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Abstract: We show that carboxyl-functionalized ionic liquids (ILs) form doubly hydrogen-bonded
cationic dimers (c+=c+) despite the repulsive forces between ions of like charge and competing hy-
drogen bonds between cation and anion (c+–a−). This structural motif as known for formic acid, the
archetype of double hydrogen bridges, is present in the solid state of the IL 1−(carboxymethyl)pyridi-
nium bis(trifluoromethylsulfonyl)imide [HOOC−CH2−py][NTf2]. By means of quantum chemical cal-
culations, we explored different hydrogen-bonded isomers of neutral (HOOC–(CH2)n–py+)2(NTf2

−)2,
single-charged (HOOC–(CH2)n–py+)2(NTf2

−), and double-charged (HOOC– (CH2)n−py+)2 com-
plexes for demonstrating the paradoxical case of “anti-electrostatic” hydrogen bonding (AEHB)
between ions of like charge. For the pure doubly hydrogen-bonded cationic dimers (HOOC–
(CH2)n−py+)2, we report robust kinetic stability for n = 1–4. At n = 5, hydrogen bonding and
dispersion fully compensate for the repulsive Coulomb forces between the cations, allowing for the
quantification of the two equivalent hydrogen bonds and dispersion interaction in the order of 58.5
and 11 kJmol−1, respectively. For n = 6–8, we calculated negative free energies for temperatures below
47, 80, and 114 K, respectively. Quantum cluster equilibrium (QCE) theory predicts the equilibria
between cationic monomers and dimers by considering the intermolecular interaction between the
species, leading to thermodynamic stability at even higher temperatures. We rationalize the H-bond
characteristics of the cationic dimers by the natural bond orbital (NBO) approach, emphasizing the
strong correlation between NBO-based and spectroscopic descriptors, such as NMR chemical shifts
and vibrational frequencies.

Keywords: “anti-electrostatic” hydrogen bonds; carboxyl-functionalized ionic liquids; cationic
dimers; NBO analysis; QCE theory

1. Introduction

The common wisdom that “unlike charges attract, like charges repel” has been re-
cently challenged by Weinhold and Klein [1]. Employing quantum chemistry techniques,
they characterized a surprising new class of hydrogen-bonded complexes between ions
of like charge. Based on ab initio and density functional theory (DFT) calculations, they
claimed that doubly charged complexes [A−HB]2± are manifestations of “anti-electrostatic”
hydrogen bonds (AEHB), wherein the short-range donor−acceptor covalency forces over-
come the powerful long-range electrostatic opposition to be expected between ions of like
charge [2–7]. Potential energy curves for the ion−ion interactions showed shallow local min-
ima, indicating hydrogen bonding between the like-charged ions and kinetic stabilization.
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Searching for robustly bonded high-order AEHB aggregates, Weinhold investigated dou-
bly hydrogen-bonded hydrogen bisulfate dimers (HSO4

−)2 and dihydrogen biphosphate
dimers (H2PO4

−)2 [8]. However, even the extremely strong hydrogen bonds in both anionic
dimers still exhibited positive energies of ∆E = 164.8 kJmol−1 and ∆E = 135.8 kJmol−1 above
the asymptotic limit of infinitely separated ions (∆E = 0). Nevertheless, these dimers are re-
markably metastable with robust binding wells ranging between 13 and 36 kJmol−1, exceed-
ing by ca. 100-fold the corresponding value (0.2 kJmol−1) of the analogous (F−···HCO3

−)
complex [1–3]. The stability of the bisulfate and biphosphate anion dimers was discussed
before by Mata et al., but attributed to “electrophilic−nucleophilic interactions” rather
than charge transfer as an important factor in H-bonding [9–11]. Although these anionic
dimers show robust binding wells that are stabilized by broad potential barriers opposing
“Coulomb explosion” to separated ions, these (a−=a−) complexes are far away from ther-
modynamic stability and not accessible by experiment at any pressure and temperature.
Recently, we suggested to consider anionic dimers (HOOC−(CH2)n−COO−)2 derived from
singly deprotonated dicarboxylic acids, such as adipic acid (n = 4), which is a precursor used
in the production of nylon [12]. These calculated dimers (a−=a−) show thermodynamic
stability for n = 6,7, but ionic liquids including carboxyl-functionalized anions showing
this structural feature could not be synthesized so far.

