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Abstract: Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the degradation of joint cartilage, subchondral 
bone sclerosis, synovitis, and structural changes in the joint. Recent research has highlighted the role of various genes in the 
pathogenesis and progression of OA, with nuclear factor erythroid 2-related factor 2 (NRF2) emerging as a critical player. NRF2, 
a vital transcription factor, plays a key role in regulating the OA microenvironment and slowing the disease’s progression. It modulates 
the expression of several antioxidant enzymes, such as Heme oxygenase-1 (HO-1) and NAD(P)H oxidoreductase 1 (NQO1), among 
others, which help reduce oxidative stress. Furthermore, NRF2 inhibits the nuclear factor kappa-B (NF-κB) signaling pathway, thereby 
decreasing inflammation, joint pain, and the breakdown of cartilage extracellular matrix, while also mitigating cell aging and death. 
This review discusses NRF2’s impact on oxidative stress, inflammation, cell aging, and various cell death modes (such as apoptosis, 
necroptosis, and ferroptosis) in OA-affected chondrocytes. The role of NRF2 in OA macrophages, and synovial fibroblasts was also 
discussed. It also covers NRF2’s role in preserving the cartilage extracellular matrix and alleviating joint pain. The purpose of this 
review is to provide a comprehensive understanding of NRF2’s protective mechanisms in OA, highlighting its potential as 
a therapeutic target and underscoring its significance in the development of novel treatment strategies for OA. 
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Introduction
Osteoarthritis (OA) is a widespread chronic degenerative disease that affects over 22% of the global population aged 40 
and above, imposing a significant economic burden on both families and society.1,2 It primarily impacts the knees, hips, 
and ankles, with the joint microenvironment typically characterized by oxidative stress and inflammation. These 
conditions lead to cartilage destruction, subchondral bone sclerosis, and synovitis.3 Currently, treatment for early to mid- 
stage OA focuses on conservative methods, such as anti-inflammatory medications and pain relief, due to the absence of 
drugs capable of reversing OA’s progression. Although various drugs targeting OA pathology, like anakinra and 
adalimumab for synovitis, have been developed, they often yield unsatisfactory results.4 This may stem from OA’s 
complex nature involving multiple joint components, where single-target treatments are insufficient. Hence, ongoing 
research into more effective therapeutic options is essential.

The onset and progression of OA are driven by complex interactions among various cell types, including chondro-
cytes, synovial fibroblasts, osteoclasts, macrophages and so on. Chondrocytes, the primary cell type in cartilage, maintain 
the balance of the cartilage matrix. In the microenvironment of OA, chondrocytes undergo pathological phenotypic 
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changes, leading to increased matrix degradation and chondrocyte apoptosis, resulting in cartilage degeneration.5 

Synovial fibroblasts, which secrete synovial fluid to lubricate joints in normal conditions. However, there will be 
a large amount of production of inflammatory cytokines in OA, leading to synovitis and accelerating cartilage 
degradation.6 Osteoclasts are involved in bone resorption, and during the progression of OA, subchondral bone loss 
drives increased bone remodeling and the overactivation of osteoclasts, which induces the catabolism of articular 
cartilage and promotes the development of OA.7,8 Inflammatory Macrophages drive the inflammatory response by 
secreting inflammatory mediators, which not only accelerate cartilage destruction but also affect the degradation of 
other joint structures.9 Therefore, regulating multiple cell types, including chondrocytes, synovial fibroblasts, immune 
cells, and osteocytes, is crucial for inhibiting the progression of OA.

Discovered in 1994, the transcription factor NF-E2 p45-related factor 2 (NRF2), encoded by NFE2L2, belongs to the 
human CNC basic leucine zipper transcription factor family.10 NRF2 regulates over 250 genes containing enhancer 
sequences in their promoter regions, known as antioxidant response elements (ARE). These genes contribute to 
a synergistic enzyme network responsible for various biochemical processes, including biotransformation reactions, 
antioxidant metabolism, and the metabolism of carbohydrates, lipids, and proteins.11 Through this network, NRF2 
coordinates comprehensive responses to diverse stressors, maintaining cellular stability. Kelch-like ECH-associated 
protein 1 (Keap1), an inhibitor of NRF2,12 also functions as an E3 ubiquitin ligase substrate adapter,13–15 targeting 
NRF2 for rapid degradation under non-stress conditions. Under oxidative stress, the highly reactive cysteine residues of 
KEAP1, when modified by electrophilic molecules, prevent the degradation of NRF2, leading to its accumulation and 
nuclear translocation. This process triggers dimerization with small MaF proteins, inducing the expression of ARE 
genes.16,17 These genes encode proteins that perform antioxidant, detoxifying, and anti-inflammatory functions, offering 
broad cellular protection. The NRF2-Keap1 axis plays a vital role in preventing diseases characterized by oxidative stress 
and inflammation, including metabolic, inflammatory, autoimmune disorders, and diseases affecting various organs and 
systems.16,18 NRF2 plays an important regulatory role in OA chondrocytes, osteoclasts, Synovial fibroblasts, and 
macrophages.9,19–21 NRF2 can inhibit the activation of the NF-κB signaling pathway, thereby suppressing inflammation 
factors and matrix metalloproteinases (MMPs) in OA chondrocytes, synovial fibroblasts, and macrophages. Additionally, 
NRF2 regulates the expression of antioxidant-related genes, such as HO-1 and NQO1, reducing oxidative stress levels in 
the OA microenvironment and thereby decreasing synovial inflammation and protecting the cartilage matrix. 
Furthermore, NRF2 can inhibit the expression of RANKL factors, thereby suppressing osteoclast activity and maintain-
ing bone homeostasis in the OA environment. This review highlights recent advancements in NRF2 research within the 
context of OA, offering fresh perspectives for developing novel therapeutics to mitigate the disease.

