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Abstract

Skin biopsy gene expression was analyzed by DNA microarray from 13 dSSc patients enrolled in 

an open label study of rituximab, 9 dSSc patients not treated with rituximab, and 9 healthy 

controls. These data recapitulate the patient ‘intrinsic’ gene expression subsets described 

previously including proliferation, inflammatory, and normal-like groups. Serial skin biopsies 

showed consistent and non-progressing gene expression over time, and importantly, the patients in 

the inflammatory subset do not move to the fibroproliferative subset, and vice versa. We were 

unable to detect significant differences in gene expression before and after rituximab treatment, 

consistent with an apparent lack of clinical response. Serial biopsies from each patient stayed 

within the same gene expression subset regardless of treatment regimen or the time point at which 

they were taken. Collectively, these data emphasize the heterogeneous nature of SSc and 

demonstrate that the intrinsic subsets are an inherent, reproducible and stable feature of the disease 

that is independent of disease duration. Moreover, these data have fundamental importance for the 

future development of personalized therapy for SSc; drugs targeting inflammation are likely to 

benefit those patients with an inflammatory signature, whereas drugs targeting fibrosis are likely 

to benefit those with a fibroproliferative signature.

INTRODUCTION

Systemic sclerosis (SSc) is a multi-system autoimmune disorder with a hallmark of skin 

fibrosis and thickening along with significant internal organ involvement (Mayes, 2003). 

SSc has historically been divided into limited and diffuse disease based on the extent of skin 

involvement, with limited cutaneous SSc (lSSc) involving skin restricted to the regions 

below the elbows, knees and face, and diffuse cutaneous SSc (dSSc) including more 
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proximal skin. The degree of skin involvement has a direct correlation with SSc prognosis 

and internal organ complications (Barnett et al., 1988; Scussel-Lonzetti et al., 2002). 

However, within dSSc and lSSc, there is a heterogeneous range of skin and internal organ 

involvement. Approaches that objectively quantify disease heterogeneity and predict internal 

organ involvement are critically needed.

Previous genome-wide gene expression studies in SSc skin identified disease specific gene 

expression signatures in both lesional and non-lesional skin biopsies that are distinct from 

those found in healthy controls (Gardner et al., 2006; Milano et al., 2008; Whitfield et al., 

2003). In addition, we have shown that distinct gene expression signatures divide SSc 

patients into ‘intrinsic subsets’, capturing the clinical heterogeneity of limited versus diffuse 

SSc, but extending this heterogeneity by revealing that patients with dSSc fall into several 

different subsets based on gene expression in skin (Milano et al., 2008). These results 

suggested that distinct pathogenic mechanisms may drive disease in different patients or at 

different stages of the disease. We previously identified four intrinsic gene expression 

subsets: a ‘diffuse-proliferation’ group comprised completely of patients with dSSc, 

showing increased expression of genes associated with the cell proliferation that could be 

further subdivided into two groups ‘diffuse1’ and ‘diffuse2’; an ‘inflammatory’ group 

comprised of dSSc, lSSc and morphea samples, showing increased expression of genes 

associated with inflammation; a ‘limited’ group comprised primarily of patients with lSSc; 

and the ‘normal-like’ group of dSSc and lSSc patients, showing gene expression similar to 

healthy controls. A weak relationship was found between disease duration and these intrinsic 

subsets, suggesting that they might reflect evolution of the disease process rather than 

biologically distinct pathogenic processes.

Here we recapitulate the intrinsic subsets, show these subsets are stable over time, and that 

treatment with rituximab fails to alter skin gene expression. These data illustrate that 

patients with an inflammatory signature do not go on to develop a fibroproliferative 

signature, suggesting a possible explanation why, in the past, broad spectrum anti-

inflammatory agents may not have worked in SSc. It also indicates that different pathogenic 

mechanisms drive disease pathogenesis within phenotypically similar patients with dSSc 

and that this heterogeneity can be consistently and reproducibly detected by analyzing skin 

gene expression, having broad implications for the future development of therapies for SSc.

