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ABSTRACT
Cardiomyocytes both cause and experience continual cyclic deformation. The
exact effects of this deformation on the properties of intracellular organelles
are not well characterized, although they are likely to be relevant for cardio-
myocyte responses to active and passive changes in their mechanical environ-
ment. In the present study we provide three-dimensional ultrastructural
evidence for mechanically induced mitochondrial deformation in rabbit ventric-
ular cardiomyocytes over a range of sarcomere lengths representing myocar-
dial tissue stretch, an unloaded “slack” state, and contracture. We also show
structural indications for interaction of mitochondria with one another, as well
as with other intracellular elements such as microtubules, sarcoplasmic reticu-
lum and T-tubules. The data presented here help to contextualize recent
reports on the mechanosensitivity and cell-wide connectivity of the mitochon-
drial network and provide a structural framework that may aide interpreta-
tion of mechanically-regulated molecular signaling in cardiac cells. Anat Rec,
302:146–152, 2019. © 2018 The Authors. The Anatomical Record published by
Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
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As the heart beats, cardiomyocytes undergo significant
phasic deformations with up to �10% changes in length,
compared to their resting state. The three dimensional
(3D) organization of intracellular material will change, in
this context, on a beat-by-beat basis—but how exactly is
unknown.

Cardiomyocytes are densely packed, with “free cytosolic
volume” as low as 4–7% (Kaasik et al., 2010), and neither
the cell nor its membranous organelles such as mitochon-
dria are presumed to change volume during the

contractile cycle. Cardiomyocytes are enclosed by a
deformable but nondistensible lipid bilayer that contains
numerous surface folds and invaginations that unfold
during strain (Kohl et al., 2003). This “spare membrane”
addresses the otherwise problematic change in surface-to-
volume ratio that would occur upon stretching an isovolu-
mic “cylinder” (McNary et al., 2012; Pfeiffer et al., 2014).
Intracellular organelles are arranged between strands of
the contractile filament lattice, within a network of rigid
and elastic nonsarcomeric cytoskeletal filaments. These
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organelles are influenced by deformations resulting from
passive cardiomyocyte stretch and active shortening, a
process aided by cytoskeletal filaments that bear and
transmit mechanical loads throughout the cell (Bartolak-
Suki et al., 2017; Ingber, 2008; Robison et al., 2016). As
shown for the surface sarcolemma (Kohl et al., 2003;
Pfeiffer et al., 2014), some intracellular membranous
structures, such as T-tubules, contain “spare membrane”
in the shape of caveolae (Burton et al., 2017).

Mitochondria are traditionally viewed as membrane-
enclosed prolate spheroids. They are amply present
throughout cardiomyocytes, occupying ~30–40% of cell vol-
ume (Tsushima et al., 2018). They are sandwiched tightly
between sarcomeres as well as clustered around the nucleus
and in the subsarcolemmal space (Piquereau et al., 2013).
Their main roles are energy metabolism and apoptotic path-
way signaling. In cardiomyocytes, mitochondria have also
been shown to be involved in Ca2+ signaling, potentially at
time-scales relevant for excitation-contraction coupling.
This mitochondrial Ca2+ signaling may be activated by local
deformation (Belmonte&Morad, 2008).

Given the importance of mitochondria for cardiomyocyte
function and their localization next to the contractile
machinery, it seems natural to question whether, and if so
how, their shape is affected by mechanical deformation of
heart muscle, especially in the light of recent reports on
mitochondrial mechanosensitivity (Liao et al., 2004;
Bartolak-Suki et al., 2017; Iribe et al., 2017; Schonleitner
et al., 2017). The question arises as to whether mitochondria
deform on a beat-by-beat basis, and if so, how they accommo-
date this with unchanged volume-surface ratio. Based on
transmitted light confocal line-scanning and frequency
domain analyses in isolated rat cardiomyocytes, it has been
suggested that mitochondria do indeed shorten and widen
during cell contraction (Yaniv et al., 2011), but due to the res-
olution of this technique, any potential deformation-induced
mismatch between volume and surface could not be charac-
terized. In addition, interactionswith the cytoskeleton, a key
transmitter of mechanical stimuli within the cell, have also
been shown to influence mitochondrial structure and func-
tion (Bartolak-Suki et al., 2017), and it would be desirable to
put this into a sarcomere-length dependent context.