NRF2 Signaling Pathway in Osteoarthritis, Research Progress
The Role of NRF2 in Chondrocytes
Cartilage destruction stands as a significant pathology in OA. Inflammation and oxidative stress impede the synthesis of 
the extracellular matrix in chondrocytes, promoting cellular aging and death, which includes apoptosis, necroptosis, and 
ferroptosis, thus compromising joint cartilage integrity and exacerbating joint pain. NRF2 demonstrates efficacy in 
suppressing inflammation within chondrocytes by interacting with the NF-κB signaling pathway. Additionally, it 
orchestrates the expression of various antioxidant enzymes such as HO-1 and NQO1, thus mitigating oxidative stress. 
As shown in Figure 1, anti-inflammatory and antioxidant properties of NRF2 offer protective mechanisms for compro-
mising’ extracellular matrix, inhibiting cellular aging and death. Subsequent sections delve into a comprehensive analysis 
of NRF2’s effects on chondrocytes.

Inflammation Inhibition
The inflammatory response plays a pivotal role in OA pathogenesis. The NF-κB signaling pathway emerges as a crucial 
player in OA inflammation.22 Stimulated by Interleukin-1β (IL-1β), IκB kinase (IKK) is activated through a series of 
membrane-proximal events. The phosphorylated IκBs subsequently induce the release of NF-κB, leading to its nuclear 
translocation and activation of gene transcription, ultimately triggering inflammatory responses.23 This process impedes 
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collagen and proteoglycan production in chondrocytes and activates MMPs and A Disintegrin and Metalloproteinase 
with Thrombospondin Motifs (ADAMTS), ultimately fostering cartilage degradation.

Augmenting NRF2 nuclear translocation effectively suppresses the NF-κB pathway, thereby mitigating inflammation 
within chondrocytes and safeguarding joint integrity.24–27 As shown in Table 1, Itaconate,28 Oxymatrine,29 Phillygenin,30 

Orientin,31 Stevioside,32 Suramin,33 Chrysophanol,34 Tangeretin,35 Chicoric acid,36 Linalool,37 Ginkgolide C,38 

Asiaticoside,39 Corynoline,40 Rhoifolin,41 Procyanidin B2,42 Maltol,43 Lycopene,44 Betulin,45 Limonin,46 Xanthohumol,47 

18β-Glycyrrhetinic acid,48 moracin,49 Nomilin,50 hesperetin,51 Akebia Saponin D,52 Sinomenine,53 Sinapic acid,54 

Monascin,55 Sauchinone56 and Piceatannol57 have been shown to have the ability to enhance the movement of the NRF2 
into the cell nucleus, which in turn inhibits the NF-κB pathway. The mechanism by which NRF2 inhibits the NF-κB 
signaling pathway can be divided into the following parts. NRF2 suppresses NF-κB activation by increasing the expression 
of antioxidant enzymes such as HO-1 and NQO1. Additionally, NRF2 indirectly inhibits the nuclear translocation of 
phosphorylated p65 by modulating the intracellular environment and reducing the level of phosphorylated p65. 
Furthermore, NRF2 can compete with NF-κB for binding to certain transcription factors and nuclear receptors, thereby 
reducing NF-κB activity. This inhibition subsequently suppresses downstream pro-inflammatory factors and MMPs while 
concurrently enhancing the expression of Collagen II and Aggrecan, ultimately preserving cartilage.

Oxidative Stress
Oxidative stress represents a pivotal factor driving age-associated diseases, including OA. An imbalance between 
Reactive Oxygen Species (ROS) production and the antioxidant capacity of joint cells, such as chondrocytes, constitutes 

Figure 1 The mechanism of NRF2 in regulating chondrocytes, osteoclasts, synovial fibroblasts, and macrophages in OA. 
Abbreviation, OA, Osteoarthritis; NRF2, nuclear factor erythroid 2-related factor 2; DAMPs, Damage-associated molecular patterns; TLRs, Toll-like receptors; HO-1, 
Heme Oxygenase-1; NQO1, NAD(P)H,quinone oxidoreductase 1; NF-κB, nuclear factor kappa-B; IkBα, Inhibitor of Nuclear Factor kappa-B alpha; Keap1, kelch-like ECH- 
associated protein 1; ARE, antioxidant response element; sMaF, small MaF; IL-1β, Interleukin-1β; IL-6, Interleukin-6; TNF-α, Tumor Necrosis Factor Alpha; Ub, 
Ubiquitination; H2O2, hydrogen peroxide; P-P65, Human phosphorylated nuclear transcription factor P65; ROS, Reactive Oxygen Species; Bax, BCL2 Associated 
X protein; Bcl2, B-cell lymphoma-2; ΔΨm represents Mitochondrial membrane potential; IL-18, interleukin-18; NO, Nitric Oxide; COX2, Cyclooxygenase-2; MMPs, matrix 
metalloproteinases; ECM, Extracellular matrix; RANKL, Receptor Activator of Nuclear Factor-κ B Ligand; NFATc1, Nuclear Factor Of Activated T-Cells, Cytoplasmic 1.
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Table 1 Activation of NRF2 Inhibits Inflammation and Catabolism in Chondrocytes by Suppressing the NF-κB Signaling Pathway

Regulators Cell Type and 
Source

Concentration NRF2/NF-κB axis Biological Actions Author (year)

Itaconate IL-1β-treated mouse 

chondrocytes

120, 250 and 

500 μM

Nucleus, NRF2↑, P65↓ Whole cell, HO-1↑, 

NQO1↑, p-p65↓, IkBα↑, STING↓
iNOS↓, COX2↓, TNF-α↓, IL-6↓, PGE2↓, NO↓, Aggrecan↑, 

Collagen II↑, MMP13↓, ADAMTS5↓
Ni et al, 202228

Oxymatrine IL-1β-treated mouse 
chondrocytes

1, 2, 4 and 8 μM Nucleus, NRF2↑, HO-1↑, P65↓Cytoplasm, 
IkBα↑

iNOS↓, IL-6↓, TNF-α↓, COX2↓, Nitrite↓, PGE2↓, Collagen II↑, 
Aggrecan↑, LDH↓, JC-1↓, ADAMTS5↓, MMP13↓