RESULTS

dSSc skin biopsies can reproducibly be divided into ‘intrinsic’ gene expression subsets

We analyzed skin biopsies from dSSc patients for gene expression changes indicative of 

patient specific heterogeneity. Gene expression was measured in 60 skin biopsies from 22 

patients with dSSc and 9 healthy controls (Supplemental Table 1). A total of 89 microarrays 

were hybridized, which included 29 technical replicates. All patients were biopsied at a 

lesional forearm site, a subset were also biopsied at a non-lesional back site. Clinical data 

can be found in Supplemental Table 2.

Skin biopsies from dSSc patients were analyzed before and after treatment with rituximab 

for gene expression changes. Consistent with the lack of clinical response (Lafyatis et al., 
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2009), we did not find a significant change in gene expression associated with rituximab 

treatment. Instead, gene expression was nearly identical between serial biopsies of patients 

before and after treatment (see Supplemental Material; Supplemental Data File S1; 

Supplemental Figure S2).

We previously selected a set of ‘intrinsic’ genes that showed consistent non-changing gene 

expression between the lesional forearm and non-lesional back biopsies, but showed the 

largest changes between different patients (Milano et al. 2008), allowing us to compare 

differences between patients rather than between lesional/non-lesional biopsies. This 

resulted in the identification of patient subsets based on gene expression. These groups were 

labeled fibroproliferative, inflammatory, limited and normal-like based on the biological 

gene expression programs that predominated in each subset. We used the same strategy to 

classify patients in this independent cohort of patient. Hierarchical clustering using 2377 

intrinsic genes (FDR 0.4%) recapitulated the major intrinsic subsets including the 

Fibroproliferative (Diffuse 1 and 2), Inflammatory, and Normal-like groups (Figure 1A and 

2).

Patient biopsies taken at different time points show similar patterns of gene expression

We carried out a second analysis to specifically explore whether patients showed significant 

alterations in gene expression subset over time (intrinsic-by-patient analysis). Genes were 

selected that showed the most consistent expression at a single time point for each patient, 

but had the most diverse expression between time points (1888 genes, FDR of 1.58%). 

Organizing the samples by hierarchical clustering shows that serial biopsies from 13 of 14 

patients group together, even though this analysis emphasizes differences between time 

points (Figure 1B, Supplemental Figure S1), indicating that serial biopsies are more similar 

to each other than to any other samples over the 6 months to 2 years analyzed. The 

dendrograms for the intrinsic by time point and intrinsic by patient analysis are remarkably 

similar confirming that gene expression varies little across time (Figure 1).

Distinct pathways are associated with each intrinsic gene expression group

Distinct sets of genes were associated with each subset that corresponded to specific 

biological processes in the skin, represented bv GO biological processes ((Milano et al.

2008), Figure 2; Supplemental Data file S3). Genes associated with the inflammatory group 

are enriched for the GO biological processes of immune system response and inflammatory 

response (p ≤ 0.001, DAVID analysis; Figure 2D and E) and include interferon-induced 

genes such IFIT1, IFIT2, OAS3. This group of genes is also enriched for the GO biological 

processes of vasculature development (p ≤ .01) including the genes vascular endothelial 

growth factor C (VEGFC) and endoglin (ENG), as well as genes associated with fibrosis 

(COL6A3, COL6A1, COL5A2, COL5A1, COL1A1, COL1A2), Collagen Oligomeric 

Matrix Protein (COMP), matrix metalloproteinase 9, (MMP9) (Jimenez et al., 1996; Liu and 

Zhang, 2008; Ramirez et al., 2006; Varga and Jimenez, 1995).

