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Abstract
Our brain is protected by physio-biological barriers. The blood–brain barrier (BBB) main mechanism of protection relates to the

abundance of tight junctions (TJs) and efflux pumps. Although BBB is crucial for healthy brain protection against toxins, it also

leads to failure in a devastating disease like brain cancer. Recently, nanocarriers have been shown to pass through the BBB and

improve patients’ survival rates, thus becoming promising treatment strategies. Among nanocarriers, inorganic nanocarriers, solid

lipid nanoparticles, liposomes, polymers, micelles, and dendrimers have reached clinical trials after delivering promising results in

preclinical investigations. The size of these nanocarriers is between 10 and 1000 nm and is modified by surface attachment

of proteins, peptides, antibodies, or surfactants. Multiple research groups have reported transcellular entrance as the main mech-

anism allowing for these nanocarriers to cross BBB. Transport proteins and transcellular lipophilic pathways exist in BBB for small

and lipophilic molecules. Nanocarriers cannot enter via the paracellular route, which is limited to water-soluble agents due to the

TJs and their small pore size. There are currently several nanocarriers in clinical trials for the treatment of brain cancer. This

article reviews challenges as well as fitting attributes of nanocarriers for brain tumor treatment in preclinical and clinical studies.
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Introduction
Structural or functional impairments to the brain or spinal cord
including trauma, infection, inflammation, tumors, degenera-
tion, and autoimmune disorders are classified as central
nervous system (CNS) disorders.1,2 These conditions can lead
to serious cognition and physiological impairments and may
prove fatal in certain cases.3 Brain tumors have a high fatality
rate and can seriously affect and devastate lives. Despite
many improvements in treatment protocols, drug delivery
remains a major challenge, and treatment options are limited.
The most malignant brain tumors begin with genetic mutations
that impair and dysregulate cell function and division.4–6 Brain
tumors are classified as malignant and benign, and further sub-
categorized as primary and secondary. Whereas primary tumors
are caused by the division of brain cells only, secondary tumors
develop from the metastasis of other organs to the brain and are
also hardly treatable. Primary tumors unlike secondary types
start and involve the brain cells. The glioblastoma multiform

(GBM), with a treatment-refractory disorder with a patients’
short lifespan, cognitive impairments, and high mortality rate,
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is one of the most common primary brain tumors.7–11 The patient’s
survival percentage with grade IV glioblastoma is reported to be
4.5% for 5 years by World Health Organization (WHO).
Metastatic brain tumor as the secondary tumor type has almost 6
months overall survival. The median survival was at its highest
with surgery which was followed by radiation therapy.12–14

The surgical resection plus radiotherapy, as well as adjuvant
chemotherapy frequently, has been comprised by the treatment
guidelines (Figure 1).15–17 With the lack of clear tumor margins,
precise anatomical location, and biases that exist during the
surgery, chemotherapy has been one of the most effective
approaches. Despite recent progress in the development of effec-
tive chemotherapy agents and efforts on improved drug formu-
lations, the tumor’s molecular heterogeneity has made the
treatment process and the resulting outcomes more compli-
cated.18 The delivery of chemotherapy agents to the brain
tissue faces the challenge of crossing the anatomical and physio-
logical barrier, the blood–brain barrier (BBB) being the most
important one. The BBB is a highly selective barrier (hardly per-
meable) that protects the brain cells against blood-circulating
agents such as pathogens and toxins. Many approaches to over-
coming BBB have been suggested in the literature. One of the
promising applied approaches lies in the nanotechnology.19–21

Nanotechnology, particularly nano-drug delivery systems, is
emerging as promising tools in the cancer diagnostics and
therapeutics.22,23 Based on the drug-loading methods and
nanoparticle surface, size, and zeta potential modifications, the
effector molecules can be encapsulated, adsorbed, or attached
to the nano-drug delivery system. To date, the most successful
nanocarriers based on clinical trials are inorganic nanoparticles
(such as metal, metal oxide, carbon, and silica particles), lipo-
somes, micelles, dendrimers, and polymers. Assuming that blood
capillaries and cells range between 6 to 9 and 10 to 20 μm, respec-
tively, almost all types of nano-drug delivery systems can reach and
deliver therapeutics into organs and cells. Specifically target-
ing the BBB receptors by surface-functionalized nano-drug
delivery systems makes them ideal candidates for the brain
cancer drug delivery.24–27

This study aims to discuss the challenges regarding brain tumor
treatment and to review the current application of nanotechnology
in preclinical and clinical studies for this disease category. With
careful examination of the literature, the physiological and biolog-
ical aspects of the BBB were summarized along with the nano-
drug delivery strategies that have been reviewed in detail based
on the nanostructures. Finally, the majority of all ongoing nano-
drug delivery systems which have made their way through the
clinical trials were reviewed as the realistic perspective of nanome-
dicine for brain cancer drug delivery systems.

Blood-Brain Barrier
In 1885, Ehrlich28 and his colleagues demonstrated the pres-
ence of barriers between CNS and the periphery using brain
parenchyma staining via intravenous injection. One of
Ehrlich’s students, Edwin Goldmann completed Ehrlich’s
dye experiments by directly administrating trypan blue

directly into the cerebrospinal fluid (CSF).29 The term BBB
generally refers to the distinct characteristics of continuous
nonfenestrated brain microvasculature.30 This unique feature is
the consequence of physical barrier properties, molecular
barrier properties, as well as specific transporters.31–34 The
cells, molecules, and ions entrance are suppressed by the protec-
tive role of the BBB. Furthermore, it is almost an impermeable
barrier for drugs. Even though the BBB makes uniform coverage
between the brain parenchyma and blood vessels interface, the
circumventricular organs link the CNS and peripheral blood
vessels.35 Blood vessels are made up of 2 cell types: endothelial
cells (ECs) that build up blood vessels, and mural cells including
vascular smooth muscle cells and pericytes (PCs), which are
placed on the outer layer of the ECs. While ECs are primarily
responsible for the BBB characteristics, the function and mainte-
nance of the BBB depend on interactions between ECs, PCs, and
astrocytes (Figure 2).

Simple squamous epithelial cells are the bricks of the blood
vessel walls. CNS microvascular ECs are 39% thinner than
muscle ECs and also there is a 200 nm diameter between the
luminal and abluminal surface.36 The main role of ECs is to
limit the entry of cells, molecules, and ions to the brain. The
EC tight junctions not only block the paracellular pathway
but also vesicle-mediated transcellular flux too.36–39 As a
result of paracellular and transcellular restrictions, blood–brain
transportation is highly controlled.40–42 Higher amounts of mito-
chondria and very low levels of leukocyte adhesion molecules
are other specific limiting features.

The PCs incompletely cover the abluminal microvascular
side that is attached to the vascular basement membrane.43

PC cells with their contractile proteins control the capillary
diameter.44 In comparison with other tissues like muscles, in
the CNS PCs provide the most coverage. The EC-to-PC
content ratio is between 1:1 and 1:3 in CNS microvascular
versus 100:1 in muscles.45

Astrocytes are polarized glial cells that cover the entire
vessel’s tube.46 They not only connect neuronal cells with the
blood vessels but also reflect the neuronal signals on the micro-
vessels’ blood flow. This includes contraction/dilation regula-
tion of the vascular smooth muscle cells next to capillaries
and arterioles, respectively.32

The main CNS endothelial cell transporters are efflux and
nutrient types.34 Efflux transporters, including MRPs, Mdr1,
and BCRP take advantage of ATP hydrolysis to actively trans-
port different biological membranes. Nutrient transporters facil-
itate the transportation of nutrients against their concentration
gradient. Most of these belong to the family of solute carrier
transporters, including slc16a1 (lactate, pyruvate), slc2a1
(glucose), slc7a5 (neutral amino acids, L-DOPA), and slc7a1
(cationic amino acids).47–49

Nanotechnology Approaches to Overcome Brain Drug
Delivery Challenges
Most of the small lipophilic molecules, less than 400 to 500 Da,
can pass through the BBB.50 Of the greater than 7000 drugs for
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insomnia, depression, and schizophrenia that were assessed in
comprehensive medicinal chemistry (CMC) database study,51

only 5% reached the CNS and averaged 357 Da. In another
study, 12% of drugs were activated upon entering the CNS
while only 1% of them were of use for nonpsychotic disorders
(neurosis). Antibiotics, antineoplastics, and neuropeptides are
common examples of compounds with limited transfer rates
through the BBB.52 To that end, the objective for many brain
drug delivery systems is concerned with targeting the BBB
receptors.35,53

Generally, invasive and noninvasive methods are 2 major
interventions to allow passage through BBB. The invasive pro-
cedures occur with transient disruption of BBB by chemical,
biological, and physical stimuli. These methods are expensive
and have proven to be highly risky. As a result, they are not
preferable for the brain drug delivery enhancement.54–57 In con-
trast, noninvasive methods have proven more effective at pro-
viding a relatively harmless drug-to-brain delivery system.
Furthermore, a blood-to-brain strategy that improves the BBB
permeability and facilitates drug-carrier conjugation minimizes

the mentioned drawbacks.58,59 It has been demonstrated that the
transcytosis mechanism by the BBB cells supports active drug
transportation due to the sizable presence of mitochondria.
Various nanocarriers have been thought to be able to overcome
the BBB, potentiating drug delivery to ischemic lesions and
various tumors in CNS. Many research and review papers
have aimed to comprehensively examine the effectiveness of
brain drug delivery systems.60–62

Generally, the paracellular pathway is considered the
common route of entry for small hydrophilic molecules, and
the transcellular pathway is the preferable route for the transport
of small nutritional or therapeutic compounds.63–65

Unfortunately, due to the physiologic limitations of the BBB,
both pathways apply to a small selection of compounds.
Other more feasible and commonly used modes of transporta-
tion include a carrier or receptor-mediated transcytosis.
Briefly, the endosomal formation following carrier conforma-
tional change due to the concentration gradient elucidates path-
ways. These established pathways to get through the BBB are
illustrated in Figure 3.66–71

Figure 1. Current methods in the treatment of brain tumors. These methods are including surgical resection plus radiotherapy, as well as adjuvant
chemotherapy.
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Figure 2. Schematic representation of the BBB. Endothelial cells are made which are tightly attached via tight junctions. Blood vessels, and
mural cells including vascular smooth muscle cells and PCs, are placed on the outer layer. The PCs have incompletely covered the abluminal
microvascular side that is attached to the vascular basement membrane. Astrocytes are polarized glial cell types, cover the entire vessel’s tube.
Abbreviations: BBB, blood–brain barrier; PCs, pericytes.

Figure 3. Nanocarrier and brain delivery. Various types of nanocarriers including inorganic nanoparticles, dendrimers, SLNs, polymeric
nanoparticles, micelles, exosomes, minicells, and liposomes encounter 4 types of transport mechanisms including transcellular,
receptor-mediated, paracellular, and carrier-mediated transport to pass through BBB.
Abbreviations: BBB, blood–brain barrier; SLNs, solid lipid nanoparticles.
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Nanotechnology Platforms for Brain Cancer Drug
Delivery
Inorganic Nanomaterials. These types of nanomaterials based on
silica, carbon, metal, and metal oxide particles are widely used
in imaging techniques. Stabilized size and monodispersed for-
mation in the bloodstream, high surface area, and for this
reason, ease of functionalizing are just a few positive aspects
of inorganic nanomaterials.72–75 Silica mesoporous nanoparti-
cles, carbon nanotubes with an ultrahigh surface area, gold
and iron oxide nanoparticles, especially superparamagnetic
iron oxide nanoparticles (SPIONs), are typical inorganic nano-
particle examples (Table 1). In addition to chemical modifica-
tion by PEG, lactoferrin, cationic serum albumin,
poly(isobutylene-alt-maleic anhydride [PMA])s73,76,77 can be
used as chemical modifications. These improve the hydrophilic-
ity and decrease both blood aggregations and the reticuloendo-
thelial system (RES) clearance. Additionally, physical
approaches like magnetism as a novel drug delivery mechanism
have been used to facilitate passing through BBB.73

Furthermore, it has been demonstrated that external magnetic
forces can effectively cross SPIONs through the BBB.73,78

Although numerous investigations have found inorganic
nanoparticles to be efficient enough to pass through the BBB,
hard degradability and its following toxicities, and undesirable
drug delivery, have excluded them from tangible clinical
studies.79

Solid Lipid Nanoparticles (SLNs). SLN refers to nanodispersions
ranging from 10 to 1000 nm of biocompatible lipids including
fatty acids (eg, stearic acid), triglycerides (eg, tristearin),
waxes (eg, cetyl palmitate), and steroids (eg, cholesterol) that
are stabilized with surfactants80–82 (Table 1). A combination
of surfactants with the hydrophilic–lipophilic balance (HLB)
values less than 12, such as Poloxamer 188 and
Pluronic®F68, are used in the SLN structure.81,83 The core of
SLN is made of solid lipids, which makes them ideal for hydro-
phobic drug loading. SLNs have attracted growing attention as
potential nano-based anticancer drug delivery formulations for
gliomas and glioblastoma.84,85 Similar to other nanocarriers, the
surface of SLNs is modified and functionalized via the attach-
ment of various targeting ligands including proteins, peptides,
small molecules, and antibodies. This results in increased anti-
tumor activities and reduced adverse effects by targeting spe-
cific receptor-mediated endocytosis.85–88 Along with the
aforementioned advantages, prolonged retention time in the
serum and brain can be increased by improving the hydrophilic-
ity of SLNs via PEGylation.