Zhou et al, 202329

Phillygenin IL-1β-treated mouse 

chondrocyte

5, 10, 20, 40 μM Cytoplasm, IkBα↑Nucleus, NRF2↑, HO-1↑, 

P65↓
iNOS, IL-6, Ptgs2, TNF-α, COX2, Nitrite, PGE2, Collagen II↑, 

Aggrecan↑, ADAMTS5↓, MMP13↓, DCF↓, JC-1↓
Zhang et al, 202330

Orientin IL-1β-treated mouse 

cchondrocytes

10, 25, 50 μM Nucleus, NRF2↑, p65↓Cytoplasm, HO-1↑ 
Whole cell, p-p65/ p65↓, IkBα↑

iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitrite↓, Aggrecan↑, 

Collagen II↑, MMP13↓, ADAMTS5↓
Xia et al, 202331

Stevioside IL-1β-treated mouse 
chondrocytes

10, 20, 40 μM Nucleus, NRF2↑, p65↓ Cytoplasm, HO-1↑, 
IkBα↑

iNOS↓, IL-6↓, TNF-α↓, COX2↓, Nitrite↓, PGE2↓, Collagen II↑, 
Aggrecan↑, ADAMTS4↓, MMP13↓

Wu et al, 202332

Suramin IL-1β-treated mini-pigs 

chondrocytes

5, 10 μM Whole cell, NRF2↑, p-p65/ p65↓ iNOS↓, IL-6↓, IL-8↓, TNF-α↓, COX2↓, Nitrite↓, PGE2↓, SOX9↑, 

Collagen II↑, Aggrecan↑, ADAMTS4↓, ADAMTS5↓, MMP3↓, 
MMP13↓

Shen et al, 202333

Chrysophanol IL-1β-treated mouse 

chondrocytes

10, 20, 40 μM Nucleus, NRF2↑, p65↓ Cytoplasm, HO-1↑, 

NQO1↑, IkBα↑
iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitric oxide↓, Collagen 

II↑, Aggrecan↑, ADAMTS4↓, MMP13↓
Lu et al, 202334

Tangeretin IL-1β-treated mouse 

chondrocytes

5, 10, 20 μM Nucleus, NRF2↑, p65↓Cytoplasm, HO-1↑ 
Whole cell, NRF2↑, p-p65/ p65↓, IkBα↑

iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitrite↓, Collagen II↑, 

Aggrecan↑, ADAMTS5↓, MMP13↓
Shi et al, 202235

Chicoric acid TNF-α-treated human 
chondrocytes

5, 10, 20 μM Nucleus, NRF2↑, p65↓ Whole cell, HO-1↑, 
p-p65/ p65↓, pIkBα/IkBα↓

iNOS↓, IL-1β↓, IL-12↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitrite↓, 
Collagen II↑, Aggrecan↑, ADAMTS5↓, MMP3↓, MMP9↓, MMP13↓

Qu et al, 202236

Linalool IL-1β-treated mouse 

chondrocytes

100, 200, 400 

μM

Nucleus, NRF2↑, p65↓Cytoplasm, HO-1↑, 

IkBα↑
iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitric oxide↓, Collagen 

II↑, Aggrecan↑, ADAMTS5↓, MMP13↓
Miao et al, 202237

Ginkgolide C H2O2-treated rat 

chondrocytes

7.5, 15, 30 μM Nucleus, NRF2↑, p65↓ytoplasm, NRF2↓, 

p-IkBα↓, IkBα↑hole cell, NRF2↑, HO-1↑
iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, ADAMTS4↓, MMP3↓, 

MMP13↓, ROS↓, Bax↓, Cleaved Caspase-3↓, Bcl-2↑
Ma et al, 202238

Asiaticoside TBHP-treated mouse 
chondrocytes

25, 50, 100 μM Nucleus, NRF2↑, p65↓ Cytoplasm, HO-1↑, 
IkBα↑

Collagen II↑, Aggrecan↑, ADAMTS5↓, MMP13↓, Bax↓, Cleaved 
Caspase-3↓, BCL2↑

Luo, et al, 202239

Corynoline IL-1β-treated mouse 

chondrocytes

2, 4 μM Nucleus, NRF2↑, p65↓ Whole cell, NRF2↑, 

HO-1↑, p-p65/p65↓, p-IkBα/ IkBα↓
iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitrite↓, ROS↓, Collagen 

II↑, Aggrecan↑, ADAMTS5↓, MMP3↓, MMP13↓
Li et al, 202240

Rhoifolin IL-1β-treated rat 

chondrocytes

10, 20 μM Nucleus, NRF2↑, p65↓ Whole cell, HO-1↑, 

IkBα↑
IL-6↓, TNF-α↓, COX2↓, Collagen II↑, Aggrecan↑, ADAMTS5↓, 

MMP3↓, MMP13↓
Chen et al, 202241

Procyanidin B2 IL-1β-treated rat 

chondrocytes

20, 40 μM Nucleus, NRF2↑, p65↓ Whole cell, HO-1↑, 

p-p65/p65↓, IkBα↑
IL-6↓, IL-8↓, Collagen II↑, Aggrecan↑, ADAMTS5↓, MMP3↓, 

MMP10↓, MMP13↓
Cai et al, 202242

Maltol IL-1β-treated mouse 
chondrocytes

25, 50, 100 μM Nucleus, NRF2↑, p65↓ Cytoplasm, HO-1↑, 
IkBα↑

iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitric oxide↓, Collagen 
II↑, Aggrecan↑, ADAMTS5↓, MMP13↓

Zhu et al, 202143

Lycopene IL-1β-treated mouse 

chondrocytes

0.5, 2.5, 5 μM Nucleus, NRF2↑, p65↓ Cytoplasm, HO-1↑, 

IkBα↑
iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitrite↓, Collagen II↑, 