Inspired by Weinhold’s idea of existing “antielectrostatic” hydrogen bonds (AEHB),
we started to seek experimental evidence of this elusive concept. Until then, like-charge
attraction in “real systems” had been reported mainly for large-scale structures, assemblies,
or stabilizing frameworks [13–21]. Overall attractive interaction between the “likes” in
liquids and solutions required screening effects caused by neighboring counterions, polar
molecules, or generally favorable dielectric environments [22–35]. Our attempts aimed not
only to detect but to control like-charge attraction by varying molecular parameters. The
first cationic clusters we observed accidentally in the infrared (IR) spectra of the ionic liquid
1,1,1−trimethyl−1−(2−hydroxyethyl) ammonium bis(trifluoromethylsulfonyl)imide. The
redshift of the OH vibrational modes in (c+–c+) cationic dimers were comparable to those
known for ethanol dimers [22]. Switching to the IL 1−(2−hydroxyethyl)−3−methylimida-
zolium tetrafluoroborate, we detected well-distinguished vibrational bands representing
hydrogen bonding between cation and anion (c+–a−) and between cations (c+–c+), re-
spectively. Using these polarizable hydroxyl-functionalized imidazolium cations, the
populations strongly shifted towards (c+–c+) cluster formation in particular at low tem-
peratures [23–25]. Considering all favorable properties of possible cations and anions for
enhanced (c+–c+) hydrogen bonding interaction, namely, weakly interacting anions, polariz-
able cations, and sufficiently long hydroxyalkyl chains, we observed reasonable amounts of
cationic clusters already at room temperature for the IL 1−(4−hydroxybutyl-pyridinium)
bis(trifluoromethylsulfonyl)imide [HO−(CH2)4Py][NTf2] [26–35]. For the latter IL, we
characterized the hydrogen bonds between ions of opposite charge (c+−a−) and ions of like
charge (c+–c+) by means of neutron scattering isotopic substitution (NDIS) experiments [28].
We showed that the (c+−c+) H-bond distances R(H···O) and R(O···O) were about 10 pm
shorter than those of the charge-assisted (c+−a−) H-bonds in accordance with stronger
redshifted vibrational bands observed in the IR spectra and smaller deuteron quadrupole
coupling constants detected in NMR solid-state experiments [29–31]. Obviously, hydrogen
bonds between ions of like charge can be stronger than those between ions of opposite
charge despite the repulsion in the first interaction and the attractive Coulomb interaction
in the latter case. Recently, we showed by means of molecular dynamics (MD) simulations
that the hydrogen bonding lifetimes of the (c+–c+) H-bonds can be longer than those of the
(c+–a−) H-bonds for alkyl chain length n = 4–5, reflecting the different interaction strengths
in both types of hydrogen bonds, as indicated by IR and NMR spectroscopy [32–35]. How-
ever, the populations derived from neutron diffraction data showed that only less than 20%
of all hydrogen bonds refer to (c+–c+) bound clusters at room temperature. Moreover, we
only had indirect information about the size of the (c+–c+) cluster species and their specific
binding motifs. This could be clarified in a collaborative work with Mark Johnson’s group
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at Yale University. They developed a cryogenic ion vibrational predissociation (CIVP)
strategy, using supersonic jet ion sources that readily access low temperatures, and yielding
structures for many species, such as hydrated protons, hydrated electrons, hydroxide ions,
but also charged clusters of ionic liquids [36–39]. For hydroxyl-functionalized ILs, they
were also able to detect positively charged clusters from ionic liquids exhibiting hydrogen
bonding between ions of like charge [40–43]. Menges et al. observed isolated ion clus-
ters in the gas phase consisting of two 1–(2–hydroxyethyl)–3–methylimidazolium cations
(HEMIm+) and one bis(trifluoromethylsulfonyl)imide anion (NTf2

−) by means of CIVP
spectroscopy [40]. Supported by double resonance techniques, they showed that the two
cations are linked through hydrogen bonding, while one OH is attached to an oxygen of
the anion, resulting in positively charged (HEMIm+)2(NTf2

−)1 clusters of type (c+–c+–a−).
In larger complexes (HEMIm+)3(NTf2

−)2, even contact between three cations was detected
in (c+–c+–c+–a−)(a−) isomers [41]. However, the counterions still play a crucial role for
the stability of the singly charged (2,1) and (3,2) complexes, as shown by accompanying
quantum chemical calculations [42–48].

It became obvious that for studying like-charge attraction in singly charged and even
doubly charged cationic clusters in more detail, stronger H-bonding between the ions
of like charge is required. This brought us to the idea of using carboxyl-functionalized
cations for providing two strong hydrogen bonds between the cations, strongly enhanc-
ing the attractive interaction and overcoming the repulsive Coulomb forces. This very
productive cation–cation motif with two carboxylate groups in self-complementary C2-
symmetric interaction geometry gives antiparallel-bridging H-bonds that benefit from the
powerful cooperativity of coupled donor–acceptor interactions. We just showed for the
pharmaceutical ibuprofen, which exhibits the same structural H-bond motif, that each
of the two H-bonds is about 10% stronger than it would be alone [49]. In this work, we
try to realize the formation of this cation–cation HB motif in ionic liquids comprising
carboxyl-functionalized cations and weakly interacting anions [50–52]. After showing
that this favorable HB motif is already present in the solid state of the ionic liquid 1-
(carboxymethyl)pyridinium bis(trifluoromethylsulfonyl)imide [HOOC–CH2–py][NTf2],
we used quantum chemistry for studying the strength of this HB motif in single positive
(HOOC–CH2–py+)2NTf2

− and double positive (HOOC–CH2–py+)2 complexes, wherein
in principle the formation of other HB configurations is possible. The HB strength in the
pure cationic dimers (HOOC–(CH2)n–py+)2 with n = 1–8 is then investigated for increasing
alkyl chain length, reducing the Coulomb repulsion between the ions of like charge. The
ultimate goal here is to identify the first thermodynamically stable cationic dimers, wherein
short-ranged hydrogen bonds overcome long-ranged repulsive Coulomb interaction, ex-
amining the electrostatic-based concepts of hydrogen bonding. In particular, we consider
thermodynamically stable cationic dimers (HOOC–(CH2)n–py+)2, which could be obtained
from ILs [HOOC–(CH2)n–py][NTf2] that are detectable by CIVP spectroscopy at a tempera-
ture around 30 K. In this respect, the quantum cluster equilibrium (QCE) model provides
equilibria of monomeric and dimeric complexes including explicitly intermolecular interac-
tion [53–55]. Finally, we rationalize the H-bond characteristics of the dimers by the natural
bond orbital (NBO) approach, emphasizing the strong correlation between NBO-based and
spectroscopic descriptors, such as NMR chemical shifts and vibrational frequencies [56–60].

2. Materials and Methods
2.1. Synthesis and Characterization

The ionic liquid 1-(carboxymethyl)pyridinium bis(trifluoromethylsulfonyl)imide
[HOOC–CH2–py][NTf2] was synthesized as reported in the literature [61]. A metathesis
reaction was used to exchange the chloride anions for a bis(trifluoromethylsulfonyl)imide
anion, starting from the commercially available 1-(carboxymethyl)pyridinium hydrochlo-
ride (Sigma-Aldrich, Taufkirchen, Germany). The ILs have a melting point of 32 ◦C.

An X-ray quality crystal of the ionic liquid 1-(carboxymethyl)pyridinium bis(trifluoro-
methylsulfonyl)imide [HOOC–CH2–py][NTf2] was prepared in Fomblin YR-1800 perflu-
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oropolyether (Alfa Aesar, Kandel, Germany) at ambient temperature. The sample was
cooled to 123(2) K during measurement. Data were collected on a Bruker KAPPA APEX II
diffractometer using Mo Kα radiation (λ = 0.71073 Å). The structures were solved by direct
methods (SHELXS-2013) and refined by full-matrix least squares procedures (SHELXL-
2013) [62,63]. Semiempirical absorption corrections were applied (SADABS) [64]. All
non-hydrogen atoms were refined anisotropically, and hydrogen atoms were included in
the refinement at calculated positions using a riding model.