Biocompatibility, biodegradability, and surface modifica-
tions are the main advantages of SLNs. However, they can be
easily eliminated by the RES from the blood due to their lipo-
philicity, which can present a potential challenge.89

Polymeric Nanoparticles. Polymeric nanoparticles including
nanospheres and nanocapsules are thermodynamically stable
structures made of natural or synthetic polymers, with a range

of sizes between 1 and 1000 nm.90 As a result of considering
an optimum nanoformulation that is biodegradable for over a
few days, the nondegradable formulations are excluded includ-
ing quantum dots, nonorganic nanocarriers (silica and metal
particles), and needle-shaped carbon nanotubes.91,92

Consequently, 3 types of nanostructured materials are consid-
ered including polylactic acid (PLA) or its copolymer poly
lactide-co-glycolide acid (PLGA), poly butyl cyanoacrylate
acid (PBCA) or poly iso hexyl cyanoacrylate acid (PIHCA),
and human serum albumin (HSA).93 It has been reported that
80% of PBCAs are degraded 24 h after IV injection.
Therefore, poly alkyl cyanoacrylates with approximately 2000
to 3000 Da molecular weights have the fastest degradability
among polymers. Higher poly alkyl cyanoacrylates toxicity
rates were observed with the slowest or fastest degradability
rates. The intermediate rates showed lower toxicities.94,95

Interestingly, a formulation of PBCA has achieved clinical
trial phase III and now is purchased by the trade name of
Livatag® (doxorubicin Transdrug™). Livatag® is the product
of PBCA and Dox HCl attachment, which increases the
PBCA’s molecular weight and substantially improves hepato-
carcinoma drug delivery.92,96 The enzymatic cleavage by
lipases and esterases is thought to be the prevailing degradation
mechanism for PLGA and cyanoacrylates, respectively.97–99

Furthermore, albumin nanoparticles are degraded within 3
days in macrophages.100 Natural polymers are prospective can-
didates for brain drug delivery over synthetics due to the less-
ened toxicity, improved biodegradability, and lowered costs.
Chitosan with a linear structure and randomly distributed
N-acetyl-D-glucosamine (acetylated unit) and β-(1→4)-linked
D-glucosamine (deacetylated unit) units are the product of
chitin extraction from shrimp shells. As a stabilized, biodegrad-
able, and biocompatible formulation with lower toxicity among
natural polymers, it can be prepared by simple techni-
ques.101,102 As the hydrophobic structures have increased per-
meability, chitosan-based nanoformulations have been
modified to enhance their hydrophobicity and thus their
ability to penetrate the BBB. Wang et al103 have shown that tri-
methylated chitosan loading on the surface of PLGA has
enhanced brain uptake. Some polymeric surfactants have been
used as the BBB’s permeation enhancer such as polysorbate
20, 40, 60, and 80104,105 and also poloxamer 188 in contrast
with the polymers such as poloxamine 908, Cremophor®, and
Brij®35.106–108 Moreover, PEGylated or the so-called stealth
nanoparticles are characterized by lower liver uptake and
better blood circulation time and tissue distribution.109,110 The
elevated brain concentrations of nanopolymers in tumor-
bearing animals versus nontumoral animals indicate that dis-
eases such as brain cancer considerably increase the delivery
of nanoformulations to target sites (Table 1).92,111 Although
PEGylation has improved many aspects of nano-drug delivery,
it is not sufficient for an optimum brain delivery system.92

Several studies have revealed the substantial effect of the
adsorbed drug on the nanoparticle’s charge. In some, tumor
accumulation reduction has been referred to as ionic interac-
tions especially the therapeutic agents’ positive charge which

Mehrabian et al 5



Table 1. Preclinical Studies. Nanocarriers That Were Used in Preclinical Studies for Brain Delivery.

Name and materials Advantages Limitations References

Inorganic and are based on silica,
carbon, metal, and metal oxide, for
example, silica mesoporous
nanoparticles, carbon nanotubes,
gold nanoparticles, iron oxide
nanoparticles especially SPIONs

• Stabilize size,
• Monodispersed formulation
• High surface area,
• Ease of functionalizing,
• Physical drug delivery systems like

magnetism

• Low hydrophilicity
• High blood clearance by RES
• Hard degradability
• Undesirable drug delivery

293

Solid lipid nanoparticles (SLN) and are
made of lipids and stabilized by
surfactants

• 10-1000 nm size
• Biocompatible
• Biodegradable
• High loading efficiency
• Functionalized by targeting

• Not suitable for hydrophilic drugs
• High clearance by RES

294,295

Polymeric nanoparticles made from
natural or synthetic polymers
for example, poly(alky
cyanoacrylates), poly(lactic acid),
human serum albumin (HAS), and
chitosan

• 1-1000 nm
• Stable
• Biodegradable
• Controlled degradation rate
• Functionalized by targeting

• Catabolites and degradation rate
should be examined before
clinical use because of adverse
immunological responses

296,297

Dendrimers mainly are based on
PAMAM, PPI, or PLL

• Structural functional groups
• Many reaction sites
• Dual targeting
• Cationic dendrimers (gene delivery)
• Endosome destruction (Gene

delivery)
• Uniform size distribution
• High drug loading capacity

• Complexity
• Multi-step synthesis
• Toxicities and safety
• High clearance by RES

132,298,299

Micelles are based on amphiphilic
block copolymers, a hydrophobic
core, and a hydrophilic surface

• 10-100nm
• Drug delivery of both lipophilic and

hydrophilic compounds
• Stability and long blood circulation time
• EPR mechanism
• Easy and reproducible formulation
• Sterilization by simple filtration
• Evading the RES

• Low stability
• Premature drug release
• Immunogenicity
• Dissociate below CMC

300,301

Exosomes are natural extracellular
nanovesicles

• 30-100 nm
• Natural biocompatibility
• Stability
• Controllable intercellular interactions
• Not immunogenic
• No toxicity

• Lack of standardized exosome
separation and purification
criteria

• Uncertain mechanism in cancer
• Heterogeneity
• Release modifications

171,172,175–177

Minicells are bacterially derived
nanoparticles

• 100-300 nm
• Multiple targeting ligands for

targeting
• Biocompatible
• Increased encapsulation efficiency
• Less drug leakage

• Stability
• Release profile
• Immunogenicity
• Organ toxicity
• Further evaluations

184,188,189,198–200

Liposomes are based on phospholipids • 25-1000 nm
• Deliveryofvariousmolecules:MLVs for

extended drug release, LUVs for vaccine
andgene delivery, SUVfor drugdelivery
through the endothelial cell layer

• Targeted drug delivery
• Both hydrophilic and hydrophobic

drug delivery
• High encapsulation efficiency
• Biocompatible
• Biodegradable
• pH-sensitive formulations
• Thermosensitive formulations
• Dual targeting
• EPR mechanism

• Low circulation time without
surface modification

• Difficulties in sterilization
• Poor reproducibility in terms of

size
• Limited control over drug release
• A small variety of surface

functional groups
• Poor stability

208,230,237,302
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causes higher reticuloendothelial system accumulation.112–114

The polymeric nanoparticles are penetration enhancers with
the ability to link with a peptide as a targeting ligand which
improves brain drug delivery.115 Apolipoprotein targeting
ligands have been used on the surface of polymer-based nano-
carriers to target the low-density lipoprotein receptor and scav-
enger receptors on the BBB.116 Additionally, a few studies have
investigated targeting the transferrin receptors with anti-
transferrin or transferrin antibodies (OX26 or R17217).117

Likewise, the insulin receptors have been targeted with just
100 μm amounts of insulin receptor antibody which improves
nanopolymer’s drug delivery.118

Optimistically, polymeric nanocarriers can reach the clinic
for brain cancer treatment only if they and their catabolites
are biodegradable, and less toxic and immunogenic.89

Unfortunately, as none of the BBB’s receptors are specific or
ubiquitously expressed, the adverse effects might be a limiting
factor.92

Dendrimers. Dendrimers are monodisperse, symmetric, and
spherical compounds with a chemical core. They are classified
based on their molecular weight. Their properties are mostly
determined by their surface functional groups.119–121 The parti-
cle size growth starts from a nucleation site in the center of den-
drimers, from where many consecutive branches develop.
Consequently, hundreds of reaction sites are available on the
surface of the particles. Poly-amidoamine (PAMAM),
poly-L-lysine (PLL), and polypropylene imine (PPI) are the
most common types of dendrimers that have been applied for
drug delivery. They can be loaded by treatment agents and tar-
geted as novel drug delivery systems.122,123 Another advantage
of these types of formulations is dual targeting by different
agents.124

In one study, modified dendrimers via Serine–Arginine–
Leucine (SRL) peptide were used as gene delivery systems
for the brain. It was shown that SRL peptide was bound to endo-
thelial cell membrane receptors on the BBB and lipoprotein
receptor-related protein (LRP). Consequently, this enhanced
the dendrimers uptake by brain parenchyma tissue.125

Furthermore, transferrin and wheat-germ agglutinin (WGA)
dual targeting on the PEGylated 7 to 10 nm dendrimers can
serve as brain tumor therapeutic agents because of well penetra-
tion and accumulation.126

Cationic dendrimers electrostatically bind to the negatively
charged genes for gene delivery applications. The reason why
gene delivery through the dendrimers seems to be so promising
is this mechanism in which they destroy endosome storage in
the cytoplasmic environment.127,128 Furthermore, exogenous
genes, microRNA (mRNA), and small interfering RNA
(siRNA) delivery to tumor sites have been shown in a few
studies.129

In conclusion, dendrimers have specific advantages such as
uniform size distribution, high drug loading capacity, multiple
targeting ligand conjugations, and high stability.130,131 In con-
trast, complex synthesis and formulation development, toxicity,
and safety issues (especially the amino-functional groups) have

restricted the clinical application of dendrimers (Table 1).
Furthermore, their positive amino groups can interact with the
blood cells which are negatively charged and structurally
disrupt and erode cells. This can lead to hematologic toxicities
and nano-drug eliminations. Even though the dendrimer cat-
ionic groups cause toxicity, their chemical modifications gener-
ally minimize these effects.132

Micelles. Spheroidal nanomicelles are made by the aggregation
of amphiphilic block copolymers in an aqueous environment. In
micelles, the hydrophobic core and hydrophilic surface have
provided low soluble drug loading, modification, and conjuga-
tion for targeted brain drug delivery.133 The hydrophilic outer
layer prolongs both blood circulation and stability. Micelles
range between 10 and 100 nm, which is ideal for the enhanced
permeation and retention (EPR) mechanism at the tumor site.130

These nano-drug delivery systems are prioritized over other
types of novel drug delivery approaches due to simple, stable,
and reproducible formulations, as well as simple filtration tech-
niques for sterilization. Their small size and hydrophilic shell
help them evade the RES and consequently have a longer circu-
lation time. Therefore, nanomicelles are the potential candidates
for the treatment of brain cancer. However, the potential of
immunogenicity, premature drug release, poor stability, and
lack of appropriate methods for formulation scale-up have
limited their application. In addition to the aforementioned dis-
advantages, the dissociation of micelles at concentrations lower
than the critical micelle concentration (CMC) is one of the most
significant challenges.134–136

Exosomes. Natural nanovesicles with a diameter of 30 to
100 nm have gotten a lot of attention for potential drug delivery
applications because of their ability to carry targeted ligands on
their surface. They can escape the immune system entrapments
due to their production from body cells, resulting in better blood
circulation, biodegradability, and biocompatibility.65,137,138

They are also considered intriguing nano-drug delivery
systems due to their inherent aptitude for passing across biolog-
ical membranes and barriers including the BBB without affect-
ing its integrity. Additionally, some investigations have
reported glioma-secreted exosomes circulating in the blood,
which indicates their capacity to cross the BBB.139–143 The
abovementioned characteristics have made them promising
candidates for delivery for brain cancer treatment. Many
studies have utilized exosomes for the delivery of nucleic
acids, proteins, and small molecules.144,145 Many studies have
been carried out to take advantage of cutting-edge exosome
research, including RNA therapeutics. Exosomes containing
mRNA inhibited and reduced vasculogenic mimicry, migration,
and angiogenesis, leading to glioma tumor suppression.146,147

