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Abstract: Feature selection and sample clustering play an important role in bioinformatics. Traditional
feature selection methods separate sparse regression and embedding learning. Later, to effectively
identify the significant features of the genomic data, Joint Embedding Learning and Sparse Regression
(JELSR) is proposed. However, since there are many redundancy and noise values in genomic data,
the sparseness of this method is far from enough. In this paper, we propose a strengthened version
of JELSR by adding the L1-norm constraint on the regularization term based on a previous model,
and call it LJELSR, to further improve the sparseness of the method. Then, we provide a new
iterative algorithm to obtain the convergence solution. The experimental results show that our
method achieves a state-of-the-art level both in identifying differentially expressed genes and sample
clustering on different genomic data compared to previous methods. Additionally, the selected
differentially expressed genes may be of great value in medical research.

Keywords: differentially expressed genes; feature selection; L1-norm; sample clustering;
sparse constraint

1. Introduction

With the emergence of deep sequencing technologies, considerable genomic data have become
available. Since genomic data are usually high-dimension small-sample data, that is, the dimension
of the gene is large, the dimension of the sample is small, and it is easy to cause interference when
performing feature selection and difficult to understand the sample directly [1]. Additionally, a large
number of superfluous and extraneous genes are possessed in these genomic data, which severely
interfere with the biological processes. As the case stands, only a small minority of genes with
biological sense contribute to disease research [2]. Accordingly, how to identify these key genes from
the massive high-dimensional genomic data is a hotspot and nodus in research. Furthermore, studies
have testified that these key genes are efficaciously extracted by embedding learning [3]. Furthermore,
cluster analysis is based on the similarity of each data point to classify the samples or genes, which is
helpful for accurate determination of the cancer subtype. Some studies have also demonstrated that
embedding learning and sparse regression is good for cluster analysis and feature selection [4,5].

Feature selection is used to pick out k features from m dimensional data (m > k) to optimize
a specific index of the system [6]. Initially, some information on characteristic genes is extracted to
constitute the data after the reduction to achieve dimensionality reduction. Following this, some genes
associated with disease are dredged up from the low-dimensional data on medical research. At present,
feature selection is extensively and continually studied owing to the usefulness and practicality of
this method. However, traditional feature selection approaches have some issues: (1) The manifold
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structure is not fully considered, which can reflect the internal geometric structure in data [7]; and
(2) they only use the statistical strategy, which can affect the accuracy and reliability of the results.
Moreover, procedures of traditional feature selection method are performed independently, such as
embedding learning and sparse regression [8,9]. However, a better performance can be achieved
by combining two of the above independent procedures. Hou et al. came up with a new method
of feature selection via Joint Embedding Learning and Sparse Regression (JELSR), according to the
above ideas [5]. This method is a good solution to the above-mentioned issues. JELSR has a good
effect on feature selection outstrip of these traditional methods. Nevertheless, there is still a problem
thereinafter; since the L2,1-norm penalty only sparsely constrains the rows of data, the sparsity of the
method is far from satisfactory. However, if the sparseness is not enough, taking too many unrelated
genes into account can cause serious errors. Hence, an efficient sparse method should be explored to
strengthen the previous method.

LASSO (Least Absolute Shrinkage and Selection Operator) was first proposed by Robert
Tibshirani [10]. It constructs an L1-norm penalty function to obtain a more refined model and
compresses some coefficients to get zero coefficients. Both the L1-norm constraint and the L2,1-norm
constraint can produce sparse effects, but the sparsity of the L1-norm constraint is decentralized
and the L2,1-norm constraint can only produce row sparseness, as shown in Figure 1. However, the
combination of the L1-norm and the L2,1-norm constraints can generate internal row sparsity and
enhance the correlation between rows and columns of the matrix [11], as shown in Figure 1, so the
occurrence of the redundant and irrelevant genes can be reduced. In this paper, to obtain more sparse
effects, we propose a new method by adding an L1-norm constraint on the sparse regression matrix
based on the JELSR (LJELSR). First, the corresponding graph is constructed to depict the inherent
structure of the data. Then, the graph matrix is embedded into the following steps: feature ranking
and data regression. Owing to the similarity between data points described by the above constructed
graph, the clustering effect is improved to some degree. Finally, to get more sparse effects, we combine
embedding learning and sparse regression with L1-norm through linear weighting to complete the
corresponding feature selection and cluster analysis.
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Figure 1. The diagrammatic sketch of different norms.