Two groups of dSSc patients showed increased expression of the proliferation signature 

indicative of dividing cells (Figure 2G) and low expression of the inflammatory signature 

(Figure 2D), labeled diffuse 1 (blue) and diffuse 2 (red, showing a more prominent 
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proliferation signature)(Whitfield et al., 2002). Genes associated with this subset are 

enriched for the GO biological processes of mitosis, m-phase of the mitotic cell cycle, 

chromosome segregation (p ≤ 0.001), and DNA metabolic process (p ≤ 0.05). These include 

the cell cycle-regulators CDCA8, CDC2, the kinesins KIF2C, KIF11, and cyclins CCNB2 

and CCNB1.

Pathways more prominent in this study than seen previously include fatty acid metabolism 

(Milano et al.2008), with increased expression in the normal-like and diffuse 1 subsets 

(Figure 2C). Enriched GO Biological processes included lipid metabolism and fatty acid 

metabolism (p ≤ .001) include the peroxisome proliferation activated receptor gamma 

(PPAR-γ) coactivator alpha 1 gene. A group of genes with related function, but a different 

expression pattern centers on PPAR-γ gene expression (Figure 2F) (Wei et al.2010). Genes 

within this PPAR-γ pathway related group include several PPAR-γ target genes: CD36, 

(Huang et al., 2004), lipoprotein lipase (LPL) (Schoonjans et al., 1996), stearoyl-CoA 

desaturase (SCD) (Vondrichova et al., 2007), and Catalase (CAT) (Girnun et al., 2002).

We summarized the differentially regulated biological pathways by averaging the genes 

associated with each (Supplemental Material; Supplemental Figure S3-S4). We observe an 

increase in pathways associated with immune system activation (Supp. Fig. S3A) and an 

increase in gene expression associated with B cells, CD8+ T cells, leukocytes, macrophages 

and IFN treated keratinocytes and fibroblasts (Supp. Fig. S3B). The diffuse 2 subset showed 

an increase in cell cycle-related processes, decreases in cholesterol, steroid and fatty acid 

metabolism, as well as enrichment of genes associated with activated PBMCs, TNFalpha 

treated keratinocytes, T cells and dendritic cells (Supp. Fig. S3A–B). The normal-like and 

diffuse 1 group showed a decrease in immune activation and increases in lipid metabolism.

Intrinsic gene expression groups are stable over time

Two results from this study suggest the intrinsic subsets are not dependent on disease 

duration. The four major intrinsic subsets identified in our previous study, which had 

variable and longer disease duration (Milano et al.2008) were also found in this study 

cohort, all of these patients having early stage disease (Supplemental Figure S5A). If the 

subsets were dependent on disease duration then we would expect a skewing toward the 

early subset in these data. In addition, there is no significant difference in disease duration 

between subsets measured here (Supplemental Figure S5B). Collectively, these findings 

indicate that gene expression subsets are an inherent feature of the clinical dSSc phenotype 

and that this feature is independent of disease duration.

Despite the consistent gene expression, MRSS did change in patients that provide 

longitudinal biopsies (Supplemental Figure S6). Seven of the 15 patients showed increases 

in skin score, two patients (RIT7 and RIT14) showed a decrease and the remaining six 

showed little change. In all cases, patients maintained a stable pattern of gene expression. 

The range of MRSS for patients in this dataset has a slightly broader distribution than the 

skin scores in Milano et al. (Supplemental Figure S5C). When lSSc patients are excluded, 

the MRSS of proliferative and inflammatory groups though broader in distributions are 

otherwise similar to our past study (Milano et al.2008) (Supplemental Figure S5C-D). The 

inflammatory group has the widest range of MRSS scores, while the normal-like group 
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consistently shows lower MRSS scores in both datasets. Autoantibodies did not show a 

significant association with intrinsic subset (Supplemental Table 2). One Diffuse 1 patient 

was anti-scl70 positive (1/4; p=0.52, Fisher’s Exact Test), two inflammatory patients were 

anti-RNA Polymerase III positive (2/7; p=0.12), and three unclassified patients were anti-

scl-70 positive (2/3; p=0.051) and anti-centromere positive (1/3; p=0.16) positive. Diffuse 2 

patients were negative for all three measured autoantibodies (p=0.52).

