-
able R&D failures makes for a fascinating, if eminently frus-
trating, lesson, as illustrated by neuroprotective agents for
the treatment of acute ischemic stroke.28

Third, they are unable to disentangle correlation and cau-
sality. Kitano noted: “Although clustering analysis provides
insight into the ‘correlation’ among genes and biological
phenomena, it does not reveal the ‘causality’ of regulatory
relationships.”19 If an association between a gene variant
and the occurrence of a disease can be viewed as a causal
relation (with the interplay of other factors most of the
time), provided the chronology criterion is met, a similar
association between a tumor mutation and lack of disease
progression in treated cancer patients should not be con-

sidered as proof of interaction between the treatment and
the gene product. A new target based on such a shortcut
may well prove a failure. There are plenty of examples in
the cardiovascular domain where a number of agents low-
ering blood cholesterol do not prevent the associated clini-
cal events (e.g., fibrates). The difference between
association and causality is central to any successful inter-
pretation of biological mechanisms. In this context, big data
and bioinformatics statistical models are valid and predictive
only when applied to the same dataset as the one used to
design the model in the first place. In the absence of a
structured effort to represent available knowledge in a
mechanistic way, such models are bound to yield predic-
tions of questionable reliability. A fundamental principle of
systems medicine is that the experimental systems (e.g.,
animal models or stem cells) must be perturbed to verify
mechanisms and avoid the ambiguity of correlations that
arise from big data.

Fourth, these approaches are based on a bottom-up
approach: from genes to population.5 Schmidt stressed that
current modeling approaches of pathways and networks
miss the ultimate objective, which is to predict clinical out-
comes.15 As noted by Noble, there are two opposing strat-
egies to modeling diseases,29 bottom-up and top-down.
The former starts at the lowest organizational level (e.g.,
genes) with the detailed components of the system, their
properties and their interactions. Higher levels are con-
structed from this lowest level, by assembling its compo-
nents and accounting for interactions between levels. This
approach assumes that, in order to understand the func-
tioning of the system, it is first necessary to decipher its
lowest organizational levels. The implicit thinking is that liv-
ing systems are built from a limited number of standard
parts, each amenable to standard formal models and that
interactions between levels are encoded in the lower lev-
els.30 This is the assumption behind traditional systems
biology. This excessive reductionism is exemplified in a
study devoted to explaining the poor correlation between
genomic data and disease outcome, where the success

Table 1 A mechanistic understanding of myocardial infarction from pathways to clinical events

Diseases span over multiple layers of complex mechanisms, from impaired signaling pathways to clinical events. Myocardial infarction is a typical illustration.

� From arterial wall cell dysfunction to sudden death, a large number of genes, molecular species, cell types, endocrine and paracrine, as well as neurolog-

ical regulations, are involved, with feedback loops and redundancies.

� Atherosclerosis is a disease located at discrete sites of the arterial tree. To this date, the triggering event is not fully established. A recent theory defines

the entry of monocytes into the arterial wall as the primary cause. But this yields little explanation as to why these monocytes pass through the endothe-

lium in the first place. Nevertheless, it has been established that atherogenesis involves several molecular species and cells: circulating lipoproteins and

their oxidized derivatives, endothelial cells, circulating monocytes, macrophages, smooth muscle cells, and extracellular proteins (elastin, collagens,

enzymes such as metalloproteases).

� Biological phenomena as diverse as inflammation, cell migration, free radical production, ageing, etc., are also involved. Plaque anatomy and arte-

rial wall structure, as well as phenotypes and proportions of the aforementioned components, are playing a role in the ultimate event, the plaque

rupture.

� Critical to the rupture process are fatigue (arterial wall, plaque fibrous cap) and stress-related mechanical phenomena (shear, pulse). Plaque rupture

eventually enables interactions between plaque and blood components, leading to the occurrence of a clot. The clot may obstruct the arterial lumen lead-

ing to a global ischemia of the downstream tissues, migrate to block a smaller artery or stay in its initial location and end up being incorporated in the

plaque after its fibrous organization.

� A coronary plaque rupture can thus result in a variety of outcomes: sudden death, acute coronary infarction, unstable angina, silent infarction, or

increased coronary stenosis. When the artery lumen is narrow enough, effort angina or heart failure can occur. Heart failure can also be caused by

healed myocardial infarction(s). While atherosclerotic plaque takes decades to build up, its rupture and ischemic consequences develop over a short

timespan.
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rate is only around 10.8%, which proposes to describe this
“missing inheritance” as “phantom heritability.”31 Such a
shortcut, which demonstrates the failure to account for
causal mechanisms at every abstraction layer, poses a
threat when predictions are applied in clinical research.