The major merits of our work are shown below:

1. More zero values are produced by adding an L1-norm constraint on the sparse regression matrix,
such that we get more sparse results.

2. The internal geometric structure of data is preserved along with dimensionality reduction by
embedding learning to reduce the occurrence of inaccurate results.

3. Although an exact solution cannot be obtained by our method, we provide a convergent iterative
algorithm to get the optimal results.

The other parts of this paper are arranged as listed below. Section 2 details some comparative
experiments and the analysis of experimental results from different datasets. Section 3 describes some
related materials and presents the methodology of LJELSR. A conclusion of this paper is given in
Section 4.
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2. Results

The LJELSR, JELSR [5], ReDac [12], and SMART [11] are used to select differentially expressed
genes and test the performance of the proposed method for different genomic data. Among them,
the JELSR, ReDac, and SMART are used as comparison methods.

2.1. Datasets

To validate the effectiveness of our method, the LJELSR, JELSR, ReDac, and SMART methods
are run on three datasets, including the ALL_AML, the colon cancer, and the ESCA datasets.
The ALL_AML dataset includes acute lymphoblastic leukemia (ALL) and acute myelogenous leukemia
(AML) [13], and ALL has also been divided into T cell subtypes and B cell subtypes. The colon cancer
dataset is obtained by [14], to facilitate clustering, and the samples are organized into two categories,
namely, diseased and normal samples. Additionally, the esophageal carcinoma dataset (ESCA) is
downloaded from the TCGA (The Cancer Genome Atlas, TCGA). The TCGA is a publicly available
dataset, where it is acquired from https://tcgadata.nci.nih.gov/tcga/. Some details of the three
datasets are listed in Table 1.

Table 1. Details of the three datasets.

Datasets Genes Samples Classes Description

ALL_AML 5000 38 3 acute lymphoblastic leukemia and acute myelogenous leukemia
colon 2000 62 2 colon cancer
ESCA 20,502 192 2 esophageal carcinoma

2.2. Parameters Selection

In our method, there are mainly four parameters involved, namely three balance parameters
α1, α2, β and the nearest neighbor number q. In ALL_AML, we select parameters α1, α2 and β

from range
{

105, 107, 109, 1011, 1013, 1015, 1017, 1019, 1021, 1023, 1025
}

; in colon, α1, α2 and β are

found from
{

10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104, 105
}

; and in ESCA, we choose

parameters α1, α2 and β in the range of
{

100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 1010
}

. The
above optimal parameters under different datasets are obtained by five-fold cross-validation. Besides,
according to the existing literature [15,16] and a large number of experiments, when q is taken as 5 or
6, the experimental effect is better. In our experiment, we set the value of q to 5.

2.3. Evaluation Metrics

In this study, there are two metrics employed to assess all algorithms: p-value and clustering
accuracy (ACC) [17]. Firstly, the size of the p-value is closely related to the relationship between
the selected genes and the disease, and there is a negative correlation between them. Additionally,
the p-value is obtained by the ToppFun tool, which is a public gene list functional enrichment analysis
tool. The p-value cutoff is set as 0.01 in the whole experiment. Secondly, the level of ACC indicates the
degree of excellence of the algorithm, and there is a positive correlation between them. The value of
the ACC is obtained by the following formula:

ACC =
∑n

i=1 δ(si, map(ci))

n
(1)

where ci means the label of the clustering and si is the label of the original data xi. In addition, the value
of the δ(x, Y) is 1 if x = y and is 0 otherwise, and map (·) is a mapping function.

https://tcgadata.nci.nih.gov/tcga/
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2.4. Feature Selection Analysis

2.4.1. Experimental Results and Analysis on ALL_AML Dataset

For the sake of fairness, the LJELSR, JELSR, ReDac, and SMART are respectively used to extract
100 differentially expressed genes from the ALL_AML dataset to analyze their performance. To verify
the effectiveness of the algorithm, the selected genes are put into ToppFun to get the p-values and the
resulting p-values are arrayed in an ascending sort order. Then, we pick out the first ten terms listed
in Table 2. The ten portions in bold font represent the best p-values. It can be seen from Table 2 that
the p-values obtained by the LJELSR method are lower than the p-values obtained by the other three
methods. Hence, the performance of the LJELSR surpasses the other three methods.