Here we investigate cardiomyocyte interfibrillar mito-
chondrial deformation as a function of sarcomere length
using 3D electron tomography in intact rabbit left ventric-
ular tissue, fixed in different mechanical states.

MATERIALS AND METHODS

All investigations reported in this manuscript were
ethically approved and conformed to the UK Home Office
guidance on the Operation of Animals (Scientific Proce-
dures) Act of 1986.

New Zealand white rabbit hearts (n = 6) were swiftly
excised after euthanasia (pentobarbital overdose),
Langendorff-perfused with Krebs–Henseleit solution (con-
taining [in mM]: NaCl 118, KCl 4.75, CaCl2 2.5, NaHCO3
24.8, MgSO4 1.2, KH2PO4 1.2, glucose 11, insulin
10 U L−1; bubbled with carbogen to achieve pH 7.4), and
after a 5 min wash of the coronary circulation, the desired
mechanical state was introduced. This involved:
(i) contracture, induced by Na+-for-Li+ substitution in the
perfusion buffer with concurrent caffeine application
(10 mM), (ii) a resting “slack” state, achieved by cardiople-
gically arresting the heart using a high-K+ (25 mM)

version of Krebs–Henseleit solution, (iii) stretch, caused
by intraventricular balloon inflation during cardioplegic
arrest (as in ii). All solutions were controlled for iso-
osmolality (295–305 mOsm, Knauer AG, Berlin). As soon
as the desired mechanical state was achieved (usually
within 2 min), hearts were perfusion-fixed with iso-
osmotic Karnovsky’s fixative (3:1:1 mix of sodium cacody-
late, paraformaldehyde, and glutaraldehyde; 300 mOsm;
Solmedia Limited, Shrewsbury, UK; after (Karnovsky,
1964)). Tissue fragments were excised from the left ven-
tricle and washed with 100 mM sodium cacodylate, post-
fixed in 1% OsO4 for 1 hr, dehydrated in graded acetone,
and embedded in Epon-Araldite resin. Semi-thick
(275 nm) sections were placed on formvar-coated copper
slot-grids, post stained with 2% aqueous uranyl acetate
and Reynold’s lead citrate. Colloidal gold particles
(15 nm) were added to both surfaces of the sections to
serve as fiducial markers for tilt series alignment.

Preparations were imaged at the Boulder Laboratory
for 3D Electron Microscopy of Cells (University of Colo-
rado, Boulder, CO) using an intermediate voltage electron
microscope (Tecnai TF30; FEI Company, now Thermo-
Fisher Scientific, Eindhoven, The Netherlands) operating
at 300 kV. Images were captured on a 4 K × 4 K charge-
coupled device camera (UltraScan; Gatan, Pleasanton,
CA) using the SerialEM software package (Ress et al.,
1999). For tomographic imaging, the specimen holder was
tilted from +60� to −60� at 1� intervals. For dual-axis tilt
series the specimen was rotated by 90� in the X–Y plane,
before another +60� to −60� tilt series was taken. The
images from each tilt-series were aligned by fiducial
marker tracking and back-projected to generate two sin-
gle full-thickness reconstructed volumes (tomograms),
which were then combined to generate a single high-
resolution 3D reconstruction of the original partial cell
volume (Mastronarde, 1997; Mastronarde, 2005). Isotro-
pic voxel size was (1.206 nm)3. All tomograms were pro-
cessed and analyzed using IMOD software (Mastronarde,
2005), which was also used to generate 3D models of rele-
vant structures (Kremer et al., 1996). Models were
smoothed and meshed to obtain the final 3D representa-
tion, in which spatial relations of various cardiomyocyte
substructures were quantified, as described before (Rog-
Zielinska et al., 2016).