On the contrary, the top-down strategy does not make
any assumption of that sort. Instead, it postulates that the
outcome one wants to predict should be considered from
the outset. Thus, modeling starts at the highest level in
accordance with the modeling process objective, and
focuses on functions rather than entities. Then the modeler
replaces each functional block with a model of the mecha-
nism that implements it. In fact, many systems biologists
are beginning to use the middle-down and middle-up
approach—starting at an integrated data position that
avoids many of the pitfalls of a bottom-up approach.

HALLMARKS OF HUMAN BIOLOGY IN
SYSTEMS THINKING

Myocardial infarction (refer to Table 1) illustrates the large
number of genes, molecules, signals, cell types, organs,
and phenomena involved in most human diseases. Living
organisms are inherently complex and variable. Complexity,
a signature of life, can be defined as a mix of redundancy
and feedbacks.32 Even when all of a system’s constituent
parts are known, failure to account for their quantitative
interactions results in the impossibility to predict its behav-
ior. Disease mechanisms exhibit complexity at each layer
and in all the interactions between these layers.

In addition to its sheer complexity, life is a time-
dependent process. Time is an unavoidable dimension both
in chronic and acute diseases. Fundamental biological phe-
nomena occurring at the outset of any biological process,
such as enzyme–substrate interaction, protein synthesis,
protein decay, gene expression, cell contraction, cell mov-
ing, etc., develop over time. Integration of the fundamental
phenomena in systems, either at a lower level (pathways)
or at higher ones (tissue, body), with molecule diffusion,
signal transduction through molecular networks, cell–cell
interactions, neuronal or hormonal signal processing, needs
time to be completed. The order of magnitude of the time-
constants of the integrating processes, whatever they are,
is well above those of fundamental biological processes.
Elimination outside the body of xenobiotics or autobiotics,
and water, amino acids, carbon, oxygen, and energy supply
through feeding and breathing are time-dependent proc-
esses spanning over longer horizons. And finally, the occur-
rence of somatic mutations, mechanical fatigue (blood
vessels, joints, bones), multiple-hit processes, etc., which
are part of aging and chronic diseases, evolve over an
even longer time scale.

Further obstacles arise from the varying time scales of
submechanisms involved in any given disease. For myocar-
dial infarction, signaling pathway abnormalities developing
over nanoseconds can result in a clinical event occurring
years or even decades after the first abnormal molecular
functioning. A cascade of dysfunctions, provided enough
signals that need to be operating together to sustain a

healthy physiological state end up to become ineffective,
eventually leads to the clinical event. Multiple interventions
are then needed in order to restore synergistic interactions.

Lastly, physiopathology is multiscale in nature. Since all
levels are intertwined, the alteration of the behavior of one
element at a particular level is likely to have an impact on all
other levels, below and above. In this context, statistical or
computational biology analyses alone provide only limited
assistance to foresee the end results of those alterations. In
this sense, Brenner’s criticism is relevant: “I contend that this
approach will fail because deducing models of function from
the behavior of a complex system is an inverse problem that
is impossible to solve.”33 But we would disagree with his rea-
soning, which is that “the essence of all biological systems is
that they are encoded as molecular descriptions in their
genes and since genes are molecules and exert their func-
tions through other molecules, the molecular explanation
must constitute the core of understanding biological systems.
We then solve the forward problem of computing the behavior
of the system from its components and their interactions.” In
our view, this also will fail, as Brenner himself admitted in the
Novartis Foundation meeting in 2001: “I know one approach
that will fail, which is to start with genes, make proteins
from them and to try to build things bottom-up.”34 The solu-
tion must include multilevel interactions in an integrative
approach.35,36 Thus, systems medicine should go beyond the
realm of the intracellular layer to integrate upper physiological
layers, including all time and complexity level components.

AN ORIGINAL FRAMEWORK TO BRIDGE SYSTEMS
MEDICINE AND PATIENT NEEDS

We propose to enrich the operational framework of systems
medicine by combining top-down and bottom-up approaches
to empower practical middle-out studies.10 Systems medi-
cine, which purports to design multiscale mathematical dis-
ease models, must become the missing link to bridge
systems biology and patient outcomes, i.e., patient needs.
The systems medicine-driven modeling approach includes
all the biological components that are thought to play a role
in the course of a disease process, up to clinical events.
However, accounting for all of these biological components is
not enough to generate reliable clinical outcome predictions.