Independent validation by Immunohistochemistry

To validate the mRNA expression, we analyzed proteins for COMP and IFITM3 in 

representative biopsies spanning the intrinsic subsets. Both showed highest expression in the 

inflammatory subset consistent with gene expression data (Figure 2D, Supplemental Figure 

S7). IHC staining results paralleled and confirmed the gene expression findings. COMP 

showed highest expression in the inflammatory subset and lowest in the diffuse 2 subset 

(p<0.05) with slightly higher expression in the diffuse 1 subset (Supplemental Figure S7A); 

protein staining was most prevalent in dermal fibroblasts of SSc patients of the 

inflammatory subset (Supplemental Figure S7C and G) while absent in controls 

(Supplemental Figure S7E). IFITM3 showed highest expression in both the inflammatory 

and diffuse 2 subsets (Supplemental Figure S7B) and lowest expression in the diffuse 1 

subset (p<0.05) with staining around the microvasculature in the skin (Supplemental Figure 

S7D and H). These data confirm and extend the gene expression findings at the protein 

level.

Validation of the 995-gene intrinsic subset gene set

We next determined whether the 995 genes selected in our previous study could stratify the 

cohort of patients described here into the intrinsic subsets (Milano et al.2008) and thus could 

be developed into a classifier for subset stratification. 808 genes that passed basic quality 

filters were used to organize the samples by hierarchical clustering (Figure 3B), showing 

that 26 out of 31 dSSc skin biopsies from different anatomical sites or time points grouped 

together by patient (Figure 3A). The subsets identified previously are similar to those found 

here using the same set of genes ((Milano et al.2008), Figure 3C). The proliferation and 

inflammatory groups in the two datasets are indicated with the diffuse-proliferation groups 

in red and the inflammatory group in purple. Subsets of overlapping genes between the 

groups are indicated. The inflammatory signature is more prominent in the dataset presented 

here, whereas the proliferation signature is more prominent in our previous report (Milano et 

al.2008). Therefore, the original 995 genes can stratify an independent cohort into the 

intrinsic patient subsets.

Surrogate gene biomarkers of MRSS

We previously reported a 177-gene expression signature that could serve as surrogate 

biomarker of MRSS (Milano et al.2008). We refined this by identifying 44 genes that were 

present in the 177-gene signature but also found in the intrinsic by patient analysis (Figure 

2). Organizing the samples using these 44 genes revealed two major subdivisions of 

samples. One included both dSSc patients and healthy controls (Figure 4A, group 1) while 

the other included only dSSc patients (Figure 4A, group 2). Subjects in these groups showed 
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a significant difference in mean MRSS (group 1: mean 17.92, standard deviation 11.61; 

Group 2: mean 25.90, standard deviation 8.52; p = 0.005; Figure 4B).

Gene expression gradients are evident within a gene expression subset

To further power the analysis of SSc skin gene expression across time scales that cannot be 

easily captured with longitudinal biopsies, we combined the gene expression analyses from 

both this and our previous study (Milano et al.2008). The combined dataset includes skin 

biopsies from 39 patients with dSSc, 7 with lSSc, 3 with morphea, 1 patient with 

eosinophilic fasciitis, and skin biopsies from 15 healthy control subjects, totaling 121 

biopsies. After Distance Weighted Discrimination (DWD) adjustment to remove systematic 

differences (Benito et al., 2004), intrinsic analysis was performed, 3551 probes selected 

(FDR 0.07%; Figure 5A), and the combined datsets clustered hierarchically. The two 

datasets recapitulated the major intrinsic subsets (Figure 5A). Gene expression in the 

‘proliferative’ and ‘inflammatory’ groups both showed gradients of gene expression within 

their respective groups (Figure 5A). In the proliferation group the dendrogram split samples 

with high expression of the signature (‘Prolif 1’), and low expression (‘Prolif 2’). Similarly, 

the inflammatory group contained samples with high (‘Inflam 1’) and low (‘Inflam 2’) 

expression of the signature. To determine if the intensity of these signatures were associated 

with disease duration or MRSS, we compared the distributions between these two 

parameters within each group (Figure 6). The ‘Prolif 1’ group had a significantly longer 

disease duration (t-test, p = 0.0027) compared to ‘Prolif 2’ and a trend towards a higher 