2.2. Computational Methods

We calculated clusters’ different hydrogen-bonded isomers of neutral (HOOC–(CH2)n–
py+)2(NTf2

−)2, single-charged (HOOC–(CH2)n–py+)2(NTf2
−), and double-charged (HOOC–

(CH2)n–py+)2 complexes for demonstrating the paradoxical case of “anti-electrostatic”
hydrogen bonding (AEHB) between ions of like charge (see Scheme 1).
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Scheme 1. Structural motif of doubly hydrogen-bonded cationic dimers [HOOC–(CH2)n–py+]2 as
calculated for different numbers of methylene groups with n = 1–8. Below, we show the weakly
interacting anion bis(trifluoromethylsulfonyl)imide [NTf2

−] as considered in the calculations of
neutral and charged clusters and present in the ionic liquid [HOOC–CH2–py][NTf2].

For the neutral and cationic clusters, we employed B3LYP/6-31+G* and B3LYP-D3/6-
31+G* calculations performed with the Gaussian 09 program [65]. For calculating the
clusters at the same level of theory, we used the well-balanced 6-31+G* Pople basis set.
Including polarization and diffuse functions, this basis set is suitable for reasonably cal-
culating hydrogen-bonded clusters of like-charged ions. We used the relatively small
6-31+G* basis set for calculating all clusters at the same level of theory as well as for better
comparison with earlier studies of molecular and ionic clusters [44–48]. We demonstrated
that the salient properties of these clusters can be robustly calculated with both smaller and
larger basis sets as long as Grimme’s D3 dispersion correction is considered [66–68]. All
clusters were fully optimized, followed by frequency calculations. The obtained vibrational
frequencies were all positive, showing that we calculated at least local minimum structures.
The NMR proton chemical shifts δ1H were calculated at the same level of theory.

The pure cationic dimers were additionally calculated at the dispersion-corrected
B3LYP–D3/def2–TZVP and the ab initio Møller Plesset MP2/6–31+G* levels of theory
for demonstrating the relevance of method and basis set uncertainties for the binding
energies [69,70]. Overall, we can state that the influence of used methods and basis sets is
not larger than the effect of adding or removing one methylene group (±3 kJmol−1).
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We also want to point out that the counterpoise (CP) correction of Boys and Bernardi
has been questioned recently [71–73]. Intrinsic CP artifacts for ion pair clusters add to
fundamental concerns that the CP procedure is generally unreliable for correcting the
basis set superposition error (BSSE) [72]. Nevertheless, we applied a CP correction to the
calculated dimers for demonstrating the minor role of the BSSE correction for the resulting
structures and energies if well-balanced basis sets are used.

2.3. Strategy of This Study and Investigated Complexes

We explore complexes supposed to be present in the solid, liquid, and gaseous
phases of the ionic liquid 1–(n–carboxyalkyl)pyridinium bis(trifluoromethylsulfonyl)imide
[HOOC–(CH2)n–py][NTf2] (see Scheme 1). The neutral and the singly charged complexes
are studied for n = 1, whereas the doubly charged pure cationic complexes are calculated for
n = 1–8. Possible isomers of the differently charged complexes are illustrated in Scheme 2.

Molecules 2022, 27, x 5 of 24 
 

 

that the salient properties of these clusters can be robustly calculated with both smaller 
and larger basis sets as long as Grimme’s D3 dispersion correction is considered [66–68]. 
All clusters were fully optimized, followed by frequency calculations. The obtained 
vibrational frequencies were all positive, showing that we calculated at least local 
minimum structures. The NMR proton chemical shifts δ1H were calculated at the same level 
of theory. 

The pure cationic dimers were additionally calculated at the dispersion-corrected 
B3LYP–D3/def2–TZVP and the ab initio Møller Plesset MP2/6–31+G* levels of theory for 
demonstrating the relevance of method and basis set uncertainties for the binding 
energies [69,70]. Overall, we can state that the influence of used methods and basis sets is 
not larger than the effect of adding or removing one methylene group (±3 kJmol−1). 

We also want to point out that the counterpoise (CP) correction of Boys and Bernardi 
has been questioned recently [71–73]. Intrinsic CP artifacts for ion pair clusters add to 
fundamental concerns that the CP procedure is generally unreliable for correcting the 
basis set superposition error (BSSE) [72]. Nevertheless, we applied a CP correction to the 
calculated dimers for demonstrating the minor role of the BSSE correction for the resulting 
structures and energies if well-balanced basis sets are used. 

2.3. Strategy of This Study and Investigated Complexes 
We explore complexes supposed to be present in the solid, liquid, and gaseous 

phases of the ionic liquid 1–(n–carboxyalkyl)pyridinium 
bis(trifluoromethylsulfonyl)imide [HOOC–(CH2)n–py][NTf2] (see Scheme 1). The neutral 
and the singly charged complexes are studied for n = 1, whereas the doubly charged pure 
cationic complexes are calculated for n = 1–8. Possible isomers of the differently charged 
complexes are illustrated in Scheme 2. 

 

Scheme 2. Illustration of competing interactions at play in ionic liquids comprising carboxyl-
functionalized cations in the neutral complexes (a–c), the single positively charged complexes (d,e),
and the double positively charged complexes (f).

For the neutral complex (HOOC–CH2–py+)2(NTf2
−])2, three types of hydrogen bond-

ing motifs might be formed: (a) Two cations HOOC–CH2–py+ are doubly hydrogen-bonded
with each other, and two anions are attached to the anions without specific interaction,
denoted as complex (c+=c+)(a−)2. (b) In a (c+–c+–a−)(a−) complex, the OH group on one
cation HOOC–CH2–py+ binds to the carboxyl group CO on the other, while the OH group
of the other attaches an oxygen atom of the anion. (c) Both cations form single hydrogen
bonds to one of the anions without any hydrogen bond formed among them, denoted as
(c+–a−)2.