Systems medicine aims at predicting the course of a dis-
ease in a given patient and how far it can be altered by
available therapies. Thus, the main object of the prediction
should be the absolute benefit (AB), i.e., the difference
between two probabilities, the event rate without treatment,
and the event rate with a given treatment. Note that AB is
time-dependent. The optimal patient-level outcome is
obtained by selecting the treatment corresponding to the
largest predicted benefit. In practice, the decision paradigm
should also account for toxicity and compliance issues.

The fundamental principle of systems medicine should
thus be the prediction of benefit–risk for a single subject, a
group, or a population. To bridge the gap between simula-
tion outputs and clinical outcomes, an original framework,
which is initiated based on top-down modeling principles,
then combined with data from bottom-up approaches, thus
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enabling AB prediction is proposed. It is summarized in
Figure 1 and will be discussed further below. Tables 2–5
and Figure 2 in the next section give an illustration based
on research funded by the EU (PL962640). Some results
have been published,37 others are still being worked on.

The cornerstone of this original framework is the Effect
Model law37 (#3 in Figure 1, arranged from figure 3 in ref.
38). It refers to the relation between the risk of a clinical
event without and with the therapy being developed or
available to patients.39 The difference between the two risks
gives the absolute benefit ABi for a given patient (i) (#1 in
Figure 1). The Effect Model is an emergent property when-
ever a disease model coupled with a pharmacological
model is combined with a virtual population of patients. As
such, it is never explicitly modeled.

The number of prevented events (NPE) yields the pre-
dicted efficacy at the population or group level (Figure 2). It
is equal to the sum of the predicted absolute benefits ABi

for each patient (i) of the population or group (#2 in
Figure 1). AB and NPE, which measure the expected clini-
cal benefit, are predictors of individual- and, respectively,
population-level effects of the intervention being investi-
gated. They therefore operate as standardized metrics
bridging biological alterations with clinical outcomes. AB is
the metric for comparing the expected benefits of available
interventions for a given individual (personalized medicine
or personalized prevention40). NPE is the metric that ena-
bles the comparison and selection of available interventions
for a group or a population, new targets, or drug under
development with comparator(s).

Figure 1 The Effect Model law visual illustration.

Table 2 Problem and questions

Problem

Heart rate is a causative cofactor of several vital physiological phenomena: average cardiac output, arterial beat, average myocardial energy consumption.

Some diseases or clinical events are mechanistically dependent of these phenomena. Thus, one can question whether modulation of heart rate can alter

the course of these diseases.

Leading hypothesis

Funny channel (If) is highly expressed in the sino-atrial node, the atrio-ventricular node, and the Purkinje fibers of conduction tissue. Through its action on the

ionic exchanges during the cardiac beat, it controls the rate of spontaneous activity of sinoatrial myocytes, hence the cardiac rate. Ivabradine is a drug that

inhibits If activity. Thus it reduces heart rate with, as far as it was known at the time, little or no other activity.

Questions

Q1 Can ivabradine, a heart rate moderator, prevent effort angina pectoris attack?

Q2 If yes, is once a day better than b.i.d.?

Q3 If yes, what is the dose-effect relation?

Q4 What is the expected number of prevented attacks per day?

Q5 Can heart rate reduction (with, e.g., ivabradine) prevent atherosclerotic plaque rupture?

Q6 What would be the number of prevented plaque ruptures?

Q7 What are the factors influencing the number of prevented plaque ruptures?

Q8 How these factors modify the number of prevented plaque ruptures?
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Table 3 Models

Current thoughts on the mechanism of angina pectoris attack assume that the thoracic pain and simultaneous specific EKG changes are due to an imbalance between O2

needs of myocardium and supply by the coronary arteries caused by a reduction of the maximum blood flow. Maximum coronary flow is a function, among others, of the

surface of the coronary artery lumen that is reduced when an atherosclerotic plaque induces a coronary stenosis. Angina attack occurs when coronary reserve goes

down below a threshold. Further, such a plaque can rupture, leading to a clot and an ischemic clinical event.

Angina pectoris was modeled with a series of algebraic equations that translated heart functioning as a pump, integrating factors that modify stroke volume and

heart flow (Q). Heart rate is a major factor. Coronary flow was a function of heart flow and coronary stenosis (d).