The administration of brain endothelial cell-derived exosomes
that were loaded with siRNA was used to treat brain cancer
in another investigation. Despite their limited cell absorption,
siRNAs have shown intriguing therapeutic promise. The nano-
sized exosomes were successful in delivering siRNAs for the
treatment of brain diseases.148–150 Interestingly, the main
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mechanism by which exosomes acquired the ability to cross
through the BBB was unraveled in vitro. The findings sug-
gested active transcytosis under the impression of inflammation
factors (eg, TNF-α).151–153 For simultaneous glioma imaging
and treatment study, the neuropilin-1-targeted exosomes were
co-loaded with SPIONs and curcumin by electroporation
method. Natural nanostructures were given in vitro and in
vivo, and their therapeutic and diagnostic benefits were
greatly improved. Potent synergistic anticancer effects were
attributed to the effect of SPION-mediated magnetic flow
hyperthermia and Curcumin-mediated treatments.154

Exosomes have also been employed to decrease brain malig-
nancies in some innovative and exciting studies.
Chaperone-rich cell lysates (CRCLs) in particular may play a
key role in the development of antitumor vaccinations.
Dendritic cells (DCs) are activated by tumor-derived CRCLs,
resulting in potential anti-tumor efficacy. DC-derived exosomes
were produced in this study using DCs loaded with CRCLs
obtained from GL261 glioma cells. They made antitumor T
cell immune responses more robust and effective.155–159 The
notion that brain endothelial cell-derived exosomes can transfer
anticancer medicine across the BBB for the treatment of brain
cancer in a zebrafish model has been tested in new findings
on anticancer drug delivery. The findings show that exosomes
supplied to tumors reduced tumor growth markers in a signifi-
cant manner. As a result, brain endothelial-derived exosomes
could be a promising new nano-drug delivery system that
could be investigated further in the clinical development of
brain cancer therapy.160,161 In a 3D glioblastoma model, exo-
somes generated from human endometrial stem cells harboring
the apoptotic drug atorvastatin, which inhibits cancer growth
through a variety of mechanisms, dramatically reduced tumor
growth.162–164 A number of researchers have looked into the
possibility and mechanism of exosomal surface changes.
Surface adjustments are implemented to exosomal surface pro-
teins and functional groups. The presence of exosomal mem-
brane proteins such as cytoskeletal components (actin,
tubulin, etc), intracellular fusion proteins (annexin and RAB),
and heat shock proteins have been decoded by proteomic
research. MHC class I and II, CD86 proteins, integrins, as
well as other proteins were also listed.165–167 In conclusion,
covalent and noncovalent alterations, as well as genetic engi-
neering, are being investigated as techniques to improve
exosome efficacy and reduce their drawbacks in the targeted
drug delivery.154,165,168–170

Considering all the facts, exosomes have natural biocompat-
ibility, greater chemical stability, and the ability to control inter-
cellular interactions when compared to synthesized
nanoparticles. They are also regarded as nonimmunogenic, non-
toxic, and nonspecific nanocarriers.171–173 However, there are
challenges to exosome use, such as a lack of standardized
exosome separation and purification criteria, an uncertain
mechanism for exosome uses in cancer treatment, heterogene-
ity, and difficulty maintaining exosomes. They must be ana-
lyzed and adjusted to get a more desirable and controllable
release and scalation in clinical scenarios.174–177

Minicells. Minicells are anucleated, nano-sized (100-300 nm),
neither alive nor dividing cells due to mutation in genes
involved in the normal bacterial cell cycle. Ribosomes, peptido-
glycans, plasmids, RNA, and bacterial proteins are all kept
intact. As a result, they are metabolically active and capable
of carrying out cell processes such as mRNA translation, tran-
scription, and translational activities, as well as ATP synthe-
sis.178–180 Therefore, various minicell-producing bacterial
strains (such as E coli or others) have been brought into atten-
tion or are being researched for possible adoption.181,182

Chemotherapeutics, si/shRNA, drugs, and chemotherapeutics
can all be administered to malignant tissue with pinpoint accu-
racy. Additionally, multiple targeting ligands, such as
bi-specific antibodies, can modify their surface to improve
their clinical applications.183–187 The biocompatibility and bio-
degradability of these nanocarriers are equivalent to that of
other nanocarriers. Furthermore, they appear to be one of the
most unique and appealing nano-drug delivery approaches
due to increased encapsulation efficiency, overcoming drug
leakage, enhancing targeting specificity, and improving treat-
ment agents’ therapeutic index.184,188,189 Many studies are
being conducted in order to develop optimal minicell-based
drug delivery systems for therapeutic purposes. Minicells that
administered the miR-34a greatly increased the temozolomide
effects in vivo in a study as adjuvant therapy. MiR-34a regu-
lates signaling pathways implicated in intratumoral heterogene-
ity and, as a result, temozolomide resistance.190–192 In another
experiment, late-stage brain cancer dogs were treated with
EGFR-targeted minicells carrying doxorubicin and coated
with BsAbs. The nanoparticles were found in the brain
tumor’s center and had a high median survival rate. There
have been no reports of particular toxicity. A Phase 1 clinical
trial employing EGFR-targeted, doxorubicin-loaded minicells
for the management of patients with relapsed glioblastoma
was designed on this premise.193–197

Despite the benefits and advantages of minicell structures,
more research is needed to interpret them in the clinic,
notably on their stability and release profile, as well as their
release mechanism in the tumor microenvironment and intratu-
moral. According to the experiments that have been reported so
far, they had no significant detrimental impacts. Before they are
extensively employed, however, their immunogenicity due to
bacterial sources must be thoroughly investigated.
Additionally, the risk of organ damage from long-term organ
accumulations adds to the concerns regarding these novel nano-
formulations.198–200

Liposomes. Liposomes are attractive vesicles for the delivery of
various drugs and compounds such as antibiotics, therapeutic
proteins, antineoplastics, and peptides.201–204 These vesicles,
consisting of phospholipids, are spontaneously formed and
comprise of single or multiple layers. Liposomes are catego-
rized based on the following classes: (Ι) multi-lamellar vesicles
(MLVs), (ΙΙ) large unilamellar vesicles (LUVs), and (ΙΙΙ) small
unilamellar vesicles (SUVs). The sizes of MLVs, LUVs, and
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SUVs are approximately 500, 100 to 500, and 25 to 100 nm,
respectively. MLVs are commonly used for extended drug
release objectives, while SUVs are optimal for drug delivery
through the endothelial cells lining the blood vessels and
tissue epithelium. LUVs are medium-sized structures for
vaccine and gene delivery purposes.205–207

Due to the recent improvements in encapsulation efficiency,
drug loading, stabilized formulation preparations, decoration
for the molecules targeting delivery, and co-delivery, liposomes
are promising drug delivery systems.201,208

However, some limitations affect the liposomal formula
application and restrict its utilization for intended purposes.
These particulate systems have high clearance and low blood
circulation and are cleared by the RES. The blood circulation
time can be improved by decreasing the particle size to less
than 100 nm, and liposomal surface PEGylation.209,210

Additionally, active targeting is accomplished by ligand attach-
ment for a specific receptor (like monoclonal antibody) on the
liposomes, preferentially to the end of the PEG moieties as
the targeted liposomes have been demonstrated to be much
more effective if they are sterically stabilized.211,212

Many attempts have been made to reach an optimal liposo-
mal formulation.213–215 Improving liposomal transportation to
the tumor site has been the main objective of several previous
studies. Most of these studies examined either cationic or
PEGylated liposomes.216,217 Based on recent studies, the
main mechanism for liposomal entrance into the brain
remains unclear, however, it has been suggested that tight junc-
tion disruption may be the most probable mechanism.218 Some
pH-sensitive cell-penetrating peptides such as TR peptides are
surface conjugated to the drug-loaded liposomes and were
developed and utilized for glioma treatment.214 This type of
nanoformulation was shown to enhance the drug efficacy
toward gliomas, both in vitro and in vivo. Moreover, adriamy-
cin (ADM)-encapsulated thermosensitive liposomes enhanced
Dox delivery to the brain and prolonged the survival of glioma-
bearing mice.219

Receptor-mediated endocytosis is a general mechanism of
cells to import particles. The endocytosis mechanism has
been targeted by nanosystems especially liposomes. For
instance, the transferrin receptor is over-expressed on the
brain capillary endothelial cells.220–222 Therefore, the efficacy
of dual-targeted doxorubicin (Dox) liposomes conjugated con-
comitantly to folate and transferrin was investigated in a study.
This dual-targeting Dox liposome enhanced the therapeutic effi-
cacy of Dox toward gliomas and reduced the off-target side
effects as compared to Dox solution.223 In another study, the
TF-specific targeting ligand and TAT, a nonspecific cell-
penetrating peptide (a small positive charged variant derived
from trans-activating transcription activator peptide of HIV)
were attached to the paclitaxel and Dox containing liposomes
(TF/TAT-LP). They exhibited an effective antitumor activity
against gliomas and enhanced the median survival time of
glioma-bearing mice.213

Moreover, targeting is an approach that enhances the liposo-
mal formulations’ therapeutic and antitumor effects. It is

ascribed to their median particle size and an extent to the homo-
geny particle size distribution. The EPR effect is the main
mechanism for liposomal accumulation and accordingly,
100 nm liposomes can merely reach specific regions.224–228 In
one study, the noninvasive focused ultrasound method accom-
panied bubble liposome (with 55-299 nm diameter range) injec-
tion into the circulatory system. The results showed that smaller
liposomes serve as more effective drug delivery systems than
larger ones.229,230 In another study, cationic liposomes were
used to transfect tumor cells with an interferon gene-expressing
vector (plasmid), which resulted in tumor regression.231,232

Likewise, antisense epidermal growth factor was entrapped
into cationic liposomes and tested in human malignant glioma
cell lines.233 The possible cationic liposomal cell uptake
mechanism can be explained by negatively charged phospho-
lipid head group interactions with the positively charged
liposomes (absorption) and therefore is called adsorptive
mediated transcytosis.234,235 In this regard, cationic bovine
serum albumin as a positive ligand has shown increased cell
absorption and enhanced drug delivery through the aforemen-
tioned mechanism.224,236

The difficulties in surface conjugation and small number of
functional groups can be the main liposomal drawbacks
(Table 1). Moreover, other disadvantages exist, such as poor
and low reproducibility of nanoparticle size, stability, and insol-
uble agent loading. Optimum sterilization and uncontrolled
drug release are other challenges associated with the
liposomes.89,130,237,238

Nanotechnology Clinical Approaches for Brain Cancer
Drug Delivery
ONZEALD™. Sponsored by Lawrence Recht, Nektar
Therapeutics has designed a polymeric version of irinotecan
as the first long-acting topoisomerase I inhibitor. Irinotecan
molecules are attached via an ester bond to the PEG polymer.
Carboxylesterase and other enzymes react with the ester bond
and cause the release of irinotecan and consequently, producing
7-ethyl-10-hydroxy-camptothecin or SN38 as the active metab-
olite. SN38 attacks DNA and causes its damage through topoi-
somerase inhibition. The main objective of the etirinotecan
pegol (NKTR-102 or Onzeald) design is to eliminate or attenu-
ate the irinotecan side effects and also improve its efficacy by
drug distribution modifications. In preclinical studies, it demon-
strated a 300-fold tumor concentration in comparison with a
first-generation topo I-inhibitor. The NKTR is larger than
normal vessel pores, helping it reach the tumor microenviron-
ment by enhanced permeation and retention. Onzeald efficacy
has been assessed in ovarian, breast, brain, colorectal, and
lung cancer. The pharmacokinetic characteristics of the
ONZEALD metabolite (SN38) differ significantly from others
by providing maximal tumor exposure of the active drug
(Table 2). For example, the Cmax has been reduced 5 to 10
times and also the half-life has been increased to almost 50
days. The dose of 145 mg/m2 ONZEALD in phase II clinical

Mehrabian et al 9



trial almost equals the dose of 350 mg/m2 irinotecan. The pro-
tracted exposure between continuous dosing cycles and lower
Cmax has improved the therapeutic effects of the treatments
and clinical outcomes. Its open-label, single-arm 2016 phase
II clinical trial had completed the ONZEALD’s efficacy in
bevacizumab-resistant high-grade gliomas.239–241

NU-0129. NU-0129 is a class of gene regulation spherical
nucleic acid (SNA) nanostructures having well-orientated
siRNA oligonucleotides finely designed and synthesized at
their surface. Such SNAs are made up of siRNA oligonucleo-
tides constructed on gold (Au) nanoparticle centers with oligo
ethylene glycol (OEG) or PEG (OEG/PEG) on their surface
to improve stability and circulatory half-life.242,243 Based on
the earlier investigations, using Au as the SNA heart allows
for accurate spatial analysis of Au distribution in cells and
tumors using inductively coupled plasma mass spectrometry
(ICP-MS), X-ray fluorescence microscopy (XFM), and silver
histopathology staining.244–247 For the treatment of glioblas-
toma, the siRNA gold nanoparticles target the Bcl-2-like
protein 12 (BCL2L12) domains. The tumor cells die as a
result of the inhibition of BCL2L12 expression. In glioblas-
toma, BCL2L12 is hypothesized to be upregulated in a tumor-
promoting direction. It inhibits the activation of effector
caspase-3 and caspase-7. It can also bind wild-type p53 and
its mutants, destabilizing them and preventing p53 from attach-
ing to target gene promoters.246,248–250 In order to test safety,
pharmacokinetics, and intratumoral SNA nanoconjugate accu-
mulation, the very first phase 0 clinical trial involving the sys-
temic microdose delivery of NU-0129 in adults with recurrent
glioblastoma was done. As a consequence, it was discovered
to be safe and well tolerated by endothelial, immunological,
and tumor cells, and it was linked to lower target protein
levels in patients.243 251