For the singly charged cationic complexes (HOOC–CH2–py+)2NTf2
−, wherein one

counterion is removed from the neutral complex, two types of hydrogen bonding motifs
are possible: (d) Two cations HOOC–CH2–py+ are still doubly hydrogen-bonded, but only
one anion is present, leading to the cationic complex denoted as (c+=c+)(a−). (e) In the
other possible complex (c+–c+–a−), the OH group on one cation HOOC–CH2–py+ binds to
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the carboxyl group CO on the other, while the OH group of the other attaches an oxygen
atom of the anion, similar to the neutral complex after removing one counterion.

The doubly charged cationic complexes (HOOC–CH2–py+)2, where all the counterions
are released, are denoted as (c+=c+). Singly bound cationic complexes (c+–c+) can be ruled
out because there, one donor and one acceptor function are free and result in a significantly
less attractive interaction not capable of competing with the strong repulsive Coulomb
forces between ions of like charge.

3. Results and Discussion
3.1. The Crystal Structure of the Ionic Liquid 1–(Carboxymethyl)Pyridinium
Bis(Trifluoromethylsulfonyl)Imide [HOOC–CH2–py][NTf2]

We synthesized the ionic liquid 1–(carboxymethyl)pyridinium bis(trifluoromethylsul-
fonyl)imide [HOOC–CH2–py][NTf2] following a literature method by Nockemann et al. [61].
The carboxyl-functionalized IL has a melting point of about 32 ◦C and can be easily crys-
tallized. The X-ray structure shows the characteristic double hydrogen bonding motif
between the two carboxyl groups of the cations, whereas the two weakly interacting
bis(trifluoromethylsulfonyl)imide anions are attached but not involved in hydrogen bond-
ing with any of the cations, as shown in Figure 1 (see Supplementary Materials). This
structural motif as known for formic acid, the archetype of double hydrogen bridges, is
characterized by two strong hydrogen bonds indicated by two short and almost simi-
lar R(O···O) distances between the hydroxyl oxygen and the carbonyl oxygen of about
R(O2···O3) = 2.633 Å and R(O1···O4) = 2.636 Å, respectively (see Figure 1). Obviously, the
two strong hydrogen bonds overcome the repulsive Coulomb forces between the carboxyl-
functionalized cations and successfully compete with hydrogen bonding between cation
and anion, although the latter is enhanced by attractive Coulomb interaction. For sim-
ple hydroxyl-functionalized ionic liquids, we showed earlier that strong cationic cluster
formation prevents crystallization, resulting in supercooled and finally glassy systems,
whereas weak cationic cluster formation completely disappears in the solid state and only
hydrogen bonding between cation and anion remains [26,31]. This is not the case in the
solid IL [HOOC–CH2–py][NTf2], where two strong hydrogen bonds in the motif (c+=c+)
are obviously stronger than the possible single cation–cation (c+–c+) and cation–anion
(c+–a−) hydrogen bonds between the molecular ions. We plan to investigate by IR and
NMR spectroscopy whether the (c+=c+) HB bond motif survives the phase transition from
the solid to the liquid phase and whether it remains stable with increasing temperature. The
synthesis of ILs [HOOC–(CH2)n–py][NTf2] with n > 1 for decreasing Coulomb repulsion
due to methylene group spacers and increasing the HB strength at the same time is in
progress in our lab.

The occurrence of strong like-charge attraction already in the solid state raises the ques-
tion of whether the characteristic H-bond motif will survive if the counterions are removed
successively, leading to singly charged cationic complexes (HOOC–CH2–py+)2(NTf2

−) and
finally pure cationic complexes (HOOC–(CH2)n–py+)2.

3.2. The Structural Motif of Neutral (HOOC–(CH2)n–py+)2(NTf2−)2 Complexes

For showing the reliability of the chosen quantum chemical level B3LYP–D3/6–31+G*,
we compared the geometry of a calculated neutral dimer (HOOC–CH2–py)2(NTf2)2 of
type (c+=c+)(a−)2 with the solid-state structure of the IL [HOOC–CH2–py][NTf2], as shown
in Figure 2 [61–64]. Calculated R(O···O) distances of about 2.620 and 2.631 Å were in
almost perfect agreement with the measured solid-state value of about 2.633 and 2.636 Å,
respectively. The corresponding hydrogen bonding distances R(H···O) were calculated to
be 1.689 Å with the related intramolecular bond length R(OH) = 1.008 Å. Thus, the OH
bond length is comparable to that in ice, indicating strong hydrogen bonding.
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Figure 1. Solid-state structure of the ionic liquid 1–(carboxymethyl)pyridinium bis(trifluoromethy-
lsulfonyl)imide [HOOC–CH2–py][NTf2]. The X–ray structure shows the favorable double H-bond
motif formed between the carboxyl-functionalized cations, whereas the weakly interacting anions
are not involved in hydrogen bonding. In the ORTEP representation, the atoms are represented by
ellipsoids at 50% probability levels. The hydrogen bonds are denoted by a dashed line.

Overall, the hydrogen bond distances R(O···O) in the present IL are significantly
smaller than those observed in X-ray structures of crystalline carbonic and acetic acid struc-
tures [74,75]. However, the solid-state structure of the carboxyl-functionalized molecular
acids reveal linear chain hydrogen bonds instead of the two strong hydrogen bonds. What
we can state here is that hydrogen bonds between ions of like charge in the (c+=c+) dimer
are stronger than the single hydrogen bonds in the molecular system despite the strong
repulsive forces [46]. Besides the complex (c+=c+)(a−)2, resembling the structural motif
observed in the crystal structure of the IL [HOOC–CH2–py][NTf2], we calculated other
possible neutral complexes, such as (c+–c+–a−)(a−) and (c+–a−)2, as presented in Figure 2.
The cluster (c+=c+)(a−)2 is 37.1 kJmol−1 lower in energy than the complex (c+–c+–a−)(a−),
and the latter another 23.8 kJmol−1 lower than the complex (c+–a−)2, which includes two
H-bonded ion pairs. This result strongly supports the stability of the double-hydrogen
bonding motif as observed in the X–ray patterns of the solid IL.