Aggrecan↑, ADAMTS5↓, MMP13↓
Zhan et al, 202144
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Betulin IL-1β-treated mouse 
chondrocytes

25, 50, 100 μM Nucleus, NRF2↑, p65↓ Cytoplasm, HO-1↑, 
IkBα↑ Whole cell, HO-1↑, p-p65/p65↓, 

p-IkBα↓

iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitric oxide↓, Collagen 
II↑, Aggrecan↑, ADAMTS5↓, MMP13↓

Ren et al, 202145

Limonin IL-1β-treated mouse 
chondrocytes

15, 30, 60 μM Nucleus, NRF2↑, p65↓ Cytoplasm,HO-1↑, 
IkBα↑

iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitric oxide↓, Collagen 
II↑, Aggrecan↑, ADAMTS5↓, MMP13↓

Jin et al, 202146

Xanthohumol IL-1β-treated mouse 

chondrocytes

10, 25, 50 μM Nucleus, NRF2↑, p65↓ Cytoplasm,HO-1↑, 

IkBα↑
iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitric oxide↓, Collagen 

II↑, Aggrecan↑, ADAMTS5↓, MMP13↓
Chen et al, 202147

18β- 

Glycyrrhetinic 

acid

IL-1β-treated mouse 

chondrocytes

10, 25, 50 μM Nucleus, NRF2↑, p65↓ Cytoplasm,HO-1↑, 

IkBα↑
iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitrite↓, Collagen II↑, 

Aggrecan↑, ADAMTS5↓, MMP13↓
Chen et al, 202148

moracin IL-1β-treated rat 

chondrocytes

5, 10, 15 μM Nucleus, NRF2↑, p65↓ Cytoplasm,HO-1↑, 

IkBα↑
iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitric oxide↓, Collagen 

II↑, Aggrecan↑, ADAMTS5↓, MMP13↓
Zhou et al, 202049

Nomilin IL-1β-treated mouse 
chondrocytes

5, 10 μM Nucleus, p65↓ Cytoplasm, IkBα↑ Whole cell, 
NRF2↑, HO-1↑

iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitrite↓, Collagen II↑, 
Aggrecan↑, ADAMTS5↓, MMP13↓

Xue et al, 202050

hesperetin IL-1β-treated human 

chondrocytes

10, 20, 40 μM Nucleus, NRF2↑, p65↓ Cytoplasm,HO-1↑, 

IkBα↑
iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitric oxide↓, Collagen 

II↑, Aggrecan↑, ADAMTS5↓, MMP13↓
Lin et al, 202051

Akebia 

Saponin D

IL-1β-treated mouse 

chondrocytes

50, 100, 200 μM Nucleus, NRF2↑, p65↓ Cytoplasm,HO-1↑, 

IkBα↑
iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitric oxide↓, Collagen 

II↑, Aggrecan↑, ADAMTS5↓, MMP13↓
Gu et al, 202052

Sinomenine IL-1β-treated mouse 

chondrocytes

6.25, 12.5, 25 

μM

Nucleus, NRF2↑, p-p65/ p65↓Cytoplasm, 

HO-1↑, p-IkBα/IkBα↓
iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitric oxide↓, Collagen 

II↑, Aggrecan↑, ADAMTS5↓, MMP3↓, MMP13↓
Wu et al, 201953

Sinapic acid IL-1β-treated human 
chondrocytes

40, 80, 160 μM Nucleus, NRF2↑, p65↓ Cytoplasm,HO-1↑, 
IkBα↑

iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitrite↓, Collagen II↑, 
Aggrecan↑, ADAMTS5↓, MMP9↓, MMP13↓

Li et al, 201854

Monascin IL-1β-treated mouse 

chondrocytes

5, 10, 15 μM Nucleus, NRF2↑, p65↓ Cytoplasm,HO-1↑, 

IkBα↑
iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitrite↓, Collagen II↑, 

Aggrecan↑, ADAMTS5↓, MMP13↓
Zheng et al, 201855

Sauchinone IL-1β-treated mouse 

chondrocytes

1, 3, 10 μM Nucleus, NRF2↑, p65↓ Cytoplasm,HO-1↑, 

p-IkBα↑
iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitrite↓, Aggrecan↑, 

Collagen II↑, ADAMTS5↓, MMP3↓, MMP13↓
Wu et al, 201856

Piceatannol IL-1β-treated human 
chondrocytes

1, 5, 10 μM Nucleus, NRF2↑, p65↓Cytoplasm,HO-1↑, 
IkBα↑

iNOS↓, IL-6↓, TNF-α↓, COX2↓, PGE2↓, Nitrite↓, Aggrecan↑, 
Collagen II↑, ADAMTS5↓, MMP13↓

Tang et al, 201757

Abbreviations: NRF2, Nuclear factor erythroid 2-related factor 2; NF-κB, nuclear factor kappa-B; P65, nuclear transcription factor P65; HO-1, heme oxygenase-1; NQO-1, NAD (P)H,quinone oxidoreductase 1; P-P65, phosphorylated 
nuclear transcription factor P65; IKBα, Inhibitor of KB alpha; STING, Stimulator of Interferon Genes; iNOS, inducible nitric oxide synthase; COX2, Cyclooxygenase-2; TNF-α, Tumor Necrosis Factor Alpha; IL-6, Interleukin-6; PGE2, 
Prostaglandin E2; NO, Nitric Oxide; MMP13, matrix metallopeptidase 13; ADAMTS5, A Disintegrin And Metalloproteinase With Thrombospondin 5; LDH, Lactate Dehydrogenase; JC-1, 5,5,6-chloromethyl2,6-bis (ethylamino) 
triphenylene; Ptgs2, prostaglandin-endoperoxide synthase 2; DCF, Dichlorofluorescein; ADAMTS4, A Disintegrin And Metalloproteinase With Thrombospondin 4; IL-8, Interleukin 8; SOX9, SRY-related high-mobility group box 9; MMP3, 
matrix metallopeptidase 3; IL-12, Interleukin-12; MMP9, Matrix metalloproteinase 9; ROS, Reactive Oxygen Species; Bax, BCL2 Associated X protein; BCL2, B-cell lymphoma-2; MMP10, matrix metallopeptidase 10.
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a significant component of OA progression.58 Consequently, alleviating oxidative stress within cartilage can substantially 
attenuate OA progression. Activation of the NRF2/ARE signaling pathway manifests protective effects against OA 
pathogenesis by upregulating antioxidant factors such as HO-1, NQO1, Glutathione (GSH), Glutathione Peroxidase 
(GPx), and Superoxide Dismutase (SOD), thereby suppressing oxidative stress in chondrocytes.59 As shown in Table 2, 
Fibroblast growth factor 9,60 Curcumin,61 catalase,61 Ellagic acid,62 Allicin,63 Sulforaphane,63 Lycopene63 and 
Cudratricusxanthone O64 can activate NRF2 in chondrocytes, thereby activating antioxidant enzymes such as HO-1, 
SOD, and GPx, effectively reducing oxidative stress levels in OA chondrocytes.