Table 2. The p-values of different methods applied to the ALL_AML dataset.

ID LJELSR JELSR ReDac SMART

GO:0006955 2.249 × 10−20 3.157 × 10−18 8.447 × 10−14 1.900 × 10−10

GO:0050776 8.768 × 10−18 1.312 × 10−15 7.228 × 10−12 1.000 × 10−9

GO:0045321 1.306 × 10−16 1.808 × 10−14 1.154 × 10−11 2.500 × 10−10

GO:0001775 1.548 × 10−15 1.604 × 10−13 6.621 × 10−11 1.590 × 10−10

GO:0051251 2.005 × 10−15 4.157 × 10−14 9.117 × 10−12 4.380 × 10−12

GO:0007159 2.098 × 10−15 2.754 × 10−15 3.712 × 10−11 1.510 × 10−10

GO:0002682 2.477 × 10−15 2.725 × 10−14 7.817 × 10−12 5.870 × 10−8

GO:0046649 3.964 × 10−15 5.426 × 10−14 3.164 × 10−10 1.540 × 10−11

GO:0016337 7.034 × 10−15 8.993 × 10−14 5.253 × 10−11 1.940 × 10−11

GO:0070486 7.220 × 10−15 9.350 × 10−15 1.299 × 10−11 5.400 × 10−10

To further illustrate the relationship between the selected genes and ALL_AML, the selected
differentially expressed genes are put in GeneCards for testing. GeneCards is a synthesis database
of human genes, providing relationships between disease, gene expression, gene function, and so
on. The top five differentially expressed genes associated with ALL_AML obtained by the LJELSR
method are listed in Table 3 and the official names of these genes and related diseases are also listed.
As can be seen from Table 3, the official name of the “CD7” is the “CD7 Molecule”. CD7 is originally
found in T cells of acute lymphoblastic leukemia [18]. It is a membrane glycoprotein of human T
lymphocytes and thymocytes. Additionally, it plays an essential role in detecting the interactions of
T-cells or B-cells during early lymphoid development. Thence, the loss of CD7 can affect the expression
of T-cells, which has a great impact on T-cell leukemia [19]. The “MYB” homologous official name
is “MYB Proto-Oncogene, Transcription Factor”. From the official name of this gene, MYB is not only
a pro-oncogene, but also a factor that affects the transcription of genes. Furthermore, its duplication
can cause leukemia [20]. Other genetic analyses are similar to the above analysis. In all, these genes
are directly or indirectly related to leukemia. This table only simply displays partial functions of some
of these genes.

Table 3. The top five genes selected by LJELSR for the ALL_AML dataset.

Gene Gene Official Name Related Diseases

CD34 CD34 Molecule Dermatofibrosarcoma Protuberans and
Hypercalcemic Type Ovarian Small Cell Carcinoma

CD7 CD7 Molecule Pityriasis Lichenoides Et Varioliformis Acuta and
T-Cell Leukemia

MYB MYB Proto-Oncogene, Transcription Factor Acute Basophilic Leukemia and Angiocentric Glioma

CXCR4 C-X-C Motif Chemokine Receptor 4 Whim Syndrome and Human Immunodeficiency
Virus Infectious Disease

CTSG Cathepsin G Papillon-Lefevre Syndrome and Cutaneous
Mastocytosis
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2.4.2. Experimental Results and Analysis on Colon Cancer Dataset

In this section, the analytical approach and procedure of this dataset are the same as the previous
dataset. The 100 genes extracted by each method are tested for the Gene Ontology (GO) detection
tool—ToppFun. The p-values gained by four methods are arranged in ascending order. We single
out the p-values of the first ten items and list them in Table 4. The best p-values are indicated in bold
typeface. From Table 4, it is obvious that the p-values obtained by the LJELSR method are smaller than
the p-values obtained by the other three methods. Therefore, the performance of our method is a big
plus over the other three methods.

Table 4. The p-values of different methods for the colon dataset.