3.3. The Structural Motif of Singly Charged (HOOC–CH2–py+)2(NTf2−) Complexes

We now address the question of whether the anti-parallel-bridging H-bonds be-
tween the two carboxylic groups remain if one counterion from the overall neutral com-
plex (c+)2(a−)2 is removed. Two main H-bonded configurations are possible: complex
(c+=c+)(a−), still including the coupled donor–acceptor interactions, and complex (c+–c+–
a−), wherein the OH group on one cation HOOC–CH2–py+ binds to the carboxyl group
CO on the other, while the OH group of the other attaches to an oxygen atom of the an-
ion (see Figure 3). The latter type of H-bonded clusters was observed by Menges et al.,
applying CIVP spectroscopy at 30 K. They detected (2,1) complexes comprising two 1–(2–
hydroxyethyl)–3–methylimidazolium cations and one bis(trifluoromethylsulfonyl)imide
anion [40]. Combined with double resonance techniques, they showed that in some clusters
the two cations are linked through hydrogen bonding, while one OH is attached to an oxy-
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gen of the anion, resulting in (c+–c+–a−) complexes. In larger complexes (HEMIm+)3(NTf2
−)2,

even contact between three cations was detected in (c+–c+–c+–a−)(a−) isomers [41]. We
confirmed by quantum chemical calculations that the presence of counterions is crucial for
the stability of the singly charged (2,1) and (3,2) complexes [44–48]. For pure cationic dimers
(HEPy+)2, we calculated robust kinetic stability but were still far away from thermodynamic
stability [44,46]. Even substantial lengthening of the hydroxyalkyl chains for reducing
repulsive interaction and enhancing hydrogen bonding results in only energetically but
not thermodynamically stable dimers. However, for the singly charged (HOOC–CH2–
py+)2(NTf2

−) complexes, we find that the structural motif (c+=c+)(a−) remains stable after
removing one counterion. It is about 29.5 kJmol−1 lower in energy than the (c+–c+–a−)
complex. Thus, the cooperative double H-bond is stronger than the two single H-bonds
between the cations and the cation and the anion.
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D3/6–31+G* level of theory. We considered three types of hydrogen bonding motifs (from left to
right). (a) Two cations HOOC–CH2–py+ are doubly hydrogen-bonded with each other, and two
anions are attached to the cations without specific interaction, denoted as complex (c+=c+)(a−)2. (b) In
a (c+–c+–a−)(a−) complex, the OH group on one cation HOOC–CH2–py+ binds to the carboxyl group
CO on the other, while the OH group of the other attaches an oxygen atom of the anion. (c) Both
cations form single hydrogen bonds to one of the anions without any hydrogen bond formed among
them, denoted as (c+–a−)2.

3.4. The Structural Motif of Double-Charged Cationic Dimer (HOOC–CH2–py+)2

Finally, we address the question of whether complete removal of the anions allows
the formation of double-charged (HOOC–(CH2)n–py+)2 complexes. Here, we focus on the
kinetic and thermodynamic stabilities of the (c+=c+) homodimers. In particular, we want
to find out whether there is some perspective to provide first experimental evidence for
cationic dimers. The cationic dimer (HOOC–(CH2)n–py+)2 with n = 1 shows a robust local
minimum with a clear dissociation barrier preventing “Coulomb explosion” into separated
cations. We achieved robust kinetic stabilities while dissociating the dimer along the R(H
. . . O) H-bond stretching coordinate with respect to the energy of the isolated cations
at ∆E = 0. For each intermolecular distance R(H . . . O), all other geometrical variables
were optimized at each 0.5 pm step of the scan. The relaxed potential energy curve for
the cationic dimer (HOOC–(CH2)n–py+)2 with n = 1 at the B3LYP–D3/6–31+G* level is
shown in Figure 4. We indicate the minimum energy ∆E = 80.2 kJmol−1 at the equilibrium
H-bond distance R(H . . . O) = 1.738 Å. The distance R(O . . . O) = 2.737 Å is extremely short
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too despite the strong repulsive Coulomb interaction present due to only one methylene
group spacer between the carboxyl-functionalized groups and the pyridinium rings. The
intermolecular oxygen–oxygen distance in this cationic dimer is comparable to that of ice
(2.72 Å), exhibiting strong hydrogen bonds, and even 0.14 Å shorter than that of water
dimers calculated at the same level of theory [66]. For the dimer (HOOC–CH2–py+)2,
we could calculate energy potential curves well beyond the activation barrier height. In
Figure 4, we show the effective well depths ∆E* with respect to the transition state at ∆R*(H
. . . O) that signals descent towards separated cations. For this cationic dimer, a distance
of about 3.7 Å corresponds to an activation barrier height of about ∆E* = 41.25 kJmol−1,
showing the enormous strength of the two hydrogen bonds.Molecules 2022, 27, x 9 of 24 
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Figure 4. Potential energy curve for the hydrogen-bonded cationic dimer (HOOC–CH2–py+)2, as
calculated at the B3LYP–D3/6–31+G* level of theory, relaxing the structure for each hydrogen bond
length R(H···O). The curve progression is characterized by a clear minimum energy ∆E of about
80.17 kJmol−1 at the equilibrium bond distance R(H···O) = 1.738 Å. The dissociative energy profile
shows a pronounced binding well with respect to the dissociated anions and effective equilibrium
well depths ∆E* = 41.25 kJmol−1 at ∆R* = 3.70 Å with respect to the transition state.
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3.5. Kinetically Stabilized Cationic Dimers (HOOC–(CH2)n–py+)2 with n = 1–5

For the dimers (HOOC–(CH2)n–py+)2 with n = 1–5, we show that ∆E strongly de-
creases from 80.2 kJmol−1 (n = 1) down to –2.5 kJmol−1 (n = 5), reaching already negative
energies. With increasing tether between the carboxylic group and the pyridinium ring of
each monomer, a robust kinetic stability switches to energetic stability. Now, the quantum-
type short-range attraction wins over classical long-range electrostatic repulsion, providing
the first energetically stable cationic dimers. With decreasing Coulomb repulsion, the
hydrogen bonds also become more “visible”, indicated by shortened R(H . . . O) and R(O
. . . O) H-bond distances (see Table 1).