RESULTS
Mechanically induced Changes in Mitochondrial
Shape

Cross-sectional shapes of interfibrillar mitochondria,
analyzed in a plane parallel to contractile fibers, as well as
the orientation of their major axis, are correlated with the
mechanical state of the cell (Fig. 1). During stretch, mito-
chondria become elongated (i.e., exhibiting the highest
eccentricity, here defined as E=c

a, where c is the distance
from the center to the focus of the ellipse, and a is the dis-
tance from the center to a vertex of an ellipse; Fig. 1C)
with their major axis aligned near-parallel to the contrac-
tile filament bundles (Fig. 1D). During contracture, mito-
chondria become more compact and turn into less
regular-shaped volumes, often akin to convex polyhedrons
(Supporting Information Fig. S1A), with their main axis
orientation becoming more variable. In parallel to these
changes in mitochondrial shape, the interfibrillar gap
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width (measured at the level of M-lines of neighboring
sarcomeres) becomes larger in contracture, compared to
rest and stretch (Supporting Information Fig. S1B).

Microtubular Cytoskeleton and Mitochondrial
Arrangement

Careful examination of interfibrillar mitochondrial net-
works in 3D electron tomographic stacks revealed an
abundant presence of interweaved microtubules (Fig. 2),
running along the interfibrillar space. Analysis of the
angle of relative to the direction of contractile filaments
microtubules in different mechanical states revealed that
this angle is higher during contracture compared to
stretched cells (Fig. 3), consistent with the 3D deforma-
tion of individual mitochondria described in Figure 1 and
Supporting Information Figure S1.

Mitochondria Form a Structurally Integrated
Network

While 2D sections tend to show mitochondria as appar-
ently disconnected ellipsoids, 3D reconstruction reveals
the presence of individual long-winded, tortuous mito-
chondrial structures (Fig. 4A). Additionally, otherwise
separate mitochondria can be linked by structural tethers
(Fig. 4B), as well as membranous bridges (Fig. 4C), all
supporting the notion of long-distance communication
inside the mitochondrial network (Glancy et al., 2017).

Mitochondria Form Structural Tethers With
Sarcoplasmic Reticulum and T-Tubules

Consistent with previous studies (Hayashi et al., 2009),
mitochondria were found to form electron-dense, often
regularly spaced tethers with sarcoplasmic reticulum

Fig. 1. Mitochondrial shape changes with mechanical state of cardiomyocytes. (A) Representative electron tomographic micrographs of
interfibrillar mitochondria in rabbit ventricular cardiomyocytes, fixed during contracture, at rest, and during stretch. (B) A schematic representation
of the analysis performed to assess mitochondrial (green) shape (E = eccentricity) and main axis orientation in relation to contractile fibers (absolute
value of minimum intersection angle, α between major axis and sarcomere plane). (C) Mitochondrial eccentricity is positively correlated with
sarcomere length. (D) The absolute value of the minimum intersection angle between mitochondrial main axis and the sarcomere plane decreases
with sarcomere length. Scale bars: 500 nm (in A); n = 17 to 103 mitochondria per group, N = 6 animals (in C and D), analysis with one-way ANOVA.
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(SR) cisterns, including both T-tubule associated junc-
tional, as well as network SR (Fig. 5). Structural connec-
tions were also observed between T-tubules and
mitochondria (Fig. Error! Reference source not found.),
often creating a continuous “multi-structure” of T-tubule
SR and mitochondria. The size of these electron-dense
entities was not different from that of ryanodine receptors
(RyR), seen regularly between T-tub and SR in the same
samples. The maximum width of electron densities at the
interface of T-tubule and SR was 14.6 nm [�2.4 nm (stan-
dard deviation, SD), n = 92, N = 6 animals]; at the inter-
face between SR and mitochondria 13.7 nm (�3.2 SD,
n = 106, N = 6 animals); and between T-tubules and mito-
chondria 13.9 nm (�2.7 SD, n = 104, N = 6 animals). The
interdensity distances at the interface of T-Tubule and
SR were 17.33 nm (� 3.6 SD, n = 107, N = 6 animals); at
the interface between SR and mitochondria 17.76 nm (�
4.14 SD, n = 104, N = 6 animals); and between T-tubules
and mitochondria 18.05 nm (� 5.03 SD, n = 94, N = 6
animals)