Regulation of Cartilage Matrix Synthesis
Notably, Sex-determining Region Y (SRY)-box 9 (SOX9) serves as an indispensable transcription factor for chondrocyte 
lineage differentiation during embryonic development and postnatally in the growth plate and articular chondrocytes.65 

Additionally, SOX9 acts as a major driver behind osmolarity-determined chondrogenic differentiation capacity of 
progenitor cells,66 wherein osmolarity enhances cartilage Extracellular Matrix (ECM) marker expression while specifi-
cally affecting ADAMTS4 and ADAMTS5.67 One pivotal function of NRF2 could be to maintain sufficiently high SOX9 
expression in articular cartilage throughout aging, thereby mediating ADAMTS suppression to protect cartilage integrity, 
consequently delaying OA onset.68

Senescence
Age governs NRF2 homeostasis in human articular chondrocytes, with NRF2 protein levels notably lower in older adult 
chondrocytes (approximately 0.59 fold; P = 0.034) and OA chondrocytes compared to younger cells.69 In OA cartilage, 
oxidative stress presence upregulates aging-related factors such as Tumor Protein p53 (p53) and Cyclin-Dependent 
Kinase Inhibitor 2A (p16INK4a), promoting senescence in chondrocytes. The NRF2 signaling pathway regulates the 
expression of various antioxidant enzymes to inhibit chondrocyte aging. As shown in Table 3, Theaflavin,70 Itaconate,28 

Procyanidin B2,42 and S-allyl cysteine71 effectively activate the NRF2 signaling pathway, thereby inhibiting aging in OA 
chondrocytes.

Apoptosis
Inflammatory environments (such as high IL-1β) and oxidative stress can induce apoptosis in chondrocytes.75,76 NRF2 
activation in OA chondrocytes can counteract these effects by inhibiting IL-1β-induced mitochondrial dysfunction, Reactive 
Oxygen Species (ROS) production, and apoptosis.19 Overexpression of NRF2 upregulates the expression of anti-apoptotic 
factors, downregulates pro-apoptotic proteins, and activates Extracellular Signal-Regulated Kinase 1/2 (ERK1/2) and its 
downstream factors, such as ETS-Like Transcription Factor 1 (ELK1), Ribosomal Protein S6 Kinase, 70 kDa (P70S6K), and 
90 kDa Ribosomal S6 Kinase (P90RSK).19 Moreover, NRF2 indirectly impacts chondrocyte apoptosis and senescence by 
controlling the expression of glyoxalase I, an enzyme responsible for detoxifying methylglyoxal.77

Pyroptosis
Pyroptosis is a type of proinflammatory programmed cell death that is triggered by inflammasomes, which is strongly correlated 
with OA progression.78 It is also reported that activation of the NRF2 signaling pathway may alleviate the progression of OA by 
suppressing the NOD-like Receptor Protein 3 (NLRP3) inflammasome in primary mouse chondrocytes.79 As shown in Table 4, 
Cardamonin,80 Ginkgolide C,81 Licochalcone A,79 Loratadine,82 Bisdemethoxycurcumin,83 Cucurbitacin B84 effectively inhibit 
pyroptosis in OA chondrocytes by activating the NRF2 signaling pathway.

Ferroptosis
Ferroptosis, characterized by excessive lipid peroxidation and iron accumulation, is a nonapoptotic cell death process that 
plays a significant role in the progression of OA.85 The NRF2-ARE system can inhibit or repair lipid peroxidation 
damage through multiple pathways, thus reducing chondrocytes ferroptosis.86,87 Firstly, key synthesizing enzyme genes 
of the GSH-GPx4 pathway are positively regulated by NRF2, such as enzymes promoting GSH biosynthesis (glutamate- 
cysteine ligase, GSH synthetase, and Solute Carrier Family 7 Member A11 (SLC7A11)), GSH reductase, and GPx4.85 

NRF2 can also activate the thioredoxin system to compensate for the GSH system.88 Moreover, NRF2 is a central control 
factor for the expression of NQO1 under steady and stress conditions.89 NQO1, a homodimeric flavoenzyme, can 
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Table 2 The Antioxidant and Anti-Chondrocyte Apoptotic Effects of NRF2

Regulators Cell Type and 
Source

NRF2 Signaling Pathway Anti-oxidative Actions Mitochondrial 
Dysfunction

Anti-apoptotic Actions Author (year)