Table 1. Binding energies ∆E and intermolecular distances R(H . . . O) of the optimized cationic
dimers (HOOC–(CH2)n–py+)2 with n = 1–8 calculated at the B3LYP–D3/6–31+G* level of theory.

n R(H . . . O)/Å R(O . . . O)/Å ∆E/kJmol−1

1 1.738 2.737 80.1
2 1.723 2.724 42.9
3 1.712 2.714 35.91
4 1.707 2.709 7.4
5 1.703 2.705 −2.5
6 1.701 2.703 −14.3
7 1.670 2.702 −19.3
8 1.698 2.701 −26.0

At n = 5, hydrogen bonding and dispersion forces fully compensate for the repulsive
Coulomb forces between the cations, allowing for the quantification of the two hydrogen
bonds and dispersion interaction. For (HOOC–(CH2)n–py+)2 with n ≥ 5, the binding
energies become significantly negative, maximized for (HOOC–(CH2)8–py+)2 with the
binding energy dropping down to −26.0 kJmol−1, as shown in Figure 5. The Mulliken
population analysis suggests that a full positive charge (q = +1e) is located on the pyridinium
ring of each cation [65]. Placing +1.0e charges at the ring centers and using the DFT-
calculated center distances, we can estimate the Coulomb energies for all dimers (HOOC–
(CH2)n–py+)2 with n = 1–8. They are shown in comparison with the calculated DFT
energies in Figure 5. Because we plot the energies versus the number of methylene groups
n = 1–8, we observe odd/even effects, which are obviously related to the odd/even changes
in the Coulomb repulsion due to changing distances. For the cationic dimer (HOOC–
(CH2)5–py+)2, the energy release is almost zero (∆E= −2.5 kJmol−1). At a distance of
about 20.8 Å between the positively charged pyridinium rings, the energy of the cationic
dimer is almost the same as that of two isolated cations. For this dimer, the repulsive
Coulomb forces are fully counterbalanced by the attractive OH . . . O hydrogen bonds and
dispersion forces that are both described reasonably well by the B3LYP–D3 method. For
dissecting an amount of stabilizing energy of about 69.4 kJmol−1 into hydrogen bonding
and dispersion interaction, we performed additional B3LYP/6–31+G* calculations without
including dispersion interaction using Grimme’s D3 method [66–68]. Overall, the calculated
dispersion energy stabilizes the cation–cation interaction by 10.9 kJmol−1. Now we are
able to dissect an overall attractive interaction energy of about 69.4 kJmol−1. An energy
difference of about 58.5 kJmol−1 can be related to the two symmetric hydrogen bonds in
the cationic dimer. Similar binding energies were reported for formic acid, the archetype
of double hydrogen bridges. Kalescky et al. calculated 65.1 kJmol−1 from high-level ab
initio methods, and Kollipost et al. measured 59.5 kJmol−1 from analysis of FTIR spectra
recorded in a supersonic slit jet expansion [76–78].
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Figure 5. (a) The binding energies for the cationic dimers (HOOC−(CH2)n−py+)2 with n = 1–8,
as calculated at the dispersion-corrected B3LYP–D3/6–31+G* level of theory (filled circles). For
comparison, we added the calculated binding energies obtained at the B3LYP/6−31+G* (diamonds),
the B3LYP–D3/def2–TZVP (triangles down), and the MP2/6–31+G* (triangles) levels. The filled
squares show the long-range e2/R behavior of idealized Coulomb electrostatic repulsion assuming
positive charges q= +1 on the centers of the two pyridinium rings as obtained by Mulliken popu-
lation analysis. (b) For the cationic dimer (HOOC–(CH2)5–py+)2, the Coulomb repulsion is more
than counterbalanced by the attractive hydrogen bond and dispersion forces, resulting in slightly
negative ∆E= −2.51 kJmol−1 (filled circles). The energy difference represents the sum of the H-bond
(∆E= −58.5 kJmol−1) and dispersion energy (∆E= −10.9 kJmol−1), as indicated by the brown and
grey bars, respectively.

As shown in Figure 5, we additionally calculated all cationic dimers at the B3LYP/6–
31+G*, the dispersion-corrected B3LYP–D3/def2–TZVP, and the ab initio Møller Plesset
MP2/6–31+G* levels of theory for demonstrating the relevance of method and basis set
uncertainties [69,70]. Overall, we can state that the influence of the used methods and basis
sets is not larger than the effect of adding or removing one methylene group (±3 kJmol−1).
We point out that the counterpoise (CP) correction of Boys and Bernardi has been ques-
tioned recently [71,72]. However, we applied a CP correction to the calculated dimers
for demonstrating the minor role of the BSSE correction for the resulting structures and
energies if well-balanced basis sets are used (see Figure 6).
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Figure 6. Basis set superposition error (BSSE) calculated for the cationic dimers
(HOOC−(CH2)n−py+)2 with n = 1–8 obtained at the B3LYP–D3 level of theory and 6–31G*, 6–31+G*,
and def–TZVP basis sets, respectively. Obviously, the counterpoise (CP) approach used here is
unreliable for correcting the BSSE in charged systems as reported in the literature [69]. Nevertheless,
our calculations show that small Pople basis sets including diffuse function (here 6–31+G*) are well
balanced, reducing the BSSE to less than 10% of the overall H-bond energy (∆E= −58.5 kJmol−1),
which is known for molecular systems [77,78].

