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Abstract

Background: Similarities between mice and humans lead to generation of many mouse models of human disease. However,
differences between the species often result in mice being unreliable as preclinical models for human disease. One
difference that might play a role in lowering the predictivity of mice models to human diseases is age. Despite the
important role age plays in medicine, it is too often considered only casually when considering mouse models.

Methods: We developed the mouse-Age Phenotype Knowledgebase, which holds knowledge about age-related
phenotypic patterns in mice. The knowledgebase was extensively populated with literature-derived data using text
mining techniques. We then mapped between ages in humans and mice by comparing the age distribution pattern for 887
diseases in both species.

Results: The knowledgebase was populated with over 9800 instances generated by a text-mining pipeline. The quality of
the data was manually evaluated, and was found to be of high accuracy (estimated precision .86%). Furthermore, grouping
together diseases that share similar age patterns in mice resulted in clusters that mirror actual biomedical knowledge. Using
these data, we matched age distribution patterns in mice and in humans, allowing for age differences by shifting either of
the patterns. High correlation (r2.0.5) was found for 223 diseases. The results clearly indicate a difference in the age
mapping between different diseases: age 30 years in human is mapped to 120 days in mice for Leukemia, but to 295 days
for Anemia. Based on these results we generated a mice-to-human age map which is publicly available.

Conclusions: We present here the development of the mouse-APK, its population with literature-derived data and its use to
map ages in mice and human for 223 diseases. These results present a further step made to bridging the gap between
humans and mice in biomedical research.
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Introduction

The mouse is intensively used as a model organism for the study

of human disease [1]; Mice and humans share a strong similarity

both physiologically and genetically, leading to the generation of

many mouse models of human disease [2]. These are used to

investigate disease mechanisms or to test the effect of intervention.

Mice are often used in preclinical trials and most clinical trials are

only initiated after an intervention was found to benefit mice

models of a human disease.

While a marked likeness does exist between humans and mice,

there are many significant differences. For example, differences

exist between mice and humans in immune system development,

activation, and response to challenge [3]. Such differences may

also be expressed in the manifestation of disease such as multiple

sclerosis which likely involves an autoimmune component [4].

The differences between mice and humans result in mice being

too often unreliable as preclinical models for human disease; there

are many examples of therapies that were found to be effective in a

mouse model but failed in human clinical trials. One such example

is the use of vaccination for the amyloid beta peptide, which was

found to safely lead to clearance of amyloid plaques in an

Alzheimer’s Disease (AD) mouse model. In humans, the same

treatment was found to cause severe and potentially lethal side

effects, such as microhemorrhage and meningoencephalopathy

[5].

One difference that might play a role in lowering the

predictivity of mice models to human diseases is age. Despite the

important role age plays in medicine, it is too often considered

only casually when considering mouse models. Age is an important

factor when considering phenotypic changes in health and disease;

a patient’s age can affect the course and progression of a disease

[6,7] or can be important in determining the correct course of

treatment [8]. As with humans, the age of the mice may play a

critical role in phenotypic manifestations and response to

treatment. For example, in several mouse models for AD, the

formation of amyloid b plaques depends highly on the age of the

examined mouse. In the mutant b-amyloid precursor protein
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(APP), known as the London model for AD, plaques are usually

observed around the age of 12–15 months while in the APP/

London X Presenilin-1 double-transgenic mice the same plaques

are observed at the age of 6 months [9].

The optimal age at which mice are investigated must take into

account considerations such as the burden of keeping the mice

until they age. However, due to the many innate differences

between mice and humans, correctly choosing the appropriate

ages in mice that would correspond to those in humans in the

context of a specific disease is not trivial. Good age mapping can

thus alleviate some of the differences between mice and men, and

improve, if only a little, the predictive power of such models. In

one example, mapping of embryonic ages between humans and

murine models was suggested to be important for the applicability

of the conclusions of radiation studies to humans [10]. We propose

that fewer findings might be lost in translation if more careful

choice of mouse age ranges will be used, specifically optimizing the

age ranges for each disease model.

Recently, we developed the Age-Phenome Knowledge base

(APK) that holds a structured representation of knowledge derived

from the scientific literature and clinical data regarding clinically-

relevant traits that occur at different ages [11]. The database

underpinning the APK contains over 35,000 entries that describe

relationships between age and disease, which were mined from

over 1.5 million PubMed abstracts [12]. Using several analytic

techniques, data stored in the Age-Phenome Knowledge base was

used to examine age-disease relationships. In previous work we

demonstrated that meaningful age groups can be redefined based

on data derived from the bio-medical literature. These new age

ranges are potentially better suited to describe important ages in

the context of patient health. We further showed that the age

groups are context-specific and differ between disease types.