Plaque rupture was assumed to be primarily a mechanical event: rupture occurs when the instantaneous mechanical stress (shear stress) on the plaque can no longer

be afforded by its mechanical properties. The latter decrease as a result of fatigue. Fatigue is a function of cumulative systolic stress and plaque components and

status, among which the most important is the lipid core. Other factors of plaque mechanical properties are: plaque cap thickness, inflammation, plaque duration,

patient age and sex. Fatigue is a life-long process. The dynamic of the whole process should be accounted for (see the figure below). Several sub-models, with spe-

cific level of details and mathematical solutions were considered: fluid-structure interactions (one dimensional model, incremental boundary iteration method for the

fluid-wall interaction), plaque structure, arterial wall motion (a solid model, a finite-element method) inflammation, fatigue (plaque structure is assumed to be an

homogeneous metal, with average properties changing with plaque composition, of which the lipid core is a major component). All of these submodels were consid-

ered at a phenomenological level of granularity (i.e. at an upper abstraction level than the molecular one).

The entry in both models was the concentration of ivabradine at its site of action. It was assumed that the main activity of the drug is a reduction of heart rate

through a modulation of an atrial potassium channel. The connection between orally given amount of ivabradine and concentration at the drug target site was a

PK-PD model fitted to real data with NONMEM. Other models were computed with SAS and Mathematica.

Equations of the angina pectoris attack model:

• Systolic blood pressure: SBP(t) 5 101.1 1 0.74*HR(t)

• Left ventricle contractility: S(t) 5 k (S)*HR(t)

• Duration of diastole:

• DD(t) 5 (60/HR(t))0.5 *[(60/HR(t))0.5 –k]

• Left ventricular volume: DV(t) 5 (Vr-C* PV) exp(DD(t)/C* R) – C* PV

With:

Vr 5 end-systolic ventricular volume

C 5 ventricular compliance at relax status

R 5 resistances due to viscosity

PV 5 venous pressure

• From the Starling law, the stroke volume is: SV(t) 5 S(t)*(DV(t)/SBP(t))

• Heart flow: Q(t) 5 HR(t)*SV(t)

• Coronary flow: QCOR(t) 5 a*Q(t)

• Perfusion pressure through the coronary stenosis: PP(t) 5 (1.8*QCOR(t)/60*d4) 1 6.1*(QCOR(t)2/3600*d4)

With: d, diameter (mm) of the artery lumen

Coronary reserve: CR(t) 5 1 – (PP(t)/(SBP(t) - PV))

Plaque rupture: dynamics of the process



The virtual population represents the population or the
group of interest (#4 in Figure 1 and Table 4). Each virtual
patient of the population is characterized by a vector of
descriptors that translates biological and environmental
parameters involved in the course of the disease and inter-
actions between the drug or any intervention and the body.
By applying the disease model or the therapeutic model
(see below) over the virtual population, one can simulate
the patient outcome without or with treatment, and obtain
the Effect Model, AB, and NPE. This virtual population can
be realistic, i.e., derived from a real population (first virtual
population in Table 4). In such a case, some39,41 or all42

descriptors are built from epidemiological and/or clinical trial
data. Virtual populations can also be designed from
scratch, through the translation of model parameters in
virtual patient descriptors (second virtual population in
Table 4). In such a case, their distributions are drawn from
knowledge extracted from the literature or based on rea-
sonable assumptions. Certain patient descriptors highly cor-
related with the outcome are potential biomarkers.

The disease model is a mathematical representation of
biological entities, physiology, and abnormalities leading
to the clinical event (#5 in Figure 1 and Table 3). The
pharmacological model (#6 in Figure 1 and Table 3) rep-
resents what is known about the intervention, i.e., its
mode of action—site(s) at which it connects with the
body to alter its functioning, affinity to this or these
site(s)—and all other interactions with the body: absorp-
tion process, transfers, metabolism, etc. This model is
continuously updated on the basis of new data accumu-
lated throughout in vitro and in vivo experiments. It con-
nects to the disease model at the target site (Table 3).
This enables the exploration of the consequences of
alterations, e.g., the dose of the ligand or the compliance
of the patient, on the disease progression. The combina-
tion of the pharmacological model and the disease model
yields the global therapeutic model.

Computing the Effect Model is a two-step process: first,
one applies the disease model to the virtual population to
generate the distribution of the base (or control) risk (Rc) of
suffering from the clinical event under investigation in the
population of interest. Then the global therapeutic model is
applied to the same virtual population to generate the risk
modified by the treatment or drug candidate (Rt). For each
patient, AB is the arithmetic difference between Rc and Rt.