Fibroblast growth 

factor 9

TBHP-treated 

mouse 

chondrocytes

Nucleus, NRF2↑ DHE↓, HO-1↑, C-CASP3↓,  

Cyt-C↓, SOD2↑, CAT↑
Mito ROS↓, JC-1 intensity 

(Aggrega-tes/Monomers)↑
TUNEL positive cells↓, 

BAX↓, BCL2↑
Pan et al, 202360

Curcumin and 

catalase

IL-1β-treated rat 

chondrocytes

NRF2↑ ROS↓, Lipid ROS↓, MDA↓, HO-1↑, 

SOD1↑, SOD2↑, Catalase↑,

JC-1 Monomers↓ BAX↓, BCL2↑ Chen et al, 202361

Ellagic acid IL-1β-treated 
human chondro- 

cytes

Nucleus, NRF2↑Keap1↓ HO-1↑, NQO1↑, SOD1↑, SOD2↑ JC-1 intensity (Aggregates/ 
Monomers)↑

Zhu et al, 202262

Allicin or 
Sulforaphane or 

Lycopene

H2O2-treated 
human chondro- 

cytes

p-NRF2↑, NRF2↑, Keap1↓ GPX1↑, GPX3↑, GPX4↑, SOD1↑, 
CAT↑, GST↑

Apoptosis ratio↓ Yang et al, 202063

Cudratricusxanthone 
O

H2O2-treated 
human chondro- 

cytes

Nucleus, NRF2↑,HO-1↑ 
Cytoplasm: NRF2↓, HO-1↑

ROS↓, HO-1↑, SOD↑, CAT↑ AnnexinV↓, Caspase 3/7↑, 
BAX↓, BCL2↑, Caspase 3↑

Kim et al, 202064

Abbreviations: TBHP, t-butylhydroperoxide; DHE, Dihydroethidium; C-CASP3, Caspase-3; Cyt-C, Cytochrome C; SOD2, Superoxide Dismutase 2; CAT, Catalase; Mito ROS, mitochondrial reactive oxygen species; TUNEL, terminal 
deoxynucleotidyl transferase-mediated dUTP nick end labeling assay; MDA, Malondialdehyde; SOD1, Superoxide Dismutase 1; GPX1, Glutathione peroxidase 1; GPX3, Glutathione peroxidase 3; GPX4, Glutathione peroxidase 4; GST, 
glutathione S-transferase; SOD, Superoxide Dismutase.
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catalyze the reduction of quinones to hydroquinones in a single-step, two-electron reduction reaction; it also plays 
a significant role in protecting endogenous antioxidants by maintaining the reduced forms of ubiquinone and 
α-tocopheryl quinone. NRF2 can also regulate the detoxification of lipid peroxidation downstream products, such as 
by transcriptionally activating the expression of the aldo-keto reductase family (AKR1C1-3) and the aldehyde dehy-
drogenase family (ALDH3A1).86,87 Finally, NRF2 promotes the expression of ferritin and Ferroportin 1 to store or export 
free iron, thus reducing intracellular iron accumulation and preventing the occurrence of ferroptosis.90 Targeting NRF2 
activation could effectively inhibit ferroptosis in chondrocytes. As shown in Table 5, Gamma-oryzanol,91 Baicalein,92 

Curcumin,93 and Deferoxamine94 effectively inhibit cartilage cell ferroptosis by activating the NRF2 signaling pathway.

The Role of NRF2 in Macrophages
Macrophages are primarily classified into M1 and M2 types, where M1 macrophages are pro-inflammatory and M2 
macrophages are anti-inflammatory.95 In the OA microenvironment, synovial macrophages predominantly differentiate 
into the M1 type, secreting large amounts of inflammatory cytokines, thereby damaging cartilage and exacerbating the 
progression of OA. In contrast, M2 macrophages can promote the repair of cartilage.96 Thus, effectively regulating 

Table 3 The Role of NRF2 in Regulating Chondrocyte Senescence

Regulators Cell Type and 
Source

NRF2 Signaling 
Pathway

Anti-senescence Actions Author (year)

Sirt 6 IL-1β-treated human 

chondrocytes

Nucleus, NRF2↑ Whole 

cell, Keap1↓, HO-1↑
SA-β-Gal↓, p16↓, p53↓, p21↓ Mao et al, 202472

Patchouli Alcohol D-galactose-treated 
mouse chondrocytes

Nucleus, NRF2↑ Whole 
cell, HO-1↑

SA-β-Gal↓, p53↓, p21↓ Chen et al, 202273

Procyanidin B2 IL-1β-treated rat 

chondrocytes

Nucleus, NRF2↑ Whole 

cell, HO-1↑
SA-β-Gal↓, apoptosis ratio↓, BCL2↑, Bax↓, 

Caspase 3↓, p16↓, p21↓
Cai et al, 202242

Theaflavin TBHP-treated mouse 

chondrocytes

Nucleus, NRF2↑ Whole 

cell, HO-1↑
SA-β-Gal↓, Cleaved caspase 3↓, p16INK4a↓ Xu et al, 202170

S-allyl cysteine TBHP-treated mouse 
chondrocytes

Nucleus, NRF2↑ Whole 
cell, HO-1↑

SA-β-Gal↓, p21↓, p16INK4a↓, TUNEL 
positive cells↓, CASP3↓, Bax↓, BCL2↑

Shao et al, 202071

Pinitol TNF-α-treated human 
chondrocytes

Nucleus, NRF2↑ SA-β-Gal↓, GO/G1 phase↓, LDH release↓, 
Telomerase activity↑, p21↓, p53↓

Lou et al, 202074

Abbreviations: Sirt 6, Sirtuin 6; SA-β-Gal, senescence-associated β-galactosidase; p53, Tumor Protein p53; p21, P21 One of the mitotic inhibitors (antigen); p16, MTS 
(multiple tumor suppressor 1); p16INK4a, Cyclin-Dependent Kinase Inhibitor 2A.