Furthermore, we showed that by grouping diseases together based

on their occurrence in age, new hypotheses regarding links

between diseases can be generated [13].

Here we describe the mouse-APK, an extension of the APK that

stores knowledge about age-related phenotypic patterns in mice.

The knowledgebase holds a structured representation of literature-

derived knowledge about human disease and phenotypes occur-

ring and researched at different ages in mice. Similarly to the

APK, in the mouse-APK diseases and phenotypes are described

using ontologies and standard vocabularies. The knowledgebase

was populated, using computational text-mining tools, with data

derived from over half a million mouse-related PubMed abstracts.

Furthermore, a simple user-friendly query interface is also

provided.

We present here the development of the mouse-APK, its

population with literature-derived data, the analysis of age-related

disease patterns in mice and their comparison to similar patterns in

humans. By capturing age-disease relationships in mice as they are

represented in the research corpus, a further step is made to

bridging the gap between humans and mice in biomedical

research.

Methods

Database
The database developed was conducted in MySQL [14].

Similarly to the APK [11], the mouse-APK database comprises

of three main tables: (i) an evidence table that contains evidence

instances (e.g. text fragments from abstracts) and their description;

(ii) an evidence-age table that contains a description of the age

information found in each evidence instance; and (iii) an evidence-

phenotype table that links phenotypes to each evidence instance.

Knowledgebase interfaces
The mouse-APK data browser was developed in HTML and

PHP and can be found at: http://rubinlab.bgu.ac.il/mouseapk/

mouseDataBrowser/.

The mouse-to-human age-map was developed in HTML and

PHP and can be found at: http://rubinlab.bgu.ac.il/mouseAPK/

H2M/.

Text mining
The same text mining pipeline employed in [12] was used here,

with minor alterations. Briefly, PubMed [15] abstracts were

exported from the NCBI (April 2012) database, using the key word

‘mouse’. Regular expressions were used to find abstracts that

mention a specific age or age range and retrieve the mentioned

age or age range, using a one day resolution to represent age (and

not 1 month as they were captured in APK). Text snippets were

then generated from each abstract (usually 1–3 sentences) that best

captured the most relevant information for each abstract. Text

snippets were mapped to disease names and their synonyms as

defined in the Disease Ontology (DO) [16], as well as to a selected

list of concept names and synonyms from the Unified Medical

Language System (UMLS) [17]. In addition, various mouse strains

are also sought after and gender is assigned to an evidence instance

if only one gender is mentioned in the text snippet. The scripts

used for this purpose and all the necessary accessory files, are

available as File S1, File S2, File S3 and File S4.

Text mining data quality evaluation
Evaluation of the quality of the data captured from PubMed

abstracts and stored in the databases was performed by comparing

the results of the knowledge-mining processes to those achieved by

a human reader.

250 randomly selected abstracts were used to evaluate the task

of finding age-related abstracts. All abstracts were read by a

human evaluator who decided whether an abstract included age-

related information. Abstracts were considered to be age-related

only if a specific age or age range was mentioned (e.g. age 3

months).

To evaluate the performance of the mining pipeline in

extracting a textual snippet from an abstract and mapping to

diseases and additional phenotypes, 137 instances that were linked

to Alzheimer’s disease were reviewed manually. The results of the

human reader in all mining tasks were then compared to the

results obtained by the computational mining pipeline and

measured in terms sensitivity (recall) and specificity (File S5).

Mapping ages by pattern correlation
A quantitative age-disease matrix was generated for the APK by

obtaining, for each disease mapped in the database, a count of the

number of instances mapped to that disease per age. Evidence

linked to inferred age ranges (e.g. ‘‘under age 30’’ or ‘‘over age

22’’) were excluded from this analysis. A similar matrix was

generated using the mouse-APK data, albeit with a one day age

resolution (File S6). Each of the matrices were normalised by

dividing the cells for each disease by the disease total instances

count to control for disease over- or under-representation in the

literature.

For each disease for which data was available from both

matrices (human and mouse) a correlation was sought between the

two data vectors (Figure 1). A script implemented in R calculated

the Pearson correlation between each set of patterns (for each

disease). Correlations were calculated for shifted patterns (vectors),

Mouse Age Phenome Knowledgebase and Mapping Age
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allowing for the human vector to be shifted against the mouse

vector for its entire length (up to a 1028 day shift).