DISCUSSION

First, mitochondrial shape changes correlate with the
mechanical state of the cell: with increasing sarcomere
length, interfilament gap width becomes progressively
narrower, and interfibrillar mitochondria become more

elongated in a near-parallel direction to contractile fila-
ments (see Fig. 1). Our findings extend previous light-
microscopy based information (Yaniv et al., 2011), with
higher resolution 3D data that, in addition to slack and
contracted cells, includes sarcomere stretch to levels that
cells will experience during diastolic loading. With
stretch, there is a progressive change of cross-sectional
shapes from relatively compact polygons toward elon-
gated elliptoids. The significance and functional conse-
quences of these shape changes will require further
research; they could potentially contribute to mitochon-
drial mechanosensing and mechanotransduction. Cardiac
mitochondria—both in cardiomyocytes and cardiac
fibroblasts—respond to deformation with changes in their
membrane potential, ATP/ ROS production, and activa-
tion of cell cycle and apoptotic pathways (Liao et al.,
2004; Iribe et al., 2017). In addition, mitochondria are
capable of accumulating Ca2+ and may buffer cytosolic
Ca2+ fluctuations (Dedkova & Blatter, 2008), potentially
in a mechanically modulated manner (Morad et al., 2005;
Belmonte & Morad, 2008; Iribe et al., 2009; Miragoli
et al., 2016). A potentially related phenomenon, mitochon-
drial swelling, may also influence cardiac force develop-
ment, contractility, and even gene expression, through
changes in internal pressure and by affecting the mor-
phology of neighboring organelles (Kaasik et al., 2010;
Burton et al., 2017).

Fig. 2. Microtubular network and interfibrillar mitochondria. Representative electron tomographic micrographs with 3D segmented models
overlaid (top panel), separate (middle panel) and displayed at different rotation angle (bottom panel; mitochondria-green, microtubules-red).
Microtubules run along the intersarcomeric space and interweave with several mitochondria in a row. Note that some mitochondria have an
elongated shape spanning more than one sarcomere (arrow). Scale bar: 500 nm.
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Second, mechanical effects on mitochondria may be
mediated not only via beat-by-beat “lateral squeezing” by
neighboring contractile lattice structures (Yaniv et al.,
2011), but also through mechanical cues from cytoskeletal
elements (Saetersdal et al., 1990). In eukaryotes, this
interaction is primarily mediated by microtubules, which
have been shown to physically bind to the outer mito-
chondrial membrane (Hirokawa, 1982; Anesti & Scorrano,
2006; Kuznetsov et al., 2013). Mitochondria often display
a subcellular distribution corresponding to that of the
cytoplasmic microtubular network (Heggeness et al.,
1978), and disruption of microtubular integrity can lead
to altered mitochondrial distribution (Miragoli et al.,
2016). This may be relevant for mitochondrial function,
which is additionally affected by properties of the extra-
cellular matrix such as elasticity and fiber alignment
(Lyra-Leite et al., 2017). Here, we confirm the close spa-
tial interrelation between mitochondrial and microtubu-
lar networks, and the presence of matching spatial
rearrangement of the two in the context of changes in sar-
comere length (Figs. 2 and 3).