Table 4 Activation of NRF2 Inhibit Chondrocyte Pyroptosis

Regulators Cell Type and 
Source

NRF2 Signaling 
Pathway

Anti-inflammasome Actions Author (year)

Cardamonin IL-1β-treated human 

chondrocytes

NRF2↑, NQO-1↑ NLRP3↓, Caspase 1↓, ASC↓ Jiang et al, 202180

Ginkgolide C ATDC5 cell line NRF2↑, NOQ1↑, 
Keap1↓

p-IRE1a/IRE1a↓, TXNIP↓, NLPR3↓, ASC↓, 
Caspase1↓, GSDMD-N↓

Jia et al, 202481

Licochalcone A IL-1β-treated mouse 

chondrocytes

Nucleus, 

NRF2↑Cytoplasm, 
HO-1↑

NLRP3↓, Cle-GSDMD/GSDMD↓, Cle-caspase1 

/Pro-caspase1↓, ASC↓, IL-1β↓, IL-18↓
Yan et al, 202079

Loratadine AGEs-treated human 
chondro-cytes

NRF2↑ NLRP3↓, ASC↓, P10↓, IL-1β↓, IL-18↓ Gao et al, 202082

Bisdemethoxycurcumin TBHP-treated 

ATDC5 cell line

NRF2↑, HO-1↑ NLRP3↓, GSDMD↓, Caspase1↓, IL-1β↓ Jin et al, 202483

Abbreviations: NLRP3, NOD-like receptor protein 3; ASC, apoptosis-associated speck-like protein; p-IRE1α/IRE1α, Phosphorylation-Inositol-requiring enzyme 1α/Inositol- 
requiring enzyme 1α; TXNIP, thioredoxin-interactingprotein; GSDMD-N, the cleaved N-terminal end of gasdermin D; Cle-GSDMD/GSDMD, cleaved-gasdermin 
D/gasdermin D; AGEs, Advanced glycation end-products; P10, caspase-9 p10 Protein.
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macrophage polarization is a crucial strategy for alleviating OA. Notably, NRF2 can effectively inhibit the differentiation 
of macrophages into the M1 type and promote differentiation into the M2 type.9 STUB1, also known as CHIP, is 
a chaperone-dependent E3 ubiquitin ligase that can ubiquitinate NRF2, thus inhibiting its function.97 The research team 
led by Zheng Wang demonstrated that silencing STUB1 reduces NRF2 ubiquitination, thereby promoting macrophage 
differentiation into the M2 type and inhibiting the progression of OA. Another research team showed that TRPV1-evoked 
Ca(2+) influx promoted the phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) and facilitated 
the nuclear localization of NRF2, ultimately resulting in the inhibition of M1 macrophage polarization.98 These results 
prove that NRF2 is a key target for regulating macrophage polarization. Regarding the mechanism, NRF2 may inhibit 
M1 macrophage differentiation by promoting the expression of HO-1, thereby inhibiting the NF-κB signaling pathway. 
NRF2 may promote M2 macrophage differentiation through the Transforming Growth Factor-beta/SMAD (TGF-β/ 
SMAD) and Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathways.9 Besides 
regulating macrophage polarization, NRF2 can also directly block the transcription of pro-inflammatory cytokines, 
thereby inhibiting the inflammatory response of macrophages.99 In summary, the activation of NRF2 can inhibit 
inflammatory macrophages, promote the differentiation of macrophages into a reparative type, and thus effectively 
protect cartilage and inhibit the progression of OA.

The Role of NRF2 in Synovial Fibroblasts
In the inflammatory microenvironment of OA, macrophages and synovial fibroblasts in the synovium are often in an 
activated inflammatory state. Activated synovial fibroblasts produce a large amount of inflammatory cytokines (such as 
IL-1β, Tumor Necrosis Factor-α (TNF-α)), metabolic degradation factors (such as MMPs and ADAMTS), and ROS. 
These factors further activate the synovial inflammation and damage cartilage. Therefore, inhibiting synovial inflamma-
tion is crucial for alleviating OA. The activation of NRF2 is vital for inhibiting the activation of inflammatory synovial 
fibroblasts. NRF2 activators such as oltipraz can inhibit the hyperactivation of human fibroblasts.21 Carnosine can 
activate NRF2 and HO-1 expression, effectively inhibiting MMPs and ROS levels in inflammatory synovial fibroblasts 
and protecting the mitochondrial membrane potential.100 The dihydroartemisinin derivative DC32 can also effectively 
activates the NRF2 signaling pathway, and concurrently inhibits the NF-κB signaling pathway, thereby effectively 
suppressing synovial inflammation.101 These results indicate that NRF2 is a key target for inhibiting synovial inflamma-
tion, thus protecting cartilage.

Inhibition of Osteoclastogenesis
Osteoclasts impact the development and progression of OA through various mechanisms.7,8 In OA, increased osteoclast 
activity leads to bone loss, particularly in the subchondral bone, which in turn results in subchondral bone sclerosis and 

Table 5 Activation of NRF2 Inhibits Chondrocyte Ferroptosis

Regulators Cell Type and 
Source

NRF2 Signaling 
Pathway

Anti-ferroptosis Actions Author (year)

Gamma- 

oryzanol

IL-1β-treated rat 

chondrocytes

Nucleus, 

NRF2↑Cytoplasm, 

HO-1↑

GPX4↑, SLC7A11↑, GSH↑, HO-1↑, MDA↓, Lipid ROS↓ Dai et al, 202491

Baicalein IL-1β-treated mouse 

chondro-cytes

NRF2↑, Keap1↓ Intra-cellular iron ↓, HO-1↑, Lipid ROS↓, mitochondrial 

damage↓
Wan et al, 202392

Curcumin Erastin-treated mouse 
chondro-cytes

NRF2↑ Intra-cellular iron ↓, MDA↓, SOD↑, GSH-Px↑, ACSL4↓, 
SLC7A11↑, GPX4↑, FTH1↑, TFR1↓