To select the correct resolution for age in mice, a correlation

between disease patterns in mice and matching pattern in humans

was calculated for both one-day resolution and one-week

resolution in mice. The one-day resolution for mouse ages yielded

a higher number of correlating disease patterns with the human-

derived data and was thus selected for the analysis. The full details

of the comparison are provided in File S7.

Hierarchal cluster analysis
A quantitative disease-age matrix was generated as described

above. Using Expander 5 software [18], hierarchal clustering was

conducted (with default parameters, using Pearson correlation as

the similarity statistic). Only diseases which have at least five

database instances were included in the analysis.

Availability
All the material pertaining to this project is freely available at:

http://rubinlab.bgu.ac.il/mouseAPK.

The mouse-APK data browser can be found at: http://

rubinlab.bgu.ac.il/mouseapk/mouseDataBrowser/.

The mouse-to-human age-map can be found at: http://

rubinlab.bgu.ac.il/mouseAPK/H2M/.

Results

The mouse-APK, knowledge mining and quality
As an extension to the APK, we developed the mouse-APK,

aimed at capturing age and disease associations in mice as they are

described in biomedical literature. The mouse-APK was devel-

oped using the same methodology we described for the human

APK [12], but making minor adaptations in order to mine mouse-

related abstracts. Starting with 501,648 abstracts associated with

mice, 11,648 abstracts deemed relevant to age. For these, the

mentioned age was extracted and textual snippets generated from

these abstracts were mapped to terms from the Disease Ontology

and a subset of UMLS concepts using a simple text-matching

method (see Methods). Over 9000 instances generated by the text-

mining pipeline, which mentioned both age and at least one

phenotype, were used to populate the mouse-APK database.

The knowledge-mining process was evaluated by comparing the

text mining results to those obtained by a human reader (Figure 2),

similarly to the text mining evaluation we previously preformed

[12]. The results suggest that the text mining process is accurate

and that the resulting data is of good quality.

We provide users of the mouse-APK with a user-friendly query

engine. Three types of queries can be performed with the search

engine: 1) Search for evidence by age, 2) search for evidence by

phenotype and 3) search for evidence by age and phenotype. The

results can be refined by publication year, curation status,

publication type etc. The query engine is freely available for use

and can be found at: http://rubinlab.bgu.ac.il/mouseAPK/

mouseDataBrowser/.

Grouping diseases according to their age-related pattern
To evaluate the ability of the knowledge stored in the mouse-

APK database to correctly represent and summarize current

knowledge, we conducted cluster analysis of the data, grouping

together diseases that share similar age patterns. Many of the

clusters thus generated demonstrate that these clusters mirror

actual biomedical knowledge. Four representative clusters are

described in detail (Figure 3). The first cluster (Figure 3a) involves

several diseases (such as deafness, hypothyroidism, hyperthyroid-

Figure 1. Schematic illustration of the process for the calculation of correlation. A correlation between the human and mouse disease-age
pattern is calculated allowing for the human pattern (green dashed line) to be shifted against the mouse pattern (pink solid line). The shift which
yields the best correlation is selected as the best shift (3).
doi:10.1371/journal.pone.0081114.g001
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ism and celiac disease) which are investigated in younger mice.

The second cluster (Figure 3b) demonstrates the clustering of

diseases such as diabetes mellitus, obesity, albuminuria and

leukemia which are investigated in slightly older mice than those

represented in cluster 3a. Cluster 3c represents diseases which are

more associated with older ages (such as cataracts, amyloidosis and

Alzheimer’s disease) and are investigated in mice in a much wider

range of ages. The forth cluster (Figure 3d) represents diseases

(pain, lung disease, hyperlipidemia and aneurysms) which, in mice,

are associated with two separate age groups. The complete

clustering results are provided in Figure S1.

Mapping age between humans and mice
Using the mouse-APK, we set out to map the most relevant age

in mice for human diseases. This was achieved by comparing the

age distribution pattern for 887 diseases in both species. These

patterns were matched, allowing for age differences by shifting the

patterns, and considering only distributions for which a high

correlation (defined as r2.0.5, using Pearson correlation) was

found. We successfully matched human-mouse age ranges for 223

diseases with this process. Nine such diseases (chosen for best

demonstrating similarity in patterns) are depicted in Figure 4. It’s

interesting to note that the similarity does not stem from simple

monotonous distributions; rather, each disease has a unique

distribution over age, and the same distribution can be found, after

adjusting for age-shifts, in mice as in humans.

The mice-to-human age map
Once it was established that many diseases share similar

patterns in age between mice and humans, especially when

allowing some shift in age, it was possible to generate a mice-to-

human age map. For each disease, the age shift that resulted in the

highest correlation coefficient was used to generate a disease-

specific age-to-age mapping between mice and humans. For

example, for the disease Diabetes mellitus, the patterns are best

correlated when there is a 99 point shift. The mouse age of 120

days would thus be mapped to the age 21 years in humans.