ID LJELSR JELSR ReDac SMART

GO:0006614 1.612 × 10−17 9.836 × 10−14 2.677 × 10−14 1.016 × 10−12

GO:0006613 3.970 × 10−17 2.060 × 10−13 5.617 × 10−14 1.970 × 10−12

GO:0045047 5.074 × 10−17 2.519 × 10−13 6.872 × 10−14 2.360 × 10−12

GO:0072599 8.161 × 10−17 3.720 × 10−13 1.016 × 10−13 3.348 × 10−12

GO:0022626 3.104 × 10−16 8.999 × 10−13 2.465 × 10−13 1.125 × 10−11

GO:0000184 3.751 × 10−16 1.301 × 10−12 3.568 × 10−13 1.029 × 10−11

GO:0003735 5.428 × 10−16 6.787 × 10−13 1.412 × 10−13 3.310 × 10−12

GO:0070972 6.180 × 10−16 1.960 × 10−12 5.384 × 10−13 1.488 × 10−11

GO:0019083 9.571 × 10−16 1.932 × 10−12 1.547 × 10−11 3.005 × 10−10

GO:0044445 1.372 × 10−15 1.487 × 10−12 3.106 × 10−13 8.772 × 10−12

In addition, the selected differentially expressed genes by the LJELSR method are put in
GeneCards for testing. We choose the top five genes associated with colon cancer obtained by the
LJELSR method to list in Table 5. Additionally, Table 5 also shows how these genes correspond to
the official names and related diseases. From Table 5, the official name of the “ACTB” is “Actin Beta”.
This gene can encode one of six different actin proteins, and change in the protein brought about by
changes in the gene. It can affect certain biological processes. Furthermore, ACTB goes hand in hand
with many cancers and plays a major role in lung and colorectal cancer, and so on [21]. Andersen et al.
found that colon cancer is affected by ACTB [22]. The “WW Domain Containing Oxidoreductase” is
abbreviated as the “WWOX”. Different from the traditional tumor suppressor genes, its effect is more
complicated and extensive on cellular function. Besides, the expression level of WWOX is different
in two different colon cancer cell lines, which are the HT29 and SW480 cell lines [23]. Moreover, the
expression of WWOX can lead to apoptosis, while defects in this gene are associated with multiple
types of cancer. Analysis of the remaining genes is similar to the above-mentioned genes. Table 5 only
shows some descriptions of partial genes associated with colon cancer.

Table 5. The top five genes selected by LJELSR for the colon dataset.

Gene Gene Official Name Related Diseases

MUC3A Mucin 3A, Cell Surface Associated Cap Polyposis and Hypertrichotic
Osteochondrodysplasia

ACTB Actin Beta Dystonia, Juvenile-Onset and Baraitser-Winter
Syndrome 1

WWOX WW Domain Containing Oxidoreductase Spinocerebellar Ataxia, Autosomal Recessive
12andEpileptic Encephalopathy, Early Infantile, 28

SPI1 Spi-1 Proto-Oncogene Inflammatory Diarrhea and Interdigitating Dendritic
Cell Sarcoma

RPS24 Ribosomal Protein S24 Diamond-Blackfan Anemia 3 and Diamond-Blackfan
Anemia
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2.4.3. Experimental Results and Analysis on ESCA Dataset

In this subsection, the dataset we use is ESCA, which is different from the above two datasets.
To further confirm the effectiveness of the algorithm, the experiment is run with this data and the
selected differentially expressed genes are placed in ToppFun for GO analysis. We rank all the p-values
in ascending order and choose first ten p-values to list in the Table 6, where the best results are
highlighted. From Table 6, we can conclude that the p-values obtained by the LJELSR method are
mostly smaller than the p-values obtained by the other three methods. Therefore, on the whole, the
performance of the LJELSR outperforms the other three methods.

Table 6. The p-values of different methods for the ESCA dataset.