3.6. Thermodynamically Stabilized Cationic Dimers (HOOC–(CH2)n–py+)2 with n = 6–8

We clearly showed that the cationic dimers (HOOC–(CH2)n–py+)2 with more than
five methylene groups exhibit negative binding energies ∆E. For n = 6–8, we calculated
∆E = −14.3 kJmol−1, ∆E = −19.3 kJmol−1, and ∆E = −26.0 kJmol−1, respectively. The double
hydrogen bonds between the two carboxyl-functionalized cations with ∆EHB = 58.5 kJmol−1

supported by attractive dispersion interaction of about ∆Edisp = 10.9 kJmol−1 in total be-
come stronger than the repulsive Coulomb interaction between them (69.4 vs. 66.8 kJmol−1).
For judging whether the first cationic dimers with charge q = +2 are detectable in gas
phase experiments, we have to consider the free energies of the dimeric species as well
as their temperature and pressure dependencies. Thus, we calculated the free energies
∆G◦ of all dimers (HOOC–(CH2)n–py+)2 with a particular focus on (HOOC–(CH2)6–py+)2,
(HOOC–(CH2)7–py+)2, and (HOOC–(CH2)8–py+)2 at atmospheric pressure p as a function
of temperature. For that purpose, the initial frequency calculation for each optimized
complex is followed by a thermochemical analysis for varying temperatures and pressures.
The equations used for computing thermodynamic data in Gaussian 09 are equivalent to
those given in standard statistical texts, such as Statistical Mechanics by McQuarrie [79]. The
analysis uses the standard expressions for an ideal gas in the canonical ensemble.

In Figure 7, we show that the free energies of all cationic dimers n = 1–8 are strongly
positive from +135 kJmol−1 for n = 1 down to +35 kJmol−1 for n = 8 at 300 K. However,
with decreasing temperature, these species can become thermodynamically stable. We
obtained ∆G = 0 for the dimers (HOOC–(CH2)6–py+)2, (HOOC–(CH2)7–py+)2, and (HOOC–
(CH2)8–py+)2 at 47, 80, and 114 K, respectively. Below these temperatures, the cationic
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dimers win over the monomeric species and should be detectable experimentally. Of course,
the pressure dependence is also relevant for the occurrence of these cationic dimers in
the gas phase. Thus, we calculated the temperature-dependent free energies at pressures
p = 1 atm, p = 0.1 atm, and p = 0.01 atm, respectively. The p-dependent free energies in
Figure 8 show that the pressure strongly matters at room temperature but is moderate
in the low-temperature regime. The thermodynamical stability is shifted down to 38, 66,
and 95 K for species n = 6–8. However, these dimers are still thermodynamically stable at
temperatures where gas phase spectroscopy is usually performed. Thus, the cationic dimers
should be detectable in cryogenic ion vibrational predissociation (CIVP) spectroscopy at
temperatures below 30 K even at lower pressure [36–43].
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0.1 (dashed), and 0.01 (dotted) atm shift the thermodynamic stability to slightly lower temperatures.
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3.7. QCE Cluster Equilibria

The quantum cluster equilibrium (QCE) of H-bonded liquids introduced by F. Wein-
hold is based on the role of molecular clusters as fundamental constituent units, characteriz-
able by modern quantum chemistry [50–52]. Standard quantum statistical thermodynamic
methods are used to treat the equilibria between clusters in the canonical ensemble, leading
to predictions of macroscopic thermodynamic properties. The QCE approach suggests close
analogies between the covalent interactions of chemical equilibria and the noncovalent
interactions of cluster equilibria, enabling one to extend standard techniques of statisti-
cal thermodynamics to the weak interaction characteristic of liquefaction and solvation.
Meanwhile, a plethora of H-bonded liquids are addressed by the QCE treatment, such as
water, ammonia, alcohols, and amides [80–99]. Moreover, quantum cluster equilibrium
calculations were extended to binary mixtures, considering dispersion interaction and
anharmonic frequencies for the included cluster species [100–108]. Other improvements
were dedicated to increasing the quality of the partition functions for getting more reliable
thermodynamic properties [101]. More recently, QCE has been even used for successfully
predicting the ionic product of water [73].

Here, we used the QCE approach as implemented in the Peacemaker software pack-
age [55]. Usually, two standard-state reference values are employed to determine the two
parameters amf and bxv, such that the resulting isobar reproduces: (a) the experimental
density of liquids at 298.15 K and (b) their boiling points. In this work, we used QCE
calculations for deriving the gas phase equilibria between pure cationic dimers and their
monomeric units. For that purpose, we used a fixed value, bxv = 1, but varied the amf pa-
rameter for taking intermolecular forces between the species into account. This mean-field
approach allows for studying the cluster equilibria as a function of the temperature and
pressure. In Figure 9, we show the cluster populations of the cationic monomers and dimers
for species n = 5–8. We used values between 0.04 and 0.1 for the mean-field parameter
amf, which is equivalent to introducing intermolecular interaction energies of between 1.2
and 3 kJmol−1, respectively. If such a moderate intermolecular interaction is assumed,
the 50% populations of cationic dimers are already achieved at 51, 99, 126, and 151 K for
n = 5–8. Thus, the experimental situation for detecting the pure cationic dimers is even
more comfortable, if the dispersion interaction between the gas phase species is considered.
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Figure 9. QCE-calculated cluster populations for cationic monomers (dashed lines) and dimers
(straight lines) for species n = 5–8. Compared with the simple ideal gas approach, we now consider
attractive interaction between the clusters’ species expressed by the mean-field parameter amf. The
filled circles indicate where the species are in the equilibrium (∆G = 0 kJmol−1). Here, we show
the data for varying values amf (from 0.04 to 0.1), which is equivalent to assuming the dispersion
interaction between the species ranging from 1.2 to 3 kJmol−1, shifting the equilibrium to about 40 K
higher temperatures.
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3.8. NBO Descriptors Strongly Correlate with Energy, H-Bond Distances, NMR Proton Chemical
Shifts, and Vibrational Frequencies