MRSS (p < 0.05). In contrast, the ‘Inflam 2’ group, had a higher inflammatory gene 

expression signature, showed a significantly higher average MRSS (t-test, p = 0.016) with 

little difference in disease duration across the subgrouping. Thus, this analysis suggests that 

the gene expression within a group changes intensity with increased disease severity and/or 

duration.

Discussion

SSc is a progressive disease, with skin going through various phases that can begin with 

edema, then progressive fibrosis, and in some cases a skin softening late in the disease. Past 

studies have suggested that SSc skin pathology evolves from inflammatory to fibrotic 

changes over time (Fleischmajer et al., 1978; Fleischmajer et al., 1977; Kraling et al., 1995; 

Roumm et al., 1984). Our molecular analyses suggest that inflammatory changes in the skin 

are not part of an evolving process leading to fibrosis, but rather represent a subset of 

patients, with other patients having significantly less skin inflammation as part of the 

pathologic process. The data presented here indicate that the gene expression subsets are 

stable over time. We show that measuring gene expression of skin biopsies from patients at 

different time points consistently classifies the patients into the same intrinsic subsets. In 

addition, this data taken from a cohort of patients with shorter disease duration compared to 

our previous studies of patients with longer disease duration show the same disease subsets.

Strikingly, although patients do not appear to move between subsets over time, patients 

within inflammatory and particularly proliferative subsets show changes in the intensity of 

the signature associated with disease duration. Similar changes in intensity of gene 
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expression was found in a study of limited SSc patients with and without PAH, suggesting 

that as disease becomes more severe the intensity of the changes increases (Pendergrass et 

al. 2010). Our data is consistent with previous observations that the expression of pro-

fibrotic genes in non-lesional SSc fibroblasts tends to be intermediate between that observed 

in healthy and lesional SSc fibroblasts (Chen et al., 2005). Thus our data suggest that 

different biological processes may underpin dSSc pathogenesis in different patient subsets, 

and that the intensity of these processes change over time. Although we cannot exclude the 

possibility that analysis of serial biopsies over a longer period of time would show patients 

changing subsets, the data here support the notion that a patient could be assigned to a 

specific intrinsic subset early in their disease course. These observations then have the 

potential of suggesting treatments that block the immune response if a patient displays an 

inflammatory signature, or treatments that block fibrosis, if they posses a fibroproliferative 

signature. Thus, as the pathogenic mechanisms underlying intrinsic subsets are identified, 

patient subset identification might permit specific targeting of pathogenic processes. A 

TGFβ–responsive signature appears to drive at least in part pathogenesis in the diffuse-

proliferative subset of patients (Sargent et al. 2010), emphasizing the contribution of this 

cytokine to the phenotype of SSc (Leask, 2009; Varga and Pasche, 2009) while IL-13 

appears to play a key role in the inflammatory subset (Greenblatt et al., 2011).

This dataset recapitulates and validates our originally defined inflammatory, diffuse-

proliferation, and normal-like subsets of SSc patients. The disease duration of the cohort 

analyzed here (< 2 years) is more homogeneous and more typical of when the disease is 

most actively progressing compared to our previous report. Despite these differences, the 

results show reproducibility of patient subsets in a completely new patient population from a 

different clinical center. The reproducibility and stability of these gene expression-based 

subsets confirms that they reflect fundamental underlying pathogenic processes that differ 

between patients in the different subsets, rather than stages in the progressive disease. The 

addition of more serial biopsies covering a larger span of time, coupled with longitudinal 

clinical data, should provide prognostic information for patients in each group.