Liposomal Rhenium-186 (186Re). Radiation is an essential part
of brain cancer treatment, but due to the toxicity of high
doses, its usage is limited. Rhenium-186 (186Re) is a diagnostic
imaging rhenium isotope that is chemically similar to
technetium-99m (99mTc) and is a reactor-produced isotope
with great potential for medical therapy only after successful
delivery (Table 2). It has a 90-hour half-life with a 2 mm
tissue path length.252 Its low tissue penetration has provided
higher administration doses with the least toxicity. Localized
radiation at the tumor site is achievable through the 100 nm
liposomal formulations of the 186Re. Its applicability in the
failed glioblastoma treatment procedures and accumulation at
the tumor site is because of the EPR effect.253–255

2B3-101. The phase I/IIa clinical study for 2B3-101 or glutathi-
one (GSH) PEGylated liposomal Dox in patients with glioma
and breast cancer brain metastases has concluded. The
G-technology employed to create this ideal nanostructure is
established on the GSH identified transporter on BBB endothe-
lial (Km of 6 mM). It is generally considered safe and utilizes
micromolar glutathione targeting molecules on PEGylated

nanoliposomal dosage forms.256–259 The brain-to-blood ratio
of doxorubicin was 4.8 times greater upon injection of
2B3-101 than generic PEGylated nanoliposomal Dox in discov-
eries. As a result, the brain’s doxorubicin concentration rises
without compromising the BBB’s integrity.260,261 It greatly
slowed tumor growth when compared to nontargeted
PEGylated liposomal Dox.262,263

PEGylated Liposomal Dox (Doxil®). Dox refers to a wide range of
effective chemotherapeutics for the most aggressive malignan-
cies such as glioblastoma. However, its effectiveness in vivo is
under question due to the poor penetration as the result of the
BBB. Its CSF and brain tissue concentrations have dramatically
increased in tumor models after being sterically stabilized. A
PEGylated liposomal Dox formulation with or without
another chemotherapeutic agent like temozolomide not only
has enhanced drug delivery to the brain but also case series
and two-phase II studies concerning recurrent glioblastoma
have demonstrated modest promising results.264

EGFR (V)-EDV-Dox. The EnGeneIC EDVTM technology-based
EGFR (V)-EDV-Dox is a 400 nm Dox-loaded bacterial mini-
cell that utilizes bispecific antibodies to function as a targeted
therapy in cancer treatment (Table 2). In pigs and dogs, they
were well tolerated with modest and temporary toxicity and
inflammation, according to earlier investigations.193,265 The
minicells go from the bloodstream to the tumor microenviron-
ment, where they assault the tumor cells’ surface and release
Dox. Furthermore, remnant EDV bodies in the tumor microen-
vironment that were unable to infiltrate malignant cells signal
the immune system to the tumor site, counteracting the
tumor’s immunosuppression. Overall, these microcells polarize
M1 macrophages and engage NK cells at the same time, result-
ing in a Th1 cytokine response with powerful anticancer activ-
ity. Upon that, dendritic cell maturation and antigen
presentation proceeds, leading to tumor-specific CD8+ T cells
and durable tumor remission.193,266–269

Discussion
Brain drug delivery systems have significantly advanced over
the past few years with current research progressing the field
every further. The latest advanced biological and physicochem-
ical properties of the nanocarriers have taken them to higher
levels. Furthermore, they have enhanced blood circulation
and bioavailability. Not only do they provide a productive func-
tionalized surface for a variety of molecules, but also they can
be modified for controlled release over time. However, translat-
ing brain tumor treatment into clinical trials encounter unique
barriers, largely in part due to the CNS biological barriers
such as the BBB. Reduced tumor accumulation seems to be
another obstacle for such delivery systems to reach the clinic.
Optimizing the physicochemical parameters may overcome
the disadvantages of novel nanoformulation. Shape, size, func-
tionality, and surface charge have been modified in a variety of
studies in the field of brain drug delivery research.270–273
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Designing a triggered release, as well as stimuli-responsive
formulations, are among the most novel fields of drug delivery
studies.130,274,275 Nonetheless, only a handful of studies have
attempted for cancer treatment examining stimuli-responsive
systems. Temperature, pH, magnetic field, enzymes, oxidative
stress, etc are triggering signals that have been frequently used
for cancer treatment. The advantages of employing intrinsic
environmental features in the tumor site in comparison with
normal tissues for improved and efficient stimuli-responsive
systems have been comprehensively discussed in the litera-
ture.130 Furthermore, external stimuli such as light, heat, and

magnetic fields are other options for controlled release. Liu
et al276 have obtained physicochemical sensitive (pH, temper-
ature, etc) nanopolymers with both anticancer effects and
brain tumor magnetic resonance imaging. Their application
for both diagnosis and treatment procedures has been posi-
tively approved. The concept of these multifunctional nano-
systems demonstrates the future of nanocarriers with vast
room for growth and advancements in the field.277,278

Nonetheless, the aforementioned nanoparticles’ potential sys-
temic toxicity and neurotoxicity in the clinic should be
considered.

Table 2. Nanocarrier-based Clinical Trials.

Name Nanocarrier Properties Clinical phase References

Ozeald
(NKTR-102)

PEGylated polymeric irinotecan,
etirinotecan pegol

• Limited side effects of irinotecan
• Improved efficacy, a 300-fold

increase in tumor concentration
• EPR mechanism
• Evaluated in breast, ovarian,

colorectal, brain, and lung cancer
• Constant exposure of the tumor

to the active drug due to reduced
Cmax and increased half-life

Phase 2
for Anaplastic Astrocytomas
Anaplastic
Oligodendrogliomas
Glioblastomas (GBM) is
completed

239–241

NU-0129 Spherical nucleic acid (SNA) gold
nanoparticle formulation composed of
small interfering RNAs (siRNAs)
targeting BCL2L12 gene

• Inhibiting the expression of
BCL2L12 by NU-0129 induces
tumor cell apoptosis

Early Phase 1
for gliosarcoma and
Recurrent glioblastoma is
active

243,251

186RNL 186Rhenium Nanoliposomes • 100 nm
• The half-life of 90 h
• Limited penetration which limits

toxicity of other forms of
radiation

• The liposomal formulation helps
to retain within the tumor

• EPR mechanism

Phase 1
Phase 2
for glioma which is
recruiting

252–255

2B3-101 Glutathione PEGylated liposomal Dox • ∼110 nm
• Targeted drug delivery of Dox
• Optimal distribution to the brain
• Targeting glutathione

transporters on the surface of
BBB

Phase 1
Phase 2
for brain metastases
Lung cancer
Breast cancer
Melanoma
Malignant glioma is
completed and
Phase 2
for meningeal
carcinomatosis is unknown

262,263

Doxil® PEGylated Liposomal Dox • ∼100-110 nm
• Improved tissue and CSF

concentrations

Phase 1
Phase 2
for glioblastoma is
completed

264

EGFR
(V)-EDV-Dox

BsAb-targeted, payload-packaged EDV
nanocells

• 400 nm
• EPR mechanism
• BsAb binds to the tumor

cell-surface receptor which
causes the release of Dox within
the cancer cell

• EDVs are derived from bacteria
and cause immunostimulating

• Bypass the immunosuppression
caused by the tumor

Phase 1
for glioblastoma
astrocytoma, Grade IV
which is recruiting

266,267
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Despite numerous efforts to successfully improve the use of
nanocarriers in different areas of clinical research, there remain
challenges that need to be addressed. Investigating immortal-
ized brain endothelial cell models for the BBB penetration
assessment and testing the nanocarriers’ efficiency to get
through the BBB with the minimum cellular damaging effects
are considered as examples of challenging aspects of this
area. The high cost of these cell lines, such as hCMEC/D3,
bEND3, and RBE4, limited availability and accessibility, and
susceptibility to media and cultural contaminations have
widely affected in vitro studies.279,280 However, they have
been used more frequently in comparison with astrocyte- or
PC-derived cell lines in BBB studies.279,281 Preclinical in
vivo studies in the field of brain cancer is often hindered by
the difficulty of modeling the biological heterogeneity that is
observed between humans and mouse models, which are addi-
tional challenges for brain cancer.282–284 Through advance-
ments in pathological imaging methods and factoring in
higher animal-to-human translational success rates, the in
vivo complications may be reduced. The design of clinical
trials is faced with difficulty in group classifications given
the heterogeneity of tumor and the affected cell types.
Furthermore, additional prognostic factors such as the low
number of participants in each group may lead to a lack of stat-
istical power to detect significant differences between control
and therapeutic arms.285,286

Although more research and development are needed for
effective nanocarriers with optimal clinical kinetics, they
show promise as a suitable method of delivery for brain
cancer treatment based on recent clinical studies.

Concluding Remarks, and Future
Perspectives
Nanomedicine provides innovative opportunities in the devel-
opment of tissue-specific targeted therapeutics, and imaging
agents for brain tumor management. We have reviewed the
challenges and advantages of several development efforts
using nanocarriers for the treatment of brain tumors. Here we
highlight the importance of further investigations for the devel-
opment of effective treatments using nanotechnology for mon-
itoring and treatment. This will facilitate the extremely effective
development of nanomedicine in brain cancer disease. Taken
together, the main goals of the upcoming brain cancer
researches should be not only about having a higher survival
rate, but also the patient’s quality of life and especially the
burden of treatment morbidities. Therefore, other challenges
in brain cancer development may take the nanomedicine drug
development under, which a few will be discussed.

First, we found an unmet need in coordinating a multifaceted
team of specialists like researchers, neurologists, surgeons, neu-
ropathologists, and other health professionals that will cause
less suffering for those who burden the disease. Moreover, clar-
ifying, organizing, and improving the fund and support in
cancer investigations and research is required to make small

communities of brain cancer research and investigations more
developed.

Second, considering prioritized molecular and genetic tumor
detection can lead to precise diagnosis and patient stratification
and consequently move us toward specific and efficient drug
development that more than likely will promote and facilitate
current challenging brain cancer medications. This is in line
with broadening tailored individualized therapy areas.

Finally, a clinical trial center in this field mostly cannot by
itself recruit a considerable statistically powerful number of
patients to run the study. Exploiting and extending more clinical
trial centers can be a solution plus donating more grants for the
brain cancer research portfolio.287–292

Thus, even though nanomedicine is a crucial milestone in
brain cancer treatment but it requires a better understanding
of other essential key elements for further reliable
advancements.
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Şanlıer Ş. Brain-targeted, drug-loaded solid lipid nanoparticles
against glioblastoma cells in culture. Colloids Surf B
Biointerfaces. 2021;206:111‐946.

89. Li X, Tsibouklis J, Weng T, Zhang B, Yin G, Feng G, et al. Nano
carriers for drug transport across the blood–brain barrier. J Drug
Target. 2017;25(1):17‐28.

90. Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nano-
particles for drug delivery to the central nervous system. Adv
Drug Deliv Rev. 2012;64(7):701‐705.

91. Borchardt G, Brandriss S, Kreuter J, Margel S. Body distribution
of 75Se-radiolabeled silica nanoparticles covalently coated with
co-functionalized surfactants after intravenous injection in rats.
J Drug Target. 1994;2(1):61‐77.

92. Kreuter J. Drug delivery to the central nervous system by poly-
meric nanoparticles: what do we know? Adv Drug Deliv Rev.
2014;71:2‐14.

93. Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the
blood–brain barrier by nanoparticles. J Control Release.
2012;161(2):264‐273.

94. Sulheim E, Iversen TG, To Nakstad V, Klinkenberg G, Sletta H,
Schmid R, et al. Cytotoxicity of poly(alkyl cyanoacrylate) nano-
particles. Int J Mol Sci. 2017;18(11):1-17.

95. Sulheim E, Baghirov H, von Haartman E, Bøe A, Åslund AK,
Mørch Y, et al. Cellular uptake and intracellular degradation of
poly(alkyl cyanoacrylate) nanoparticles. J Nanobiotechnol.
2016;14(1):1-14.

96. Alonso MJ, Couvreur P. Historical view of the design and devel-
opment of nanocarriers for overcoming biological barriers. In:
Nanostructured Biomaterials for Overcoming Biological
Barriers: The Royal Society of Chemistry. 2012:3‐36.

97. Lenaerts V, Couvreur P, Christiaens-Leyh D, Joiris E, Roland M,
Rollman B, et al. Degradation of poly (isobutyl cyanoacrylate)
nanoparticles. Biomaterials. 1984;5(2):65‐68.

98. Scherer D, Robinson J, Kreuter J. Influence of enzymes on the
stability of polybutylcyanoacrylate nanoparticles. Int J Pharm.
1994;101(1-2):165‐168.