Two final comments are worth mentioning. First, while
disease models are deterministic, patient genotypic and
phenotypic variability is accounted for at the virtual popula-
tion level. Second, there are as many Effect Models as
treatments (or drug candidates) and patient populations or
groups.

ILLUSTRATION

This original framework based on the Effect Model law has
wide-reaching implications for therapeutic innovation, com-
parative effectiveness analyses of drug products, and per-
sonalized medicine.

One of the key benefits of this approach is its consis-
tency. Regardless of the therapeutic area or real patient
population being investigated, AB and NPE operate as
standardized metrics to guide decision-making in a variety
of settings (e.g., selecting new targets, profiling optimal
responders, transposing randomized controlled trial [RCT]
results in real-world outcomes, comparing treatment effec-
tiveness on the same population, tailoring treatment strat-
egies to idiosyncratic patient risk profiles).

In the example37 shown in the above and below (Tables
2-5 and Figure 2), there was no integration of omics data,
since the model could answer the questions to be
addressed without accounting for lower systems levels than
physiology. However, there are neither conceptual nor tech-
nical barriers to modifying the model in such a way that
lower levels of structuring and functional biological

Table 3 Continued

Plaque rupture: dynamics of the process
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components are included. For instance, if Question 7 (Q7)
in Table 2 becomes “Are arterial endothelial, smooth mus-
cle cells and neutrophils functional status and extracellular
matrix molecules as seen in remodeling arterial tissue fac-
tors that can modify the number of prevented plaque

ruptures?” then cellular, molecular, and even gene levels
would be incorporated. Relevant knowledge from networks
and pathways resulting from omics analysis would be used
to design these new submodels and data from omics data-
bases required for calibration and validation.

Figure 2 Results.
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Table 4 Virtual populations

Questions 1 to 4

A database of 1,706 case records of subjects without angina pectoris with a 24-hour recording of heart and blood pressure during normal life. To each case

record, values of pharmacokinetic parameters, degree of coronary lumen stenosis, bottom value for coronary reserve, were randomly allocated.

Questions 5 to 8

A 1,000 virtual patient population was designed. Patient descriptor values were randomly drawn from distributions of patient age and sex, heart rate without

treatment, instantaneous shear stress, lipid core volume, fibrous cap thickness, high sensitive CRP. All of these descriptors have corresponding model

parameters. In addition, fatigue was computed for each patient as a result of plaque age.

Table 5 Validation: a few examples

Validation of the angina pectoris model

Solid line: real 24-hour heart recording in one patient.

Dotted line: simulated 24-hour heart rate recording

in the same patient with 40 mg ivabradine bid [from figure 4 in ref. (37)].

Does-effect relations predicted in-silico (solid lines) versus

observed results (bars) produced ex-post.

Validation of the simulated coronary velocity

Real-life coronary blood velocity profiles

Simulated coronary velocity profiles

Predicted efficacy compared to efficacy observed in clinical trial.

In the Beautiful randomized trial, in patients with heart rate >70 bpm at baseline, the ratio of rates of admission to hospital for fatal or nonfatal myocardial

infraction in patients with ivabradine and patients on placebo was 0.64 after a median follow-up of 19 months. The simulated ratio was 0.66.
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This consideration of a possible extension of the number
of complexity levels accounted for in the heart rate reduc-
tion model illustrates another major advantage of this
approach, its flexibility or “Lego–like” nature.

As illustrated by the myocardial infarction example
(Table 1), collecting and editing all relevant knowledge is
the key demanding step in any modeling process. It con-
sists of a careful analysis of review articles and published
original works, knowledge bases, and published models.43

PERSPECTIVES

The middle-out approach we propose is designed to integrate
findings from bottom-up and top-down approaches as needed
to answer specific biomedical questions. Its standard nature
makes it applicable both to personalized medicine (predicting
the absolute benefit ABi for a particular patient i) and drug
R&D (predicting the NPE to guide decision-making).