A subset of patients in this analysis were treated with rituximab, a monoclonal antibody that 

depletes mature B cells. In that open-label trial of rituximab, patients did not show a 

significant change in skin score, pulmonary function or other measures of organ 

involvement, although immunohistochemistry showed depletion of both peripheral and skin 

resident B-cells (Lafyatis et al., 2009). Several other unblinded clinical trials have suggested 

some potential beneficial effect of rituximab on skin and/or lung disease in patients with SSc 

(Bosello et al.; Daoussis et al.; Smith et al.; Wesson et al., 2008). Rituximab may prove to 

have value in SSc, and it is particularly intriguing to consider its potential efficacy in SSc-

associated interstitial lung disease where B cell infiltration is often quite prominent (Lafyatis 

et al., 2007). However our studies here are consistent with our clinical trial results 

suggesting no or modest effect on skin disease. We therefore believe that rituximab is more 

likely to show efficacy for SSc-associated interstitial lung disease and that lung disease 

would be a better target for a large-scale trial of B cell depletion.

Comparing the results of Chung et al. who reported two patients with dSSc that showed a 

response to treatment with imatinib mesylate (Chung et al., 2009), with the results reported 
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here in rituximab-treated patients suggests that when a clinical response is evident, one is 

also likely to find a gene expression response. Thus, gene expression may be useful as a 

surrogate outcome measure and for stratifying likely patient responders in clinical trials. 

Since the patients with an inflammatory signature do not go on to display a fibroproliferative 

signature, and vice versa, it is essential to target patients with a therapy that is appropriate to 

their gene expression signature. Therefore, it will be imperative to identify patient subsets in 

clinical trials as drugs may target only those in a single subset.

MATERIALS AND METHODS

Patient Selection, Biopsy Processing and Microarray hybridization

All study participants gave informed consent under Boston University Medical Center 

Institutional Review Board an approved protocol. Forearm lesional skin, and for a subset of 

patients, non-lesional back skin were collected by punch biopsies (3-6 mm) from 13 patients 

enrolled in the rituximab study (Lafyatis et al., 2009), as well as from 9 additional patients 

with early dSSc (less than 1.5 years from diagnosis). A total of 60 skin biopsies were 

collected from 22 patients with dSSc and 9 healthy controls (Supplemental Tables 1 and 2). 

RNA purification and microarray hybridization was carried out essentially as described 

(Milano et al.2008). Detailed methodology is provided in supplemental text.

Bioinformatic and Statistical analyses

Intrinsic gene analysis was carried out as previously described (Supplemental material; 

(Milano et al.2008)). Gene expression data was organized by average linkage hierarchically 

clustering using Cluster 3.0 and visualized using Java TreeView. Significance of clustering 

was determined by Statistical Significance of Clustering (SigClust)(Liu et al., 2008). 

Enriched GO biological processes were determined using The Database for Annotation, 

Visualization, and Integrated Discovery (DAVID) (Huang da et al., 2007)(Supplementary 

DataFile S5). Module maps were created with Genomica. Correlation between gene 

expression and clinical parameters were calculated using Matlab. Statistics were done using 

R. Distance Weighted Discrimination (DWD) was performed utilizing the java 

implementation of DWD analysis (Benito et al., 2004). Gene expression data from this study 

is available from GEO (accession number GSE32413).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Gene expression over time in SSc Skin
Shown are the hierarchical clustering dendrograms of the ‘intrinsic by patient’ (A) and 

‘intrinsic by time point’ analyses (B). Dendrogram branches are colored by subtype: normal-

like (green), inflammatory (purple), diffuse 1 (blue) and diffuse 2 (red) represent the diffuse-

proliferation group. Statistically significant branches are indicated by an asterisk (Black *, p 

≤ 0.05) and (red *, p ≤ 0.01). Black bars below the sample identifiers indicate arrays from 

skin biopsies from the same patient that clustered together, yellow bars below the identifiers 

identify arrays that split. Black arrows connect longitudinal samples. Overlaid between the 

two dendrograms are shaded bars indicating arrays that changed intrinsic subset between the 

two analyses.
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Figure 2. Recapitulation of the intrinsic subsets
2377 genes were selected from 89 arrays (31 individuals) by ‘intrinsic by patient’ analysis. 