ID LJELSR JELSR ReDac SMART

GO:0005198 2.772 × 10−27 8.941 × 10−18 1.096 × 10−18 1.036 × 10−4

GO:0070161 7.504 × 10−21 3.347 × 10−14 2.733 × 10−23 6.527 × 10−14

GO:0030055 1.400 × 10−19 1.111 × 10−10 3.576 × 10−17 1.619 × 10−12

GO:0005912 6.655 × 10−19 1.946 × 10−11 4.401 × 10−20 3.498 × 10−12

GO:0005925 1.319 × 10−18 7.671 × 10−11 2.103 × 10−17 1.061 × 10−12

GO:0005924 1.746 × 10−18 9.246 × 10−11 2.747 × 10−17 1.313 × 10−12

GO:0005615 5.538 × 10−16 8.395 × 10−20 3.985 × 10−15 2.117 × 10−17

GO:0030054 5.243 × 10−14 4.156 × 10−10 5.243 × 10−14 4.510 × 10−9

GO:0005200 3.076 × 10−13 1.301 × 10−10 2.062 × 10−13 2.358 × 10−4

GO:0042060 7.442 × 10−13 2.650 × 10−9 4.536 × 10−12 8.790 × 10−11

Additionally, the selected differentially expressed genes are put in GeneCards for testing. The top
five genes associated with ESCA obtained by the LJELSR method, their name, and related diseases are
all displayed in Table 7. From Table 7, the “ERBB2” corresponds to the official name “Erb-B2 Receptor
Tyrosine Kinase 2”. ERBB2 is the membrane receptor of 185kDa encoded by proto-oncogene ERBB-2,
and is one of the members of the epidermal growth factor receptor family. Additionally, it has been
verified that its amplification is closely related to the occurrence of esophageal cancer [24]. “KRT5” is
the abbreviation of “Keratin 5”, and it is a member of the keratin family of momentous gene families
that encodes the corresponding protein. Additionally, its changes affect the expression of this gene’s
families, causing some complex diseases. For example, mutations in KRT5 and KRT14 can cause
epidermolysis bullosa to a large extent [25]. The analysis of other genes is similar to the above analysis.
Table 7 only shows some functions of partial genes, and detailed information on the remaining genes
can be obtained from GeneCards.

Table 7. The top five genes selected by LJELSR for the ESCA dataset.

Gene Gene Official Name Related Diseases

ERBB2 Erb-B2 Receptor Tyrosine Kinase 2 Glioma Susceptibility 1andOvarian Cancer, Somatic

KRT14 Keratin 14 Epidermolysis Bullosa Simplex, Koebner Type and
Epidermolysis Bullosa Simplex, Recessive 1

KRT5 Keratin 5 Epidermolysis Bullosa Simplex, Dowling-Meara Type and
Epidermolysis Bullosa Simplex, Weber-Cockayne Type

KRT19 Keratin 19 Anal Canal Adenocarcinoma and Thyroid Cancer

KRT4 Keratin 4 White Sponge Nevus 1andWhite Sponge Nevus Of Cannon,
Krt4-Related

2.4.4. Differentially Expressed Genes Comparing by Methods

In this subsection, the selected differentially expressed genes are further analyzed. For the three
datasets mentioned above, we explore the common differentially expressed genes and the unique
differentially expressed genes obtained by different methods for the same dataset. We select 100 genes
for each algorithm and pair them with the officially published disease-causing gene pool to obtain the
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verified genes. This disease-causing gene pool can be downloaded directly from GeneCards. Table 8
shows the common and unique differentially expressed genes obtained by the four methods for the
ESCA dataset. The bold italic indicates the common differentially expressed genes excavated by the
four methods. The underlined italic indicates the unique differentially expressed genes excavated by
LJELSR, which are not found by other methods. The “Number” means the total number of verified
genes. As can be seen from the table, LJELSR has selected more proven genes than other methods;
ANXA1, MUC6, FN1, PKM, CD24, GLUL, PLEC, PIGR, ACTB, PABPC1, LYZ, and SPRR1B are the
common differentially expressed genes; the unique differentially expressed genes of the LJELSR
method are FSCN1, ITGB4, LAMC2, HLA-B, LAMB3, HLA-C, SLC7A5, ENO1, and so on. These genes
play an important role in studying the relationship between genes and diseases, the details of these
genes can be obtained from GeneCards, and some of the genes have been explained above. In summary,
LJELSR has an advantage over other methods in that it can mine more and more valuable differentially
expressed genes.