Third, cell deformation alters the complex 3D arrange-
ment of the mitochondrial network. It is important to
note that 3D structures may not always be inferred suc-
cessfully from 2D section data. This should be obvious for
any 2D mitochondrial shape that is incompatible with
rotational symmetry. But even when cross-sections are
(near-)elliptical, it does not necessarily follow that the
associated organelle forms a prolate spheroid. In fact,
elongated “snake-like” configurations are present in
healthy myocardium (Fig. 4A). These may be more fre-
quent in metabolic diseases (Tsushima et al., 2018). Of
note, deformation of such complex 3D structures would
not be associated with the stretch-induced mismatch in
volume:surface ratio one would encounter in spheroids.

Fourth, our data corroborates the view that individual
mitochondria do not function in isolation from one another,

but constitute a dynamic network of communicating organ-
elles (Glancy et al., 2017) http://science.sciencemag.org/
content/361/6401/eaan5835/tab-article-info. Mitochondrial
shape in ventricular myocytes was highly variable, not only
between but also within individual cells (e.g., Fig. 2). As
mentioned, aside from “classic” ellipsoids, our 3D data
revealed the presence of non-ellipsoid convex polyhedrons—
in particular at short sarcomere lengths—and elongated
snake-like mitochondria. Any 2D cut through the latter may
give rise to multiple, apparently independent sections of the
same mitochondrion, including “elliptic” sections that could
erroneously be interpreted as multiple individual spheroid-
shaped organelles. We also observed electron-dense intermi-
tochondrial connections and membranous nano-junctions

Fig. 4. Mitochondria form locally interconnected 3D networks
extending beyond a single sarcomere in rabbit ventricular
cardiomyocytes. (A) Representative electron tomographic micrograph
and 3D segmented model of a single mitochondrion (green) and
associated microtubules (red), showing an elongated tortuous 3D
arrangement that is not evident from 2D sections alone (cf., EM section,
top, and 3D reconstruction, bottom). In addition, ultrastructural tethers
(B) and membranous bridges (C) are present between seemingly
separate mitochondria (visualized by suitable selection of 2D cutting
planes through the 3D tomography data sets). Scale bars: 500 nm (in A)
and 100 nm (in B and C).

Fig. 5. Electron-dense structures between mitochondria (M) and both
junctional and network sarcoplasmic reticulum (SR) as well as T-tubules
(T). Representative electron tomographic micrographs highlighting the
presence and similarity of electron-dense structures connecting T-
tubules and SR (red arrows: ryanodine receptors), SR and mitochondria
(blue arrows) and T-tubules and mitochondria (green arrows). Scale
bars: 50 nm.

Fig. 3. The orientation of microtubules changes with the sarcomere
length, and correlates with mitochondrial deformation. (A) The minimum
intersection angle between microtubules and the associated sarcomere
plane decreases with increasing sarcomere length, n = 14 to
26 microtubules per group, N = 6 animals, analysis with one-way
ANOVA. (B) Representative 3D segmented models of microtubules in
cells fixed in different deformation states; gray line illustrates axial
orientation of associated sarcomeres. (C) Schematic of the correlation
of microtubular orientation and mitochondrial deformation in different
mechanical states.
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between otherwise separate mitochondria (Fig. 4B and C),
consistent with previous reports of the existence of a “mito-
chondrial reticulum” (Glancy et al., 2015). The presence of
such contacts has been observed before (Huang et al., 2013;
Lavorato et al., 2017), and they are thought to enable mito-
chondrial communication in cells with restricted mitochon-
drial motility (such as muscle cells), for example during
periods of stress (Vincent et al., 2017). Additionally, a struc-
tural/functional syncytium has been hypothesized to enable
tight, rapid electrical coupling between mitochondria, with
the mitochondrial network proposed to work as cell-wide
coupled oscillator, capable of receiving and transmitting
mechanical stimuli (Aon et al., 2006). Currently, it is not
known which mitochondrial morphology (individual spher-
oids or contorted tubules) is closer to the native state in vivo,
and whether/how geometric features of organelles change
during sample preparation (here, we took care to use isos-
motic solutions and to complete sample fixation in under
10 min from organ excision and exposure to crystalloid solu-
tions). The mitochondrial network is thought to be highly
dynamic, including fusion and fission of mitochondria. Mito-
chondrial morphology can change dramatically in response
stress (Mishra & Chan, 2014). Cells with a high fusion-to-
fission ratio may have a predominance of long, tubular mito-
chondria forming a highly interconnected network; con-
versely, cells with a low fusion-to-fission ratio may mainly
have fragmented mitochondria with reduced connectivity
(Sesaki & Jensen, 1999). Additionally, mitochondrial tubula-
tion has been proposed as a mechanism for creation of
dynamic thin tubules, and eventually lattices that intercon-
nect to generate the mitochondrial network (Wang
et al., 2015).