99. Landry F, Bazile D, Spenlehauer G, Veillard M, Kreuter J.
Degradation of poly (D, L-lactic acid) nanoparticles coated with
albumin in model digestive fluids (USP XXII). Biomaterials.
1996;17(7):715‐723.

100. Kreuter J. Nanoparticles and nanocapsules-new dosage
forms in the nanometer size range. Pharm Acta Helv.
1978;53:33‐39.

101. Nagpal K, Singh SK, Mishra DN. Chitosan nanoparticles: a
promising system in novel drug delivery. Chem Pharm Bull.
2010;58(11):1423‐1430.

102. Karatas H, Aktas Y, Gursoy-Ozdemir Y, Bodur E, Yemisci M,
Caban S, et al. A nanomedicine transports a peptide caspase-3
inhibitor across the blood–brain barrier and provides neuropro-
tection. J Neurosci. 2009;29(44):13761‐13769.

103. Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang TY, Wang SL.
Trimethylated chitosan-conjugated PLGA nanoparticles for
the delivery of drugs to the brain. Biomaterials. 2010;31(5):
908‐915.

104. Kreuter J, PetrovV, KharkevichD, Alyautdin R. Influence of the type
of surfactant on the analgesic effects induced by the peptide dalargin
after its delivery across the blood–brain barrier using surfactant-coated
nanoparticles. J Control Release. 1997;49(1):81‐87.

105. Hekmatara T, Bernreuther C, Khalansky A, Theisen A,
Weissenberger J, Matschke J, et al. Efficient systemic therapy of
rat glioblastoma by nanoparticle-bound doxorubicin is due to antian-
giogenic effects. Clin Neuropathol. 2008;28(3):153‐164.

106. Gelperina S, Maksimenko O, Khalansky A, Vanchugova L,
Shipulo E, Abbasova K, et al. Drug delivery to the brain using
surfactant-coated poly (lactide-co-glycolide) nanoparticles: influ-
ence of the formulation parameters. Eur J Pharm Biopharm.
2010;74(2):157‐163.

107. Wohlfart S, Khalansky AS, Gelperina S, Maksimenko O,
Bernreuther C, Glatzel M, et al. Efficient chemotherapy of rat
glioblastoma using doxorubicin-loaded PLGA nanoparticles
with different stabilizers. PloS One. 2011;6(5):e19121.

108. Calvo P, Gouritin B, Chacun H, Desmaële D, D’angelo J, Noel
J-P, et al. Long-circulating PEGylated polycyanoacrylate nano-
particles as new drug carrier for brain delivery. Pharm Res.
2001;18(8):1157‐1166.

109. Gref R, Minamitake Y, Peracchia MT, Trebetskoy V, Torchilin
V, Langer R. Biodegradable long-circulating polymeric nano-
spheres. Science. 1994;263(5153):1600‐1604.

110. Bazile D, Prud’homme C, Bassoullet MT, Marlard M,
Spenlehauer G, Veillard M. Stealth Me. PEG–PLA nanoparticles
avoid uptake by the mononuclear phagocytes system. J Pharm
Sci. 1995;84(4):493‐498.

111. Kreuter J, Gelperina S. Use of nanoparticles for cerebral cancer.
Tumori. 2008;94(2):271.

112. Ambruosi A, Yamamoto H, Kreuter J. Body distribution of poly-
sorbate–80 and doxorubicin-loaded [14C] poly (butyl cyanoacry-
late) nanoparticles after IV administration in rats. J Drug Target.
2005;13(10):535‐542.

113. Ambruosi A, Khalansky AS, Yamamoto H, Gelperina SE,
Begley DJ, Kreuter J. Biodistribution of polysorbate 80-coated
doxorubicin-loaded [14C]-poly (butyl cyanoacrylate) nanoparti-
cles after intravenous administration to glioblastoma-bearing
rats. J Drug Target. 2006;14(2):97‐105.

114. Brigger I, Morizet J, Laudani L, Aubert G, Appel M, Velasco V,
et al. Negative preclinical results with stealth® nanospheres-
encapsulated doxorubicin in an orthotopic murine brain tumor
model. J Control Release. 2004;100(1):29‐40.

115. O’donnell A, Moollan A, Baneham S, Ozgul M, Pabari RM, Cox
D, et al. Intranasal and intravenous administration of
octa-arginine modified poly (lactic-co-glycolic acid) nanoparti-
cles facilitates central nervous system delivery of loperamide.
J Pharm Pharmacol. 2015;67(4):525‐536.

116. Wagner S, Zensi A, Wien SL, Tschickardt SE, Maier W, Vogel
T, et al. Uptake mechanism of ApoE-modified nanoparticles on
brain capillary endothelial cells as a blood-brain barrier model.
PloS One. 2012;7(3):e32568.

Mehrabian et al 15



117. Pehlivan SB. Nanotechnology-based drug delivery systems for
targeting, imaging and diagnosis of neurodegenerative diseases.
Pharm Res. 2013;30(10):2499‐2511.

118. Ulbrich K, Knobloch T, Kreuter J. Targeting the insulin receptor:
nanoparticles for drug delivery across the blood–brain barrier
(BBB). J Drug Targeting. 2011;19(2):125‐132.

119. Liu C, Zhao Z, Gao H, Rostami I, You Q, Jia X, et al. Enhanced
blood-brain-barrier penetrability and tumor-targeting efficiency
by peptide-functionalized poly(amidoamine) dendrimer for the
therapy of gliomas. Nanotheranostics. 2019;3(4):311‐330.

120. Zhu Y, Liu C, Pang Z. Dendrimer-based drug delivery systems
for brain targeting. Biomolecules. 2019;9(12):1-29.

121. Liaw K, Zhang F, Mangraviti A, Kannan S, Tyler B, Kannan
RM. Dendrimer size effects on the selective brain tumor targeting
in orthotopic tumor models upon systemic administration.
Bioeng Transl Med. 2020;5(2):e10160.

122. Kaanumalle LS, Ramesh R, Murthy Maddipatla VS,
Nithyanandhan J, Jayaraman N, Ramamurthy V. Dendrimers
as photochemical reaction media. Photochemical behavior of
unimolecular and bimolecular reactions in water-soluble den-
drimers. J Org Chem. 2005;70(13):5062‐5069.

123. Newkome GR, Yao Z, Baker GR, Gupta VK. Micelles. Part
1. Cascade molecules: a new approach to micelles. A
[27]-arborol. J Org Chem. 1985;50(11):2003‐2004.

124. Hermanson G. Bioconjugate Techniques. 2nd edn. Academic
Press; 2008.

125. Zarebkohan A, Najafi F, Moghimi HR, Hemmati M, Deevband
MR, Kazemi B. Synthesis and characterization of a PAMAM
dendrimer nanocarrier functionalized by SRL peptide for tar-
geted gene delivery to the brain. Eur J Pharm Sci: Official J
Eur Federation Pharm Sci. 2015;78:19‐30.

126. He H, Li Y, Jia XR, Du J, Ying X, Lu WL, et al. PEGylated pol-
y(amidoamine) dendrimer-based dual-targeting carrier for treat-
ing brain tumors. Biomaterials. 2011;32(2):478‐487.

127. Huang RQ, Qu YH, Ke WL, Zhu JH, Pei YY, Jiang C. Efficient
gene delivery targeted to the brain using a transferrin-conjugated
polyethyleneglycol-modified polyamidoamine dendrimer.
FASEB J. 2007;21(4):1117‐1125.

128. O’Mahony AM, Godinho BM, Cryan JF, O’Driscoll CM.
Non-viral nanosystems for gene and small interfering RNA
delivery to the central nervous system: formulating the solution.
J Pharm Sci. 2013;102(10):3469‐3484.

129. Ofek P, Fischer W, Calderon M, Haag R, Satchi-Fainaro R. In vivo
delivery of small interfering RNA to tumors and their vasculature by
novel dendritic nanocarriers. FASEB J. 2010;24(9):3122‐3134.

130. Meng J, Agrahari V, Youm I. Advances in targeted drug delivery
approaches for the central nervous system tumors: the inspiration
of nanobiotechnology. J Neuroimm Pharmacol. 2017;12(1):
84‐98.

131. Kesharwani P, Amin MCIM, Giri N, Jain A, Gajbhiye V.
Dendrimers in targeting and delivery of drugs. Nanotechnol-Based
Approaches Target Deliv Drugs Genes. 2017;363.

132. Jain K, Kesharwani P, Gupta U, Jain NK. Dendrimer toxicity:
let’s meet the challenge. Int J Pharm. 2010;394(1-2):122‐142.

133. Zhang P, Hu L, Yin Q, Feng L, Li Y. Transferrin-modified c
[RGDfK]-paclitaxel loaded hybrid micelle for sequential blood-

brain barrier penetration and glioma targeting therapy. Mol
Pharm. 2012;9(6):1590‐1598.

134. Lu L, Zhao X, Fu T, Li K, He Y, Luo Z, et al. An iRGD-conjugated
prodrug micelle with blood-brain-barrier penetrability for anti-
glioma therapy. Biomaterials. 2020;230(119666):1–58.

135. Thotakura N, Parashar P, Raza K. Assessing the pharmacokinet-
ics and toxicology of polymeric micelle conjugated therapeutics.
Expert Opin Drug Metab Toxicol. 2021;17(3):323‐332.

136. Patel MM, Patel BM. Crossing the blood-brain barrier: recent
advances in drug delivery to the brain. CNS Drugs.
2017;31(2):109‐133.

137. Romano E, Netti PA, Torino E. Exosomes in gliomas: biogene-
sis, isolation, and preliminary applications in nanomedicine.
Pharm (Basel). 2020;13(10).

138. Rufino-Ramos D, Albuquerque PR, Carmona V, Perfeito R,
Nobre RJ, de Almeida L P. Extracellular vesicles: novel promis-
ing delivery systems for therapy of brain diseases. J Control
Release. 2017;262:247‐258.

139. Elliott RO, He M. Unlocking the power of exosomes for cross-
ing biological barriers in drug delivery. Pharmaceutics.
2021;13(1):1-20.

140. Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L.
Erythrocyte membrane-camouflaged polymeric nanoparticles as
a biomimetic delivery platform. Proc Natl Acad Sci U S A.
2011;108(27):10980‐10985.

141. Kalani A, Kamat PK, Chaturvedi P, Tyagi SC, Tyagi N.
Curcumin-primed exosomes mitigate endothelial cell dysfunc-
tion during hyperhomocysteinemia. Life Sci. 2014;107(1-2):1‐7.

142. Fernandes M, Lopes I, Magalhães L, Sárria MP, Machado R, Sousa
JC, et al. Novel concept of exosome-like liposomes for the treatment
of Alzheimer’s disease. J Control Release. 2021;336:130‐143.

143. Morad G, Carman CV, Hagedorn EJ, Perlin JR, Zon LI,
Mustafaoglu N, et al. Tumor-derived extracellular vesicles
breach the intact blood-brain barrier via transcytosis. ACS
Nano. 2019;13(12):13853‐13865.

144. Hadla M, Palazzolo S, Corona G, Caligiuri I, Canzonieri V,
Toffoli G, et al. Exosomes increase the therapeutic index of dox-
orubicin in breast and ovarian cancer mouse models.
Nanomedicine (Lond). 2016;11(18):2431‐2441.

145. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, WoodMJA.
Delivery of siRNA to the mouse brain by systemic injection of
targeted exosomes. Nat Biotechnol. 2011;29(4):341‐345.

146. Zhang Z, Guo X, Guo X, Yu R, Qian M, Wang S, et al.
MicroRNA-29a-3p delivery via exosomes derived from engi-
neered human mesenchymal stem cells exerts tumour suppres-
sive effects by inhibiting migration and vasculogenic mimicry
in glioma. Aging (Albany NY). 2021;13(4):5055‐5068.

147. Jiang J, Lu J, Wang X, Sun B, Liu X, Ding Y, et al. Glioma stem
cell-derived exosomal miR-944 reduces glioma growth and
angiogenesis by inhibiting AKT/ERK signaling. Aging (Albany
NY). 2021;13(15):19243‐19259.

148. Yang T, Fogarty B, LaForge B, Aziz S, Pham T, Lai L, et al.
Delivery of small interfering RNA to inhibit vascular endothelial
growth factor in zebrafish using natural brain endothelia cell-
secreted exosome nanovesicles for the treatment of brain
cancer. AAPS J. 2017;19(2):475‐486.

16 Technology in Cancer Research & Treatment



149. Borna H, Imani S, Iman M, Azimzadeh Jamalkandi S.
Therapeutic face of RNAi: in vivo challenges. Expert Opin
Biol Ther. 2015;15(2):269‐285.

150. Busatto S, Morad G, Guo P, Moses MA. The role of extracellular
vesicles in the physiological and pathological regulation of the
blood-brain barrier. FASEB Bioadv. 2021;3(9):665‐675.

151. Chen CC, Liu L, Ma F, Wong CW, Guo XE, Chacko JV, et al.
Elucidation of exosome migration across the blood-brain
barrier model in vitro. Cell Mol Bioeng. 2016;9(4):509‐529.

152. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M. Systemic
administration of exosomes released from mesenchymal
stromal cells promote functional recovery and neurovascular
plasticity after stroke in rats. J Cereb Blood Flow Metab.
2013;33(11):1711‐1715.

153. Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood
A, et al. Effect of exosomes derived from multipluripotent mes-
enchymal stromal cells on functional recovery and neurovascular
plasticity in rats after traumatic brain injury. J Neurosurg.
2015;122(4):856‐867.

154. Jia G, Han Y, An Y, Ding Y, He C, Wang X, et al. NRP-1 targeted
and cargo-loaded exosomes facilitate simultaneous imaging and
therapy of glioma in vitro and in vivo. Biomaterials.
2018;178:302‐316.

155. Katakowski M, Chopp M. Exosomes as tools to suppress
primary brain tumor. Cell Mol Neurobiol. 2016;36(3):343‐352.

156. Bu N, Wu H, Zhang G, Zhan S, Zhang R, Sun H, et al. Exosomes
from dendritic cells loaded with chaperone-rich cell lysates elicit
a potent T cell immune response against intracranial glioma in
mice. J Mol Neurosci. 2015;56(3):631‐643.

157. Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G. The biogen-
esis and functions of exosomes. Traffic. 2002;3(5):321‐330.

158. Hao S, Bai O, Li F, Yuan J, Laferte S, Xiang J. Mature dendritic
cells pulsed with exosomes stimulate efficient cytotoxic
T-lymphocyte responses and antitumour immunity. Immunology.
2007;120(1):90‐102.

159. Zeng Y, Feng H, Graner MW, Katsanis E. Tumor-derived,
chaperone-rich cell lysate activates dendritic cells and elicits
potent antitumor immunity. Blood. 2003;101(11):4485‐4491.

160. Mulvihill JJ, Cunnane EM, Ross AM, Duskey JT, Tosi G,
Grabrucker AM. Drug delivery across the blood-brain barrier:
recent advances in the use of nanocarriers. Nanomedicine
(Lond). 2020;15(2):205‐214.

161. Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R,
et al. Exosome delivered anticancer drugs across the blood-brain
barrier for brain cancer therapy in Danio Rerio. Pharm Res.
2015;32(6):2003‐2014.

162. Nooshabadi VT, Khanmohammadi M, Shafei S, Banafshe HR,
Malekshahi ZV, Ebrahimi-Barough S, et al. Impact of atorva-
statin loaded exosome as an anti-glioblastoma carrier to induce
apoptosis of U87 cancer cells in 3D culture model. Biochem
Biophys Rep. 2020;23(100792):1-9.

163. Follet J, Rémy L, Hesry V, Simon B, Gillet D, Auvray P, et al.
Adaptation to statins restricts human tumour growth in Nude
mice. BMC Cancer. 2011;11(491):1-8.

164. Vallianou NG, Kostantinou A, Kougias M, Kazazis C. Statins
and cancer. Anticancer Agents Med Chem. 2014;14(5):706-712.

165. Salunkhe S, Basak M, Chitkara D, Mittal A. Surface functional-
ization of exosomes for target-specific delivery and in vivo
imaging & tracking: Strategies and significance. J Control
Release. 2020;326:599‐614.

166. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, bio-
genesis and function. Nat Rev Immunol. 2002;2(8):569‐579.

167. Vogt S, Stadlmayr G, Grillari J, Ruker F, Wozniak-Knopp G.
Engineering of surface proteins in extracellular vesicles for
tissue-specific targeting. Curr Top Biochem Eng. 2019:1-21.

168. Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, et al. A doxor-
ubicin delivery platform using engineered natural membrane
vesicle exosomes for targeted tumor therapy. Biomaterials.
2014;35(7):2383‐2390.

169. Mentkowski KI, Snitzer JD, Rusnak S, Lang JK. Therapeutic
potential of engineered extracellular vesicles. AAPS J.
2018;20(3):50.

170. Smyth T, Petrova K, Payton NM, Persaud I, Redzic JS, Graner
MW, et al. Surface functionalization of exosomes using click
chemistry. Bioconjugate Chem. 2014;25(10):1777‐1784.

171. Aryani A, Denecke B. Exosomes as a nanodelivery system: a key
to the future of neuromedicine? Mol Neurobiol. 2016;53(2):818‐
834.

172. Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer
therapy: current progress and perspectives. J Hematol Oncol.
2021;14(1):85.

173. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He
Z, et al. Exosomes as drug delivery vehicles for Parkinson’s
disease therapy. J Control Release. 2015;207:18‐30.

174. Pegtel DM, Gould SJ. Exosomes. Ann Rev Biochem.
2019;88:487‐514.

175. Wei W, Ao Q, Wang X, Cao Y, Liu Y, Zheng SG, et al.
Mesenchymal stem cell-derived exosomes: a promising biologi-
cal tool in nanomedicine. Front Pharmacol. 2020;11:590470.

176. Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW,
Schiffelers RM. Exosome mimetics: a novel class of drug deliv-
ery systems. Int J Nanomed. 2012;7:1525‐1541.

177. Silverman JM, Reiner NE. Exosomes and other microvesicles in
infection biology: organelles with unanticipated phenotypes. Cell
Microbiol. 2011;13(1):1‐9.

178. MacDiarmid JA, Brahmbhatt H. Minicells: versatile vectors for
targeted drug or si/shRNA cancer therapy. Curr Opin
Biotechnol. 2011;22(6):909‐916.

179. Parti RP, Biswas D, Wang M, Liao M, Dillon JA. A minD
mutant of enterohemorrhagic E. coli O157:H7 has reduced
adherence to human epithelial cells. Microb Pathog.
2011;51(5):378‐383.

180. Farley MM, Hu B, Margolin W, Minicells LJ. Back in fashion. J
Bacteriol. 2016;198(8):1186‐1195.

181. Jivrajani M, Shrivastava N, Nivsarkar M. A combination
approach for rapid and high yielding purification of bacterial
minicells. J Microbiol Methods. 2013;92(3):340‐343.

182. Lee JY, Choy HE, Lee JH, Kim GJ. Generation of minicells from
an endotoxin-free Gram-positive strain Corynebacterium gluta-
micum. J Microbiol Biotechnol. 2015;25(4):554‐558.

183. van der Meel R, Vehmeijer LJ, Kok RJ, Storm G, van Gaal EV.
Ligand-targeted particulate nanomedicines undergoing clinical

Mehrabian et al 17



evaluation: current status. Adv Drug Deliv Rev. 2013;65(10):
1284-1298.

184. Ali MK, Liu Q, Liang K, Li P, Kong Q. Bacteria-derived mini-
cells for cancer therapy. Cancer Lett. 2020;491:11‐21.

185. MacDiarmid JA, Mugridge NB, Weiss JC, Phillips L, Burn AL,
Paulin RP, et al. Bacterially derived 400 nm particles for encap-
sulation and cancer cell targeting of chemotherapeutics. Cancer
Cell. 2007;11(5):431‐445.

186. Karagiannis ED, Anderson DG. Minicells overcome tumor
drug-resistance. Nat Biotechnol. 2009;27(7):620‐621.

187. Kwan K, Schneider JR, Kobets A, Boockvar JA. Targeting epi-
dermal growth factor receptors in recurrent glioblastoma via a
novel epithelial growth factor receptor-conjugated nanocell dox-
orubicin delivery system. Neurosurgery. 2018;82(3):N23‐N24.

188. Camilla U R, Proenca A, Buetz C, Shi C, Chao L, Bowman Grant
R. Minicells as a damage disposal mechanism in Escherichia
coli. mSphere. 3(5):e00428‐e00518.

189. De Jong WH, Borm PJ. Drug delivery and nanoparticles: appli-
cations and hazards. Int J Nanomed. 2008;3(2):133‐149.

190. KhanMB, Ruggieri R, Jamil E, Tran NL, Gonzalez C, Mugridge N,
et al. Nanocell-mediated delivery of miR-34a counteracts temozolo-
mide resistance in glioblastoma. Mol Med. 2021;27(1):28.

191. Akgül S, Patch AM, D’Souza RCJ, Mukhopadhyay P, Nones K,
Kempe S, et al. Intratumoural heterogeneity underlies distinct
therapy responses and treatment resistance in glioblastoma.
Cancers (Basel). 2019;11(2):1-17.

192. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, Vlachos IS,
Tastsoglou S, Kanellos I, et al. DIANA-TarBase v8: a decade-long
collection of experimentally supported miRNA-gene interactions.
Nucl Acids Res. 2018;46(D1):D239‐D245.

193. MacDiarmid JA, Langova V, Bailey D, Pattison ST, Pattison SL,
Christensen N, et al. Targeted doxorubicin delivery to brain tumors
via minicells: proof of principle using dogs with spontaneously
occurring tumors as a model. PLoS One. 2016;11(4):e0151832.

194. Eskilsson E, Røsland GV, Solecki G, Wang Q, Harter PN, Graziani
G, et al. EGFR heterogeneity and implications for therapeutic inter-
vention in glioblastoma. Neuro Oncol. 2018;20(6):743‐752.

195. van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ,
Clarke S, et al. Safety and activity of microRNA-loaded mini-
cells in patients with recurrent malignant pleural mesothelioma:
a first-in-man, phase 1, open-label, dose-escalation study.
Lancet Oncol. 2017;18(10):1386‐1396.

196. Solomon BJ, Desai J, Rosenthal M, McArthur GA, Pattison ST,
Pattison SL, et al. A first-time-in-human phase I clinical trial of
bispecific antibody-targeted, paclitaxel-packaged bacterial mini-
cells. PLoS One. 2015;10(12):e0144559.

197. Whittle JR, Lickliter JD, Gan HK, Scott AM, Simes J, Solomon
BJ, et al. First in human nanotechnology doxorubicin delivery
system to target epidermal growth factor receptors in recurrent
glioblastoma. J Clin Neurosci. 2015;22(12):1889‐1894.

198. Wang X, Wang X, Bai X, Yan L, Liu T, Wang M, et al.
Nanoparticle ligand exchange and its effects at the nanoparticle-
cell membrane interface. Nano Lett. 2019;19(1):8‐18.

199. Wang X, Cui X, Zhao Y, Chen C. Nano-bio interactions: the
implication of size-dependent biological effects of nanomateri-
als. Sci Chin Life Sci. 2020;63(8):1168‐1182.

200. Flemming A. Minicells deliver lethal load to tumours. Nat Rev
Drug Discov. 2007;6(7):519.

201. Khameneh B, Iranshahy M, Ghandadi M, Ghoochi Atashbeyk D,
Fazly Bazzaz BS, Iranshahi M. Investigation of the antibacterial
activity and efflux pump inhibitory effect of co-loaded piperine and
gentamicin nanoliposomes in methicillin-resistant Staphylococcus
aureus. Drug Dev Ind Pharm. 2015;41(6):989‐994.

202. Moghadas-Sharif N, Fazly Bazzaz BS, Khameneh B,
Malaekeh-Nikouei B. The effect of nanoliposomal formulations
on Staphylococcus epidermidis biofilm. Drug Dev Ind Pharm.
2015;41(3):445‐450.

203. Zahmatkeshan M, Gheybi F, Rezayat SM, Jaafari MR. Improved
drug delivery and therapeutic efficacy of PEgylated liposomal
doxorubicin by targeting anti-HER2 peptide in murine breast
tumor model. Eur J Pharm Sci: Official J Eur Federation
Pharm Sci. 2016;86:125‐135.

204. Agrawal MA, Tripathi DK, Saraf S, Saraf S, Antimisiaris SG,
et al. Recent advancements in liposomes targeting strategies to
cross blood-brain barrier (BBB) for the treatment of
Alzheimer’s disease. J Control Release. 2017;260:61‐77.

205. Sheoran R, Khokra SL, Chawla V, Dureja H. Recent patents, for-
mulation techniques, classification and characterization of lipo-
somes. Recent Pat Nanotechnol. 2019;13(1):17‐27.

206. Papagiannopoulos A, Pippa N, Demetzos C, Pispas S,
Radulescu A. Lamellarity and size distributions in mixed
DPPC/amphiphilic poly(2-oxazoline) gradient copolymer
vesicles and their temperature response. Chem Phys Lipids.
2021;234:105008.

207. Di Muzio M, Millan-Solsona R, Dols-Perez A, Borrell JH,
Fumagalli L, Gomila G. Dielectric properties and lamellarity of
single liposomes measured by in-liquid scanning dielectric
microscopy. J Nanobiotechnol. 2021;19(1):167.

208. Moosavian SA, Abnous K, Badiee A, Jaafari MR. Improvement
in the drug delivery and anti-tumor efficacy of PEGylated liposo-
mal doxorubicin by targeting RNA aptamers in mice bearing
breast tumor model. Colloids Surf B Biointerfaces. 2016;
139:228‐236.

209. Alavizadeh SH, Akhtari J, Badiee A, Golmohammadzadeh S,
Jaafari MR. Improved therapeutic activity of HER2 affibody-
targeted cisplatin liposomes in HER2-expressing breast tumor
models. Expert Opin Drug Deliv. 2016;13(3):325‐336.

210. Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of
PEGylated liposomal doxorubicin: review of animal and
human studies. Clin Pharmacokinet. 2003;42(5):419‐436.

211. Garcia-Garcia E, Andrieux K, Gil S, Couvreur P. Colloidal car-
riers and blood-brain barrier (BBB) translocation: a way to
deliver drugs to the brain? Int J Pharm. 2005;298(2):274‐292.

212. Arabi L, Badiee A, Mosaffa F, Jaafari MR. Targeting CD44
expressing cancer cells with anti-CD44 monoclonal antibody
improves cellular uptake and antitumor efficacy of liposomal
doxorubicin. J Control Release. 2015;220(Pt A):275‐286.

213. Chen X, Yuan M, Zhang Q, Ting Yang Y, Gao H, He Q.
Synergistic combination of doxorubicin and paclitaxel delivered
by blood brain barrier and glioma cells dual targeting liposomes
for chemotherapy of brain glioma. Curr Pharm Biotechnol.
2016;17(7):636‐650.

18 Technology in Cancer Research & Treatment



214. Shi K, Long Y, Xu C, Wang Y, Qiu Y, Yu Q, et al. Liposomes
combined an integrin alphavbeta3-specific vector with
pH-responsible cell-penetrating property for highly effective
antiglioma therapy through the blood-brain barrier. ACS Appl
Mater Interfaces. 2015;7(38):21442‐21454.

215. Du J, Lu WL, Ying X, Liu Y, Du P, Tian W, et al. Dual-targeting
topotecan liposomes modified with tamoxifen and wheat germ
agglutinin significantly improve drug transport across the blood-
brain barrier and survival of brain tumor-bearing animals. Mol
Pharm. 2009;6(3):905‐917.

216. Siegal T, Horowitz A, Gabizon A. Doxorubicin encapsulated in
sterically stabilized liposomes for the treatment of a brain tumor
model: biodistribution and therapeutic efficacy. J Neurosurg.
1995;83(6):1029‐1037.

217. Saito R, Bringas JR, McKnight TR, Wendland MF, Mamot C,
Drummond DC, et al. Distribution of liposomes into brain and
rat brain tumor models by convection-enhanced delivery moni-
tored with magnetic resonance imaging. Cancer Res. 2004;64(7):
2572‐2579.

218. Gilmore JL, Yi X, Quan L, Kabanov AV. Novel nanomaterials for
clinical neuroscience. J Neuroimmune Pharmacol. 2008;3(2):83‐94.

219. Gong W, Wang Z, Liu N, Lin W, Wang X, Xu D, et al.
Improving efficiency of adriamycin crossing blood brain
barrier by combination of thermosensitive liposomes and hyper-
thermia. Biol Pharm Bull. 2011;34(7):1058‐1064.

220. Wang G, Wu B, Li Q, Chen S, Jin X, Liu Y, et al. Active trans-
portation of liposome enhances tumor accumulation, penetration,
and therapeutic efficacy. Small. 2020;16(44):e2004172.

221. Sakurai Y, Kato A, Harashima H. Involvement of caveolin-1-
mediated transcytosis in the intratumoral accumulation of lipo-
somes. Biochem Biophys Res Commun. 2020;525(2):313‐318.

222. Lakkadwala S, Dos Santos Rodrigues B, Sun C, Singh J. Dual
functionalized liposomes for efficient co-delivery of anti-cancer
chemotherapeutics for the treatment of glioblastoma. J Control
Release. 2019;307:247‐260.

223. Gao JQ, Lv Q, Li LM, Tang XJ, Li FZ, Hu YL, et al. Glioma tar-
geting and blood-brain barrier penetration by dual-targeting dox-
orubincin liposomes. Biomaterials. 2013;34(22):5628‐5639.

224. Fukuta T, Asai T, Sato A, Namba M, Yanagida Y, Kikuchi T,
et al. Neuroprotection against cerebral ischemia/reperfusion
injury by intravenous administration of liposomal fasudil. Int J
Pharm. 2016;506(1-2):129‐137.

225. Jain A J. Advances in tumor targeted liposomes. Curr Mol Med.
2018;18(1):44‐57.

226. Park J, Choi Y, Chang H, UmW, Ryu JH, Kwon IC. Alliance with
EPR effect: combined strategies to improve the EPR effect in the
tumor microenvironment. Theranostics. 2019;9(26):8073‐8090.

227. Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade
RK. Employment of enhanced permeability and retention effect
(EPR): nanoparticle-based precision tools for targeting of thera-
peutic and diagnostic agent in cancer. Mater Sci Eng C Mater
Biol Appl. 2019;98:1252‐1276.

228. Shi Y, van der Meel R, Chen X, Lammers T. The EPR effect
and beyond: Strategies to improve tumor targeting and cancer
nanomedicine treatment efficacy. Theranostics. 2020;10(17):
7921‐7924.

229. McDannold N, Vykhodtseva N, Hynynen K. Targeted disruption
of the blood–brain barrier with focused ultrasound: association
with cavitation activity. Phys Med Biol. 2006;51(4):793.

230. Shen Y, Guo J, Chen G, Chin CT, Chen X, Chen J, et al. Delivery
of liposomes with different sizes to mice brain after sonication by
focused ultrasound in the presence of microbubbles. Ultrasound
Med Biol. 2016;42(7):1499‐1511.

231. Yoshida J, Mizuno M. Clinical gene therapy for brain tumors.
Liposomal delivery of anticancer molecule to glioma. J
Neurooncol. 2003;65(3):261‐267.

232. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a
strategy for improving nanoparticle-based drug and gene deliv-
ery. Adv Drug Deliv Rev. 2016;99(Pt A):28‐51.

233. Sugawa N, Ueda S, Nakagawa Y, Nishino H, Nosaka K,
Iwashima A, et al. An antisense EGFR oligodeoxynucleotide
enveloped in lipofectin induces growth inhibition in human
malignant gliomas in vitro. J Neurooncol. 1998;39(3):237‐244.

234. Lu W, Zhang Y, Tan Y-Z, Hu K-L, Jiang X-G, Fu S-K. Cationic
albumin-conjugated PEGylated nanoparticles as novel drug carrier
for brain delivery. J Control Release. 2005;107(3):428‐448.

235. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interac-
tions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41‐53.

236. Triguero D, Buciak J, Pardridge WM. Capillary depletion
method for quantification of blood–brain barrier transport of
circulating peptides and plasma proteins. J Neurochem.
1990;54(6):1882‐1888.

237. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami
N, Hanifehpour Y, et al. Liposome: classification, preparation, and
applications. Nanoscale Res Lett. 2013;8(1):102.

238. Rastgoo M, Hosseinzadeh H, Alavizadeh H, Abbasi A, Ayati Z,
Jaafari MR. Antitumor activity of PEGylated nanoliposomes
containing crocin in mice bearing C26 colon carcinoma. Planta
Med. 2013;79(6):447‐451.

239. Nektar. Available from: http://www.nektar.com/pipeline/rd-
pipeline/onzeald.

240. Jameson GS, Hamm JT, Weiss GJ, Alemany C, Anthony SP,
Basche M, et al. A multicenter, phase I, dose-escalation study
to assess the safety, tolerability and pharmacokinetics of
Etirinotecan Pegol in patients with refractory solid tumors. Clin
Cancer Res. 2012:1201.

241. Available from: https://www.cancer.gov/publications/dictionaries/
cancer-drug?cdrid=586949.

242. Cutler JI, Auyeung E, Mirkin CA. Spherical nucleic acids. J Am
Chem Soc. 2012;134(3):1376‐1391.

243. Kumthekar P, Ko CH, Paunesku T, Dixit K, Sonabend AM,
Bloch O, et al. A first-in-human phase 0 clinical study of RNA
interference-based spherical nucleic acids in patients with recur-
rent glioblastoma. Sci Transl Med. 2021;13:584.

244. Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM,
et al. Spherical nucleic acid nanoparticle conjugates as an
RNAi-based therapy for glioblastoma. Sci Transl Med.
2013;5(209):209ra152.

245. Melamed JR, Ioele SA, Hannum AJ, Ullman VM, Day ES.
Polyethylenimine-spherical nucleic acid nanoparticles against
Gli1 reduce the chemoresistance and stemness of glioblastoma
cells. Mol Pharm. 2018;15(11):5135‐5145.

Mehrabian et al 19

http://www.nektar.com/pipeline/rd-pipeline/onzeald
http://www.nektar.com/pipeline/rd-pipeline/onzeald
http://www.nektar.com/pipeline/rd-pipeline/onzeald
https://www.cancer.gov/publications/dictionaries/cancer-drug?cdrid=586949
https://www.cancer.gov/publications/dictionaries/cancer-drug?cdrid=586949
https://www.cancer.gov/publications/dictionaries/cancer-drug?cdrid=586949


246. Stegh AH, Kim H, Bachoo RM, Forloney KL, Zhang J, Schulze
H, et al. Bcl2L12 inhibits post-mitochondrial apoptosis signaling
in glioblastoma. Genes Dev. 2007;21(1):98‐111.

247. Scorilas A, Kyriakopoulou L, Yousef GM, Ashworth LK,
Kwamie A, Diamandis EP. Molecular cloning, physical
mapping, and expression analysis of a novel gene,
BCL2L12, encoding a proline-rich protein with a highly con-
served BH2 domain of the Bcl-2 family. Genomics.
2001;72(2):217‐221.

248. Kouri FM, Hurley LA, Daniel WL, Day ES, Hua Y, Hao L, et al.
miR-182 integrates apoptosis, growth, and differentiation pro-
grams in glioblastoma. Genes Dev. 2015;29(7):732‐745.

249. Stegh AH, Kesari S, Mahoney JE, Jenq HT, Forloney KL,
Protopopov A, et al. Bcl2L12-mediated inhibition of effector
caspase-3 and caspase-7 via distinct mechanisms in glioblas-
toma. Proc Natl Acad Sci U S A. 2008;105(31):10703‐10708.

250. Stegh AH, Brennan C, Mahoney JA, Forloney KL, Jenq HT,
Luciano JP, et al. Glioma oncoprotein Bcl2L12 inhibits the
p53 tumor suppressor. Genes Dev. 2010;24(19):2194‐2204.

251. NU-0129. Available from: https://www.cancer.gov/publications/
dictionaries/cancer-drug?cdrid=786841.

252. Andrew Brenner M. PhD. Rhenium as a cytotoxic isotope 2015
[Available from: http://www.onclive.com/publications/obtn/
2015/april-2015/liposomal-encapsulation-of-radiotherapeutic-holds-
promise-in-treating-glioblastoma.

253. Hsu C-W, Chang Y-J, Chang C-H, Chen L-C, Lan K-L, Ting G,
et al. Comparative therapeutic efficacy of rhenium-188
radiolabeled-liposome and 5-fluorouracil in LS-174T human
colon carcinoma solid tumor xenografts. Cancer Biotherapy
Radiopharm. 2012;27(8):481‐489.

254. Rhenium nanoliposomes.gov. Available from: https://www.cancer.
gov/publications/dictionaries/cancer-drug?cdrid=751420.

255. Rhenium liposomal. Available from: https://clinicaltrials.gov/ct2/
show/NCT01906385?term=nanoliposome&cond=glioma&rank=1.

256. Gaillard PJ. Case study: to-BBB’s G-Technology, getting the
best from drug-delivery research with industry-academia partner-
ships. Ther Deliv. 2011;2(11):1391‐1394.

257. Gaillard PJ, Appeldoorn CC, Rip J, Dorland R, van der Pol SM,
Kooij G, et al. Enhanced brain delivery of liposomal methylpred-
nisolone improved therapeutic efficacy in a model of neuroin-
flammation. J Control Release. 2012;164(3):364‐369.

258. Greenwood J, Hammarlund-Udenaes M, Jones HC, Stitt AW,
Vandenbroucke RE, Romero IA, et al. Correction to: current
research into brain barriers and the delivery of therapeutics for
neurological diseases: a report on CNS barrier congress
London, UK, 2017. Fluids Barriers CNS. 2018;15(1):3.

259. Hu Y, Gaillard PJ, de Lange ECM, Hammarlund-Udenaes M.
Targeted brain delivery of methotrexate by glutathione
PEGylated liposomes: How can the formulation make a differ-
ence? Eur J Pharm Biopharm. 2019;139:197‐204.

260. Birngruber T, Raml R, Gladdines W, Gatschelhofer C, Gander E,
Ghosh A, et al. Enhanced doxorubicin delivery to the brain
administered through glutathione PEGylated liposomal doxoru-
bicin (2B3-101) as compared with generic Caelyx,(®)/Doxil(®)
—a cerebral open flow microperfusion pilot study. J Pharm
Sci. 2014;103(7):1945‐1948.

261. Hu Y, Rip J, Gaillard PJ, de Lange ECM, Hammarlund-Udenaes
M. The impact of liposomal formulations on the release and brain
delivery of methotrexate: an in vivo microdialysis study.
J Pharm Sci. 2017;106(9):2606‐2613.