A. Hierarchical clustering dendrogram shows the normal-like (green branches), 

inflammatory (purple), and diffuse-proliferation groups (diffuse 1 (blue) and diffuse 2 (red)). 

Significance of clustering was determined by SigClust (p ≤ 0.05, black asterisk; p ≤ 0.01, 

red asterisk). Healthy control identifiers are green and dSSc are black. RIT indicates samples 

in the rituximab study. Black bars indicate patient samples that clustered together, the 

yellow bar indicates patient RIT 3 that did not cluster. B. Heat map of genes and samples 

clustered hierarchically. C. Fatty-acid synthesis genes. D and E. inflammatory and collagen 

genes. F. PPAR-γ genes. G. Proliferation cluster.
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Figure 3. Concordance between datasets
Hierarchical clustering of 808 genes that matched the 995 intrinsic genes from Milano et al 

(187 did not pass basic filtering criteria). A. Hierarchical clustering dendrogram shows 

normal-like (green), inflammatory (purple), diffuse-proliferation (diffuse 1 (blue) and diffuse 

2 (red)), and limited groups (yellow). Significant branches are indicated (p ≤ 0.05, black 

asterisk; p ≤ 0.01, red asterisk). Black bars indicate subject samples that clustered together. 

B. Heat map for the 808 genes. C. Heat map of the original 995 ‘intrinsic’ genes in Milano 

et al. The diffuse-proliferation groups are between the two datasets are connected in red and 

the inflammatory groups connected in purple; genes found in the respective clusters of both 

datasets are indicated.
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Figure 4. Surrogate gene expression biomarkers of MRSS
A. Probes that matched the 177 genes with correlations above |0.5| from Milano were 

extracted from the “by patient” intrinsic analysis resulting in 44 genes. Hierarchical 

clustering results in two groups. Group 1 (red branches) includes dSSc and healthy control 

skin biopsies, while group 2 (black branches) includes primarily dSSc skin biopsies. The 

first row below the dendrogram, bars indicate the intrinsic subset assignment in the ‘by 

patient’ analysis (normal-like, green; diffuse1, blue; diffuse2, red; inflammatory, purple; 

unclassified, black). The second row indicates sample diagnosis, dSSc (red) or healthy 

control (black). B. Comparison of MRSS between the two groups shows a statistically 

significant difference in MRSS (two sample t-test, p = 0.005).

Pendergrass et al. Page 15

J Invest Dermatol. Author manuscript; available in PMC 2012 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Consistent classification and expression gradients within subsets
Data from this study and from Milano were merged to create a single dataset of 164 arrays. 

3551 intrinsic genes were selected (FDR 0.07 %). A. Heat map of 2-dimensional 

hierarchical clustering. B. Clustering dendrogram with branches indicating the intrinsic 

subset each sample was assigned in the independent dataset analyses (proliferative (red), 

inflammatory (purple), limited (yellow), and normal-like (green)). The first row of bars 

below the dendrogram indicates patient diagnosis (dSSc, red; lSSc, yellow; Morphea and 

eosinophilic fasciitis, blue; healthy controls; green). The second row of bars indicates the 

dataset the samples were obtained: Milano, red; this study, black. C. Inflammatory cluster 

D. Proliferation cluster E. Fatty-Acid synthesis cluster.
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Figure 6. Association between disease duration and MRSS within the proliferation and 
inflamatory subsets
Above the dendrogram in Figure S6B, the ‘Prolif 1’, ‘Prolif 2’, ‘Inflam 1’ and ‘Inflam 2’ 

groups are indicated. These are groups showing differences in intensity of expression within 

the proliferative and inflammatory subsets. Differences in disease duration and MRSS 

between ‘Prolif 1’ and ‘Prolif 2’ (A and B), as well as between ‘Inflam 1’ and ‘Inflam 2’ are 

apparent (C and D).
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