Both the myocardial infarction and the ivabradine37 use
cases illustrate the potential of this approach in drug R&D
decision-making. Provided that a disease model and a vir-
tual population are available, and assuming further that the
disease model was rigorously validated and that the proce-
dure to continuously update the model and the virtual popu-
lation based on emerging knowledge and data is applied
properly, the scope of applications to drug R&D is vast. In
early research, the maximization of the NPE can serve as
the guiding metric to identify new vectors of potential tar-
gets. In clinical development, with the coupling of the phar-
macological model of the drug under investigation with the
disease model, the approach can help identify optimal res-
ponders (patients from the virtual population with the larg-
est predicted AB, which can then be compared to actual
patient populations), identify companion biomarkers
(parameters of the disease model most highly correlated
with the maximized NPE), determine the optimal regimen
(the one which maximizes the NPE), design dose–effect
search or phase III pivotal trial(s), explore the interaction
with best of evidence treatment of the condition. Upon com-
pletion of phase III trials, relative effectiveness analyses
can be performed by benchmarking the product’s NPE
against the NPE of standard-of-care competitors (the latter
computed by switching the relevant pharmacological mod-
els). The distribution of ABs and value of NPE in the target
population can be explored for marketing purposes, with or
without comparison against competitor products. Finally,
throughout R&D, exploring the relations between model
components and virtual population descriptors on one hand
and AB and NPE values on the other can help identify lack-
ing or uncertain knowledge. Designing experiments to close
these gaps and feeding back the newly generated knowl-
edge would result in improved predictive capabilities.

This integrated framework promises to identify novel
treatment modalities, accelerate the generation of proof-of-
concept based on the prediction of a drug’s efficacy on
carefully characterized patient populations, reduce develop-
ment costs by focusing spending on the most promising
avenues, and bring time to market down thanks to better-
designed trials.

The proposed approach, while yielding significant poten-
tial, suffers from a major bottleneck, which is the amount of
resources (chiefly biomodeler time) required to build
knowledge-based multiscale models of diseases. This is
essentially due to the time necessary to scan scientific
articles to identify, extract, curate, and arrange knowledge
about a given pathophysiology. The issue is one of resources
as much as it is behavioral in nature, rather than technologi-
cal. Indeed, researchers of all stripes customarily collect,
edit, and manage knowledge. Furthermore, useful knowl-
edge bases such as Ensembl and Uniprot exist. Unfortu-
nately, their form and structure are seldom aligned with
modeling objectives and constraints. Making biomedical
information useful (i.e., curated, structured, and distributed)
for modeling purposes is a major challenge going forward.

Limitations to this approach are fairly generic in the con-
text of complex systems modeling. First, some diseases
and biological systems suffer from a limited understanding
of their mechanisms. One can argue that even in such
cases, a mathematical representation of what little is known
is likely to bring value over and above nonquantitative
approaches. Second, there are systems for which the math-
ematical representation is extremely complicated and/or
require large computing power. Solutions already exist,
such as parallel computing or decreasing the system’s
complexity without increasing significantly the risk of miss-
ing the modeling objective.

All things considered, the major limitation pertains to the
paucity of available knowledge either on the mechanism of
the disease of interest or the biology and physiology of the
systems involved. The latter case is extremely rare. While
the former is more common, it is always feasible to build a
phenomenological model of what little is known. And it will
always be possible to formulate assumptions regarding the
mechanism and test them in silico.

CONCLUSION

To be of any help to researchers, practitioners, and
patients, P4 systems medicine needs to identify clearly
what it is aiming for. We believe the key wording here is the
prediction of individual as well as population benefit of
interventions, i.e., the gain in disease outcome rates and
burden the interventions can provide. The optimization of
wellness is a key to maximizing human potential for each
individual—improving physiological as well as psychological
performances. This is the very essence of the personalized
P in P4 medicine. This prediction is the cornerstone of both
improved R&D and ethical, practical, and efficient personal-
ized medicine. It cannot rely solely on clinical or omics
assessments of individuals, but must integrate them within
the physiological and pharmacological framework described
above. Thus, clinical and environmental information should
be integrated in the prediction algorithm. This algorithm
should be designed with all the relevant knowledge abun-
dant in the scientific literature. It should be calibrated and
validated with data. This requires easy access to curated
and annotated knowledge thanks to an appropriate knowl-
edge management process. Access to databases where
data have been checked and annotated is also a
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prerequisite. Eventually, systems medicine will vastly
improve innovation capabilities as well as enable the better
use of existing treatments, the repositioning of drugs, the
definition of target populations, and the combination of
treatments, by integrating methods, data, and knowledge
from systems biology, physiology, epidemiology, and clinical
studies. This is one of the key objectives of the European
Union research framework program “Horizon 2020.” The
Effect Model framework introduced in this article is being
applied to the management of chronic lung allograft dys-
function, with the objective to provide clinicians with person-
alized medicine capabilities in order to improve postlung-
transplantation survival.44
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