Zhou et al, 202393

Deferoxamine IL-1β-treated mouse 

chondro-cytes

NRF2↑ Intra-cellular iron ↓, HO-1↑, NQO1↑, ACSL4↓, LOX15↓, 

LPCAT3↓, p53↓, MDA↓, Lipid ROS↓, mitochondrial 
damage↓

Guo et al, 202294

Abbreviations: SLC7A11, Solute Carrier Family 7 Member 11; GSH, L-Glutathione; GSH-Px, Glutathione Peroxidase; ACSL4, Acyl-CoA synthetase long-chain family 
member 4; FTH1, Ferritin Heavy Chain 1; TFR1, Transferrin Receptor 1; LOX15, Lipoxygenase 15; LPCAT3, Lysophosphatidylcholine Acyltransferase 3.
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osteophyte formation. Additionally, osteoclasts are activated in the inflammatory environment of arthritis and can secrete 
inflammatory factors and enzymes, which promote local inflammation. Therefore, inhibiting osteoclast activity is crucial 
for slowing the progression of OA. The activation of the NRF2/HO-1 signaling pathway can effectively inhibit nuclear 
factor-κB ligand (RANKL)-induced osteoclast formation and extracellular matrix (ECM) degradation.102

Pain
Pain is a prominent symptom of OA.103 The types of pain associated with OA are still debated. Nerve damage, 
inflammation, and damaged joint tissues might be the causes of OA pain.104 Pharmacologic treatment of OA pain relies 
primarily on Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and opioids.103 NSAIDs are not effective in alleviating 
OA pain, and opioids have multiple side effects, such as nausea and dizziness.105 Therefore, new treatment options are 
needed. The activation of NRF2 can alleviate pain behaviors in rats with OA. The activation of NRF2 nuclear 
transcription can enhance the synthesis of peroxidase enzymes, such as GSH, NQO1, and glutathione S-transferase 
(GST), leading to a subsequent reduction in the initial pain experienced in OA.106–108

Antioxidants Combined with Nanospheres
NRF2 activators such as Oltipraz, curcumin, and resveratrol suffer from poor water solubility, which significantly 
impacts their biological activity. With advancements in nanotechnology, issues such as poor drug solubility and rapid 
degradation can be effectively addressed. Hengfeng Yuan’s team encapsulated the NRF2 activator Oltipraz in ROS- 
responsive nanoparticles, which, compared to standalone nanoparticles, could effectively activate the NRF2/HO-1 
signaling pathway, thereby exhibiting ROS scavenging and anti-apoptotic properties in chondrocytes.109 A bioactive 
gel based on gallen gum (GG-CD@ARC) encapsulated with the antioxidant arctiin was developed to alleviate the 
progression of OA by effectively activating NRF2.110 Another study demonstrated that antioxidant arbutin-loaded gelatin 
methacryloyl-liposome (GM-Lipo@ARB) microspheres were developed to activate the NRF2 signaling pathway, reduce 
oxidative stress in OA cartilage, and thus alleviate OA.111 Therefore, combining antioxidants with nanotechnology to 
more efficiently activate the NRF2 signaling pathway could more effectively inhibit the progression of OA.

Conclusion and Prospects
As a transcription factor, NRF2 can affect OA chondrocytes, macrophages, synovial fibroblasts, and osteoclasts. NRF2 
inhibits inflammation in OA chondrocytes by suppressing the NF-κB signaling pathway, promotes the expression of 
various antioxidant enzymes such as HO-1 and NQO1, thus inhibiting oxidative stress, protecting the cartilage extra-
cellular matrix, reducing aging and death of chondrocytes (including apoptosis, ferroptosis, and pyroptosis), and 
alleviating joint pain. Additionally, NRF2 can inhibit the differentiation of synovial macrophages into the M1 type 
and promote differentiation into the M2 type, thus creating an environment conducive to cartilage repair. The activation 
of NRF2 can also inhibit inflammatory synovial fibroblasts, thereby reducing their secretion of pro-inflammatory 
cytokines and metabolic degradation factors, and protecting the cartilage. NRF2 also inhibits the formation of osteoclasts, 
thus maintaining the morphology of the subchondral bone. Various drugs have proven effective in alleviating the 
progression of OA by activating NRF2. Furthermore, the development of nanotechnology can be well integrated with 
NRF2 activators, activating NRF2 through prolonged drug release, thereby effectively alleviating OA.

Given the protective role of NRF2, researchers should actively explore compounds or drugs that effectively activate 
NRF2. The specific molecular mechanisms of NRF2 in OA, including its regulatory effects on chondrocytes, synovial 
fibroblasts, osteoclasts, and macrophages, require further in-depth research. These studies will help to elucidate how 
NRF2 influences the progression of OA through its antioxidant and anti-inflammatory pathways. Additionally, utilizing 
gene editing technologies, such as CRISPR-Cas9, to directly regulate NRF2 gene expression has emerged as a novel 
therapeutic strategy.

While NRF2 exhibits various benefits, current research on NRF2 still faces several challenges and difficulties. Most 
of the NRF2 activators developed so far lack high selectivity, and while activating the antioxidant pathway, they may also 
activate other signaling pathways, such as glycolysis and mitochondrial function, leading to unintended biological 
effects.112,113 Furthermore, although NRF2 activators may show positive effects in the short term, the safety and side 
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effects of long-term use still require further investigation. Additionally, while nanocarriers can enhance the efficacy of 
NRF2 activators, their drug-loading efficiency and sustained-release properties need further improvement. Finally, 
although NRF2 shows great potential in laboratory studies, translating this potential into clinical applications remains 
challenging. Currently, clinical research on NRF2 activators in OA remains in its early stages. Most studies are focused 
on preclinical models, and there are still relatively few clinical trials specifically targeting OA with NRF2 activators. The 
safety and efficacy of these compounds in long-term human use are still under investigation.

In summary, activation of NRF2 can effectively regulate the function of chondrocytes, synovial macrophages, 
synovial fibroblasts, and osteoclasts, thereby effectively inhibiting synovial inflammation, protecting cartilage and 
subchondral bone, alleviating joint pain, and serving as a potential target for treating OA. However, researchers still 
need to overcome issues of selectivity and safety, as well as challenges related to drug delivery, to achieve clinical 
application of NRF2 activators. Addressing these challenges will open new prospects for the treatment of OA.
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