This age map is available to users at: http://rubinlab.bgu.ac.il/

mouseAPK/H2M/.

Using this tool, a user can enter the human age and disease they

are interested in examining and receive the corresponding mouse

age for that disease. Alternatively, the user can enter a mouse age

and receive the corresponding age in humans for a given disease.

Figure 5 illustrates a snapshot of the Mouse-to-Human Age Map

search tool.

Discussion

We present here the development of the mouse Age Phenome

Knowledgebase and investigate possible approaches to bridging

the gap between mouse models for disease and humans. The

mouse-APK was populated with many instances mined from

PubMed abstracts, using our own text mining pipeline. Consid-

ering the limitations of text mining techniques, such as incomplete

or missing information, our pipeline was evaluated to have an

overall good accuracy. We are also aware that our procedure may

be missing some knowledge, such as that found in the full texts and

not in the abstracts. However, the knowledgebase as it stands holds

nearly 10,000 links between diseases and age, which make it

sufficiently rich to be useful.

Using hierarchal clustering, we show that knowledge stored in

the mouse-APK can be used to capture the current medical

knowledge in at least two examples. In one example (Figure 3b),

we find clustering of diseases that are associated with a wide range

of ages. Several of these diseases, obesity, diabetes mellitus and

hypoglycaemia, are known to be associated regardless of age

[19,20]. In the second example (Figure 3c), many of the so-called

‘‘age-related diseases’’ (such as Alzheimer’s disease, cognitive

disturbance, cataracts, amyloidosis and several types of cancer) are

clustered together, mirroring current medical views [21–24].

There are obvious limitations to the approach we are presenting

here. Perhaps most concerning is its sensitivity to research biases.

Since the mouse-APK is populated with information extracted

from published papers, the results of our analyses are influenced by

the way diseases are investigated in mice and reported in the

literature. However, capturing this knowledge can be very useful

regardless to such limitations; since it includes the description of a

large proportion of the experiments that were ever performed, it

may be used to design novel experiments that would shed light on

under-investigated age ranges. Another limitation of the current

approach is the amalgamation of results obtained from several

different murine models for the same disease, each investigated in

Figure 2. Knowledge mining pipeline. The process of mining the PubMed abstracts can be divided into three main steps: 1) Finding age-related
abstracts, 2) generating a textual snippet which describes the most important information given in the abstract regarding the captured age and 3)
mapping the text snippets to phenotypes from the DO and a subset of the UMLS. Instances for which no phenotypes were found, or were found to
be linked to organisms other than mice were not used to populate the database.
doi:10.1371/journal.pone.0081114.g002
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different ages. While one model may exhibit symptoms at an early

age, a second model for the same disease may only be useful at a

later age. For example, the cluster depicted in Figure 3d illustrates

diseases which are highly associated with two separate age groups,

young and much older mice. This separation of the associations

into two age groupings may be due to different models used to

examine these diseases in different ages. In fact, in the case of

hyperlipidemia, three database instances linking the disease with

young mice (5 to 16 weeks of age) used a mouse model involving

low-density lipoprotein (LDL) receptor-deficient mice [25–27]

Figure 3. Hierarchical clustering results. Four examples of clusters are presented; for each, a phylogram and graphical representation of the
average of corrected number of instances per age and disease is illustrated. Examples were chosen for their diversity in patterns.
doi:10.1371/journal.pone.0081114.g003
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while two instances linking hyperlipidemia with older mice (27 to

64 weeks of age) involved ApoE deficient/knockout mice [28,29].

While multiple models could explain, at least in part, the two age

groupings seen in Figure 3d, for other diseases the effect of

different models is not so clear. For example, in the case of ‘Pain’,

many different models were associated with the phenotype and

could not be clearly divided into two sets (models associated with

young mice and models associated with older mice).

Nevertheless, our success in mapping many disease specific age

distributions to humans and anecdotal examination of the results

suggest that the lion’s share of the data is only marginally affected

by these distortions. If selection and reporting biases would have

dominated the age of mice in experiments, we would have

Figure 4. Correlating disease patterns between mice and humans. Nine of the 223 diseases that showed a correlation (r2. = 0.5) are
illustrated here, chosen for best demonstrating similarity in patterns. The correlation was calculated based on adjusted disease frequencies in both
species (based on data obtained from the corresponding databases, APK or mAPK). The correlation coefficient was calculated after considering every
possible shift in patterns, choosing the shift that yielded the best correlation.. The patterns were splined for illustration purposes only.
doi:10.1371/journal.pone.0081114.g004
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expected much more uniformity in mice ages. Yet we observe for

many diseases a good fit in the overall distribution of ages (as seen in

examples presented in Figure 4, and discussed in more details

below). As for the possible interference from multiple models

differing in typical age, this concern can be further alleviated in

future versions of the mouse-APK, by more precisely capturing

disease-model types and strains.