Fifth, mechanical deformation of mitochondria can
affect cardiomyocyte function through interaction with
the SR (Franzini-Armstrong, 2007). Mitochondria have
previously been shown to be physically tethered to the SR
in mouse myocardium (Hayashi et al., 2009), and similar
structures are reported here for rabbit ventricular cardio-
myocytes (Fig. 5). The close proximity of the two compart-
ments is thought to play a role in Ca2+ signaling,
exchange, and buffering and, consequently, to modulate
excitation-contraction coupling (Duchen et al., 1998; Riz-
zuto et al., 1998; Lu et al., 2013). SR-mitochondrial Ca2+

transfer is believed to occur through direct physical con-
tact in cardiomyocytes (Lopez-Crisosto et al., 2017), and
the molecular identity of those tethers has been previ-
ously suggested as mitofusin (Naon et al., 2016). Some of
the structures described here share structural similarity
to mitochondrial ryanodine receptors, as proposed in ear-
lier studies (Csordás et al., 2001; Franzini-Armstrong,
2007; Lukyanenko et al., 2007). The consequences of mito-
chondrial deformation for structural cross-talk with the
SR are not known. Previously, cytoarchitectural perturba-
tions have been shown to affect SR-mitochondrial func-
tional coupling (Wilding et al., 2006; Joubert et al., 2008;
Lopez-Crisosto et al., 2017). Additionally, we describe
electron dense RyR-like structures between T-tubules
and mitochondria.

The insight described under points one to five needs to
be considered in the context of several study limitations.
These include the lack of same-cell observations and true
beat-by-beat temporal resolution of the sample processing
approach (reaching the desired mechanical state required
minutes, not seconds). Both limitations are difficult to
address while acquiring 3D nano-scale data from cells in

situ. We cannot confirm, therefore, whether the changes
we describe here will also occur on a beat-by-beat basis
(although a previous study, using single-axis 10-nm-
resolution line scan analysis, would seem to support such
an extrapolation; see (Yaniv et al., 2011)).

Overall, we conclude that mitochondria become more
elongated in a sarcomere-parallel direction as sarcomere
length increases from peak-contraction to diastolic
stretch. This elongation is associated with a principal
change in mitochondrial shape, from convex polyhedrons
to prolate spheroids, alleviating the otherwise present
mismatch in volume-surface ratio. Individual mitochon-
dria can from elongated tube-like structures that extend
over multiple sarcomeres and have a length-to-width
ratio exceeding 30:1. We see evidence of outer membrane
connections of neighboring mitochondria, and of (RyR-
sized and -spaced) electron-dense structural connections
of mitochondria with the SR and T-tubules. In this con-
text, 3D nano-scale reconstructions are a vital enabling
methodology, both to avoid errors in projecting from 2D
section data to 3D structural properties (mitochondrial
“snakes”), and to select virtual cutting planes that allow
characterization of rare (intermitochondrial membrane
tethers), punctate (RyR), or high aspect ratio elongated
structures (microtubules).
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