262. Gaillard PJ, Appeldoorn CC, Dorland R, van Kregten J, Manca
F, Vugts DJ, et al. Pharmacokinetics, brain delivery, and efficacy
in brain tumor-bearing mice of glutathione PEGylated liposomal
doxorubicin (2B3-101). PloS One. 2014;9(1):e82331.

263. Birngruber T, Raml R, Gladdines W, Gatschelhofer C, Gander E,
Ghosh A, et al. Enhanced doxorubicin delivery to the brain
administered through glutathione PEGylated liposomal doxoru-
bicin (2B3-101) as compared with generic Caelyx,®/Doxil®—a
cerebral open flow microperfusion pilot study. J Pharm Sci.
2014;103(7):1945‐1948.

264. Doxil for glioblastoma. 2009. Available from: https://
clinicaltrials.gov/ct2/show/NCT00944801?term=liposome&cond=
glioma&draw=1&rank=7.

265. Sagnella SM, Trieu J, Brahmbhatt H, MacDiarmid JA,
MacMillan A, Whan RM, et al. Targeted doxorubicin-loaded
bacterially derived nano-cells for the treatment of neuroblastoma.
Mol Cancer Ther. 2018;17(5):1012‐1023.

266. Taylor K, Howard CB, Jones ML, Sedliarou I, MacDiarmid
J, Brahmbhatt H, et al., editors. Nanocell targeting using
engineered bispecific antibodies. MAbs; 2015: Taylor &
Francis.

267. EnGeneIC Delivery Vehicle or EDVTM. Available from: https://
clinicaltrials.gov/ct2/show/NCT02766699?term=liposome&cond=
glioma&draw=2&rank=14.

268. Sagnella SM, Yang L, Stubbs GE, Boslem E, Martino-Echarri E,
Smolarczyk K, et al. Cyto-immuno-therapy for cancer: a pathway
elicited by tumor-targeted, cytotoxic drug-packaged bacterially
derived nanocells. Cancer Cell. 2020;37(3):354‐370.e7.

269. Emens LA, Ascierto PA, Darcy PK, Demaria S, Eggermont
AMM, Redmond WL, et al. Cancer immunotherapy: opportuni-
ties and challenges in the rapidly evolving clinical landscape. Eur
J Cancer. 2017;81:116‐129.

270. Agrahari V, Zhang C, Zhang T, Li W, Gounev TK, Oyler NA,
et al. Hyaluronidase-sensitive nanoparticle templates for trig-
gered release of HIV/AIDS microbicide in vitro. AAPS J.
2014;16(2):181‐193.

271. Youm I, Agrahari V, Murowchick JB, Youan B-BC. Uptake and
cytotoxicity of docetaxel-loaded hyaluronic acid-grafted oily
core nanocapsules in MDA-MB 231 cancer cells. Pharm Res.
2014;31(9):2439‐2452.

272. Zhang T-T, Li W, Meng G,Wang P, LiaoW. Strategies for trans-
porting nanoparticles across the blood–brain barrier. Biomater
Sci. 2016;4(2):219‐229.

273. Hsu JF, Chu SM, Liao CC, Wang CJ, Wang YS, Lai MY, et al.
Nanotechnology and nanocarrier-based drug delivery as the
potential therapeutic strategy for glioblastoma multiforme: an
update. Cancers (Basel). 2021;13(2):1–22.

274. Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate
systems for drug delivery. Nat Rev Drug Discov. 2014;13(11):813.

275. Qin C, Zhang C, Zhu F, Xu F, Chen SY, Zhang P, et al.
Therapeutic target database update 2014: a resource for targeted
therapeutics. Nucl Acids Res. 2013;42(D1):D1118‐D1123.

20 Technology in Cancer Research & Treatment

https://www.cancer.gov/publications/dictionaries/cancer-drug?cdrid=786841
https://www.cancer.gov/publications/dictionaries/cancer-drug?cdrid=786841
https://www.cancer.gov/publications/dictionaries/cancer-drug?cdrid=786841
http://www.onclive.com/publications/obtn/2015/april-2015/liposomal-encapsulation-of-radiotherapeutic-holds-promise-in-treating-glioblastoma
http://www.onclive.com/publications/obtn/2015/april-2015/liposomal-encapsulation-of-radiotherapeutic-holds-promise-in-treating-glioblastoma
http://www.onclive.com/publications/obtn/2015/april-2015/liposomal-encapsulation-of-radiotherapeutic-holds-promise-in-treating-glioblastoma
http://www.onclive.com/publications/obtn/2015/april-2015/liposomal-encapsulation-of-radiotherapeutic-holds-promise-in-treating-glioblastoma
https://www.cancer.gov/publications/dictionaries/cancer-drug?cdrid=751420
https://www.cancer.gov/publications/dictionaries/cancer-drug?cdrid=751420
https://www.cancer.gov/publications/dictionaries/cancer-drug?cdrid=751420
https://clinicaltrials.gov/ct2/show/NCT01906385?term=nanoliposome%26cond=glioma%26rank=1
https://clinicaltrials.gov/ct2/show/NCT01906385?term=nanoliposome%26cond=glioma%26rank=1
https://clinicaltrials.gov/ct2/show/NCT01906385?term=nanoliposome%26cond=glioma%26rank=1
https://clinicaltrials.gov/ct2/show/NCT00944801?term=liposome%26cond=glioma%26draw=1%26rank=7
https://clinicaltrials.gov/ct2/show/NCT00944801?term=liposome%26cond=glioma%26draw=1%26rank=7
https://clinicaltrials.gov/ct2/show/NCT00944801?term=liposome%26cond=glioma%26draw=1%26rank=7
https://clinicaltrials.gov/ct2/show/NCT00944801?term=liposome%26cond=glioma%26draw=1%26rank=7
https://clinicaltrials.gov/ct2/show/NCT02766699?term=liposome%26cond=glioma%26draw=2%26rank=14
https://clinicaltrials.gov/ct2/show/NCT02766699?term=liposome%26cond=glioma%26draw=2%26rank=14
https://clinicaltrials.gov/ct2/show/NCT02766699?term=liposome%26cond=glioma%26draw=2%26rank=14
https://clinicaltrials.gov/ct2/show/NCT02766699?term=liposome%26cond=glioma%26draw=2%26rank=14


276. Liu R, Liang S, Jiang C, Wang X, Gong Y, Li P, et al.
Paramagnetic, pH and temperature-sensitive polymeric particles
for anticancer drug delivery and brain tumor magnetic resonance
imaging. RSC Adv. 2015;5(106):87512‐87520.

277. He H, David A, Chertok B, Cole A, Lee K, Zhang J, et al.
Magnetic nanoparticles for tumor imaging and therapy: a so-called
theranostic system. Pharm Res. 2013;30(10):2445‐2458.

278. Cheng R, Meng F, Deng C, Klok H-A, Zhong Z. Dual and multi-
stimuli responsive polymeric nanoparticles for programmed
site-specific drug delivery. Biomaterials. 2013;34(14):3647‐3657.

279. Wilhelm I, Krizbai IA. In vitro models of the blood-brain barrier
for the study of drug delivery to the brain. Mol Pharm.
2014;11(7):1949‐1963.

280. Ferraris C, Cavalli R, Panciani PP, Battaglia L. Overcoming the
blood-brain barrier: successes and challenges in developing
nanoparticle-mediated drug delivery systems for the treatment
of brain tumours. Int J Nanomed. 2020;15:2999‐3022.

281. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interac-
tions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41‐53.

282. Peterson JK, Houghton PJ. Integrating pharmacology and in vivo
cancer models in preclinical and clinical drug development. Eur
J Cancer. 2004;40(6):837‐844.

283. Huszthy PC, Daphu I, Niclou SP, Stieber D, Nigro JM,
Sakariassen P, et al. In vivo models of primary brain tumors: pit-
falls and perspectives. Neuro Oncol. 2012;14(8):979‐993.

284. Kerbel RS. What is the optimal rodent model for anti-tumor drug
testing? Cancer Metastasis Rev. 1998;17(3):301‐304.

285. Aldape K, Brindle KM, Chesler L, Chopra R, Gajjar A, Gilbert
MR, et al. Challenges to curing primary brain tumours. Nat
Rev Clin Oncol. 2019;16(8):509‐520.

286. Lichtor T. Molecular Considerations and Evolving Surgical
Management Issues in the Treatment of Patients with a Brain
Tumor: BoD–Books on Demand; 2015.

287. Louis DN, Perry A, Reifenberger G, von Deimling A,
Figarella-Branger D, Cavenee WK, et al. The 2016 World Health
Organization classification of tumors of the central nervous
system: a summary. Acta Neuropathol. 2016;131(6):803‐820.

288. Stupp R, Hegi ME, Gorlia T, Erridge SC, Perry J, Hong YK,
et al. Cilengitide combined with standard treatment for patients
with newly diagnosed glioblastoma with methylated MGMT
promoter (CENTRIC EORTC 26071-22072 study): a multi-
centre, randomised, open-label, phase 3 trial. Lancet Oncol.
2014;15(10):1100‐1108.

289. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B,
Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant
temozolomide for glioblastoma. N Engl J Med. 2005;352(10):
987‐996.

290. Kurian KM, Jenkinson MD, Brennan PM, Grant R, Jefferies S,
Rooney AG, et al. Brain tumor research in the United

Kingdom: current perspective and future challenges. A strategy
document from the NCRI Brain Tumor CSG. Neurooncol
Pract. 2018;5(1):10‐17.

291. Schmidt-Hansen M, Berendse S, Hamilton W. Symptomatic
diagnosis of cancer of the brain and central nervous system in
primary care: a systematic review. Fam Pract. 2015;32(6):618‐
623.

292. Brown TJ, Brennan MC, Li M, Church EW, Brandmeir NJ,
Rakszawski KL, et al. Association of the extent of resection
with survival in glioblastoma: a systematic review and meta-
analysis. JAMA Oncol. 2016;2(11):1460‐1469.

293. Kim D, Kim J, Park YI, Lee N, Hyeon T. Recent development of
inorganic nanoparticles for biomedical imaging. ACS Cent Sci.
2018;4(3):324‐336.

294. Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles
for drug delivery: pharmacological and biopharmaceutical
aspects. Front Mol Biosci. 2020;7:587997.

295. Duong VA, Nguyen TT, Maeng HJ. Preparation of solid lipid
nanoparticles and nanostructured lipid carriers for drug delivery
and the effects of preparation parameters of solvent injection
method. Molecules. 2020;25(20):1-36.

296. Essa ML, El-Kemary MA, Ebrahem Saied EM, Leporatti S,
Nemany Hanafy NA. Nano targeted therapies made of lipids
and polymers have promising strategy for the treatment of lung
cancer. Materials (Basel). 2020;13(23):1-23.

297. Ma Q, Zhao Y, Guan Q, Zhao Y, Zhang H, Ding Z, et al.
Amphiphilic block polymer-based self-assembly of high
payload nanoparticles for efficient combinatorial chemo-
photodynamic therapy. Drug Deliv. 2020;27(1):1656‐1666.

298. Pillay NS, Daniels A, Singh M. Folate-targeted transgenic activ-
ity of dendrimer functionalized selenium nanoparticles in vitro.
Int J Mol Sci. 2020;21(19):1-17.

299. Pooja D, Srinivasa Reddy T, Kulhari H, Kadari A, Adams DJ,
Bansal V, et al. N-acetyl-d-glucosamine-conjugated PAMAM
dendrimers as dual receptor-targeting nanocarriers for anti-
cancer drug delivery. Eur J Pharm Biopharm. 2020;154:
377‐386.

300. Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE.
Polymeric micelles in anticancer therapy: targeting, imaging and
triggered release. Pharm Res. 2010;27(12):2569‐2589.

301. Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT,
Raychowdhury R, et al. Single-cell transcriptomics reveals bimo-
dality in expression and splicing in immune cells. Nature.
2013;498(7453):236‐240.

302. Darban S A, Nikoofal-Sahlabadi S, Amiri N, Kiamanesh N,
Mehrabian A, Zendehbad B, et al. Targeting the leptin receptor:
to evaluate therapeutic efficacy and anti-tumor effects of Doxil,
in vitro and in vivo in mice bearing C26 colon carcinoma
tumor. Colloids Surf B Biointerfaces. 2018;164:107‐115.

Mehrabian et al 21


	 Introduction
	 Blood-Brain Barrier
	 Nanotechnology Approaches to Overcome Brain Drug Delivery Challenges
	 Nanotechnology Platforms for Brain Cancer Drug Delivery
	 Inorganic Nanomaterials
	 Solid Lipid Nanoparticles (SLNs)
	 Polymeric Nanoparticles
	 Dendrimers
	 Micelles
	 Exosomes
	 Minicells
	 Liposomes

	 Nanotechnology Clinical Approaches for Brain Cancer Drug Delivery
	 ONZEALD™
	 NU-0129
	 Liposomal Rhenium-186 (186Re)
	 2B3-101
	 PEGylated Liposomal Dox (Doxil®)
	 EGFR (V)-EDV-Dox


	 Discussion
	 Concluding Remarks, and Future Perspectives
	 References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