Our results demonstrate that many diseases share similar

patterns in age between mice and humans. We note that the

similarity extends beyond the major spike; for ALS, for example,

two major spikes are observed for both species, and these are

proportionally separated in time. It is also interesting to note that

each disease required a different age-shift to maximize the

similarity; in the examples brought here, this shift ranged from 3

to 264 days (in mice). This suggests that optimizing mouse models

require the consideration of the optimal age of each disease

separately. Furthermore, for many of diseases examined, signifi-

cant correlation between the mouse and human age-related

patterns could not be found even when allowing a shift in patterns.

This could reflect a lack of age-equivalence between the two

species; it possible that for some diseases, the distribution of

relevant ages is too different from humans to be matched. These

results strengthen the notion that there are many innate

differences between humans and mouse models, although careful

analysis is required to rule out other explanations (such as lack of

data, higher error rates, large background/model induced

variability etc.).

We therefore suggest that the biological gap between humans

and mouse models, which limits our ability to translate findings

between the species, may be bridged, at least to some extent, by

more careful selection of the ages at which the mice are

investigated. Our results thus indicate that using mice models

can be fine-tune by allowing for more flexibility when comparing

data patterns between the two species. Altogether, we believe our

results indicated that it is possible, through knowledge mining, to

propose ways to reduce the differences between mouse models and

human patients.

There are numerous ways to improve the analysis. Perhaps the

most obvious is to mine full papers rather than abstracts (both for

humans and for mice). This requires sophisticated text mining

techniques, as the complexity and shear volume of text are beyond

the scope of the simple tools we have employed here. A second

possible improvement is the search for more complex age

mappings; we have used a very simple technique to detect

similarities, namely shifting patterns relative to the other and

searching for correlation. Using more sophisticated matching

Figure 5. The Mouse-to-Human Age Map search tool. Users can search for a mouse age which correlates to a given human age or vice versa.
doi:10.1371/journal.pone.0081114.g005
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algorithms could reveal additional human-mouse disease associ-

ations which involve more restricted periods. Finally, including

clinical or biological markers in the analysis, such as blood tests or

gene expression profiles, could further help in detecting the fine

age-patterns in each species, allowing more accurate and sensitive

mapping to be achieved.

Conclusions

To conclude, we present here the mouse Age Phenome

Knowledgebase, which holds literature-derived information link-

ing diseases, other phenotypes and ages. Using knowledge from

the mouse-APK along with the equivalent human knowledgebase,

we describe a novel approach aimed at diminishing the

contribution of inadequate age choice to differences between

mouse models and the target human patients. To the best of our

knowledge, this is the first systematic attempt to bridge age

differences between murine models and humans and may lead to

better experimental design and outcome.

Supporting Information

Figure S1 Hierarchical clustering results. The complete results

of hierarchical clustering of diseases based on age-related disease

patterns.

(JPG)

File S1 The text mining script (Miner_mouse.pl) implemented in

Perl. This script was used to mine PubMed abstracts for age

associations.

(ZIP)

File S2 The text mining script (Mapper_mouse.pl) implemented

in Perl. This script was used to map age-related abstracts (found by

Miner_mouse.pl) to terms from the Disease Ontology, a subset of

the UMLS and a list of mouse strains.

(ZIP)

File S3 Disease Ontology parsing script implemented in Perl.

This script generates the Disease Ontology name/synonym file

used by Mapper_mouse.pl.

(ZIP)

File S4 Age, relation and strain terms. This file contains lists of

age and relation terms used as regular expressions by the

Miner_mouse.pl script and a list of mouse strains used by the

Mapper_mouse.pl script.

(ZIP)

File S5 Text mining evaluation results. This file contains the

complete evaluation results of the text mining pipeline.

(XLS)

File S6 Mouse data matrix. A quantitative age-disease matrix

generated by obtaining, for each disease mapped in the database, a

count of the number of instances mapped to that disease per age.

Evidence linked to inferred age ranges was excluded.

(TXT)

File S7 Correlation comparison results. A comparison of one-

day resolution and one-week resolution in disease patterns

correlations between mice and humans.

(XLS)
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