The cationic dimers demonstrate that the short-range donor–acceptor covalency forces
successfully compete with the powerful long-range electrostatic repulsions [22–35]. The
characteristic covalency features of the double (H . . . O) hydrogen bonds can be readily
recognized in the framework of the natural bond orbital (NBO) analysis as distinctive nO
→ σ*OH donor–acceptor interactions expressed by the second-order stabilization energies
∆E(2)

n→σ* and estimated total charge transfers qCT (see Figure 10) [56–60]. The charge from
the oxygen lone pair orbitals of the carboxyl group CO of one cation is donated into the OH
antibond orbital of the hydroxyl group of the second anion and vice versa. This way, the
short-range donor–acceptor covalency forces overcome the strong long-range electrostatic
repulsive forces as expected for ions of like charge. Here, we show that the NBO approach
is also suitable for describing the energetic and spectroscopic feature of hydrogen-bonded
ions of like charge.
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In Figure 11a–e, we show the NBO energy descriptors versus binding energies ∆E,
H-bond distances R(H . . . O) and R(O . . . O), and proton chemical shifts of the hydroxyl
protons δ1H (vs. TMS) and infrared vibrational frequencies, ν̃(OH), for all dimers n = 1–8.
As shown, the second-order stabilization energies ∆E(2)

n→σ* and the total charge transfers
qCT are strongly correlated with the enhanced H-bond strength in the order of n = 1 to n = 8
governed by the decreasing Coulomb repulsion with an increasing number of methylene
groups between the functional groups and the pyridinium rings. Obviously, this effect is
almost saturated for species n = 6–8, wherein attractive hydrogen bonding and dispersion
interaction are larger than the repulsive Coulomb interaction. This behavior is reflected
in lower energies ∆E, shorter H-bond distances R(H . . . O) and R(O . . . O), enhanced
downfield chemical shifts δ1H, and redshifted vibrational frequencies νOH. A change in
R(H . . . O) and R(O . . . O) distances of about 0.4 Å between dimers n = 1 and n = 8 is
correlated with downfield chemical shifts δ1H of about 0.45 ppm and redshifted vibrational
frequencies ν̃(OH) of about 55 cm−1. This demonstrates the usefulness of NBO analysis and
highlights NMR and IR spectroscopies as the most sensitive probes of hydrogen bonding,
also for characterizing the interaction strengths between ions of like charge. Overall, the
NBO parameters strongly indicate the covalent and anti-electrostatic character of hydrogen
bonding in cationic dimers.
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Figure 11. NBO-calculated second-order stabilization energies ∆E(2)n→σ* (open circles) and estimated
total charge transfers qCT (closed squares) for cationic dimers n = 1–8 plotted versus calculated
(a) energies ∆E, (b) intermolecular hydrogen bond distances, R(H···O), (c) intermolecular hydrogen
bond R(O···O), (d) NMR proton chemical shifts, δ1H (relative to the standard tetramethylsilane, TMS),
and (e) OH vibrational frequencies ν̃(OH). The almost linear dependences showing slight odd/even
effects indicate the strong relation between NBO stabilization energies and charge transfers with
energetic, geometric, and spectroscopic properties of the cationic dimers.
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4. Conclusions

We show that carboxyl-functionalized ionic liquids (ILs) form doubly hydrogen-
bonded cationic dimers (c+=c+) despite the repulsive forces between ions of like charge
and competing hydrogen bonds between cation and anion (c+–a−). After detecting the
structural motif of doubly hydrogen-bonded cationic dimers (c+=c+) in the solid state of the
ionic liquid 1–(carboxymethyl)pyridinium bis(trifluoromethylsulfonyl)imide [HOOC–CH2–
py][NTf2] by means of X-ray diffraction, we explored differently hydrogen-bonded isomers
of neutral (HOOC–(CH2)n–py+)2(NTf2

−)2, single-charged (HOOC–(CH2)n–py+)2(NTf2
−),

and double-charged (HOOC–(CH2)n–py+)2 complexes for demonstrating the paradox-
ical case of “anti-electrostatic” hydrogen bonding (AEHB) between ions of like charge.
In the neutral complex (HOOC–CH2–py+)2(NTf2

−)2, the double hydrogen bonds in the
(c+=c+)(a−)2 complex are stronger than the two hydrogen bonds in a (c+–c+–a−)(a−) 2

complex and the two isolated hydrogen bonds in a (c+–a−)2 complex. Release of one coun-
terion from the neutral system resulting in positively charged (HOOC–CH2–py+)2NTf2

–

complexes shows that the double hydrogen bonds in the (c+=c+)(a−) complex remain more
stable than the two hydrogen bonds in each of the (c+–c+–a−) and (c+–a−)2 complexes.
Fully removing the anions resulting in doubly hydrogen-bonded cationic dimers (HOOC–
(CH2)n–py+)2 still provides kinetic stability for the (c+=c+) homodimers. At about n = 5,
hydrogen bonding and dispersion forces fully compensate for the repulsive Coulomb forces
between the cations, allowing for the quantification of the two equivalent hydrogen bonds
and dispersion interaction in the order of 58.5 and 11 kJmol−1, respectively. For getting
even thermodynamic stability for the cationic dimers (HOOC–(CH2)n–py+)2, we further
increased the alkyl chain length for tethering the ions of like charge and reducing the
Coulomb repulsion. For n ≥ 5, quantum-type short-range attraction wins over classical
long-range electrostatic repulsion, resulting in negative binding energies and providing the
first energetically stable anionic dimers. For n = 6–8, we calculated negative free energies
below 47, 80, and 114 K at ambient pressure, respectively. Decreasing the pressure down to
0.01 atm still provides cationic dimers, which should be detectable by means of cryogenic
ion vibrational spectroscopy at temperatures below 30 K. QCE theory predicts the equi-
libria between cationic monomers and dimers by considering intermolecular interaction
among the species. We rationalize the H-bond characteristics of the dimers by the natural
bond orbital (NBO) approach. NBO-based CT descriptors demonstrate strong correlative
relationships with known experimental signatures of hydrogen bonding, such as NMR
chemical shifts and IR vibrational frequencies. Overall, we show that the double hydrogen
bond motif is already present in the condensed phase of the carboxyl-functionalized IL
with n = 1, and that there is hope to find the first pure cationic dimers with n = 6–8 in gas
phase experiments at a low temperature.
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