Table 8. Differentially expressed genes of four methods for the ESCA dataset.

Methods Differentially Expressed Genes Number

LJELSR

ERBB2, KRT14, KRT5, KRT19, KRT4, TFF1, FSCN1, KRT13, ITGB4, ANXA1,
MUC6, LAMC2, HLA-B, KRT16, JUP, KRT17, LAMB3, ATP4A, DSP, LAMA3, FOS,
FN1, CTSB, MYH11, HLA-C, LDHA, PKM, SLC7A5, PSCA, SERPINA1, S100A7,

S100A9, CRNN, S100A8, B2M, DMBT1, CD24, ENO1, TNC, KRT15, GLUL,
HSPA1A, NDRG1, LCN2, COL17A1, CEACAM6, REG1A, PLEC, GAPDH, PIGR,
AGR2, ANPEP, PKP1, ACTB, FLNA, PI3, FTL, CTSE, PABPC1, PGC, ALDOA,
EEF2, KRT6B, LYZ, CLDN18, SPRR1B, KRT6C, PPP1R1B, PGA3, COL3A1, C3,

REG1B, PERP, KRT6A, PGA5, CES1, PGA4, EIF1

78

JELSR

MUC1, KRT14, KRT5, KRT19, KRT8, KRT4, TFF1, FN1, MUC6, S100A8, CTSD,
SPRR3, ATP4A, HSPB1, FOS, CEACAM5, GJB2, H19, EZR, KRT16, KRT13, CTSB,

JUP, ANXA1, TFF2, S100A9, SFN, KRT17, PSCA, S100A2, MUC5B, COL1A1,
CD24, PKM, DSC3, GLUL, MALAT1, REG1A, ACTN4, DSG3, LCN2, DSP,

S100A7, B2M, MYH9, PKP1, S100A11, PIGR, HSPA8, PLEC, TRIM29, EEF1A1,
ATP1B1, AGR2, LYZ, ACTB, PGC, PABPC1, SPRR2A, SPRR1B, SPRR1A, CA2,

REG4, P4HB, CLDN18, CTSE, EEF2, CREB3L1, KRT6A, A2M, PGA3

71

ReDac

KRT14, KRT5, KRT4, FN1, CRNN, TGM3, MUC6, S100A8, IL1RN, SPRR3,
ATP4A, HSPB1, MAL, KRT16, KRT13, JUP, THBS1, ANXA1, S100A9, PSCA,

ECM1, CD24, PKM, FTL, HSPG2, DES, GLUL, MALAT1, PPL, EMP1, ACTN4,
MYH11, CSTA, GAPDH, TAGLN, DSP, B2M, MYH9, GSN, PKP1, S100A11, PIGR,
HSPA8, FLNA, PLEC, MYLK, CSTB, TRIM29, EEF1A1, RPL3, LYZ, PSAP, ACTB,

ALDOA, PGC, PABPC1, SYNM, SPRR2A, SPRR1B, SPRR1A, REG4, P4HB,
EEF2, KRT6A, ACTG2, PGA3

66

SMART

ERBB2, CCND1, GSTP1, CD44, KRT19, MUC4, MUC2, GRB7, TFF1, HLA-A,
FN1, SOD2, ITGA6, NDRG1, SPP1, SERPINA1, MUC6, CTSD, HSPB1,

CEACAM5, H19, CTSB, F5, ITGB1, ANXA1, SDC1, DMBT1, CLU, LDHA, CD24,
APP, PKM, FTL, HSPG2, TNC, GLUL, MALAT1, NTS, LCN2, MYH9, PIGR,

FLNA, CD55, PLEC, TSPAN8, EEF1A1, AGR2, LYZ, GPX2, ACTB, DSG2,
PABPC1, SPRR1B, REG4, SCD, CLDN18, FAT1

57

2.5. Clustering Analysis

Kmeans is one of simple algorithms that solve the clustering problem, and its procedure is
a relatively easy and simple way to classify the samples by setting a certain number of clusters
in advance [26]. For all methods, different datasets have different numbers of sample clustering.
The Kmeans method is used to cluster samples on the ALL_AML, colon cancer, and ESCA datasets,
where their number of sample clustering is three, two, and two, respectively. Different methods are
run for different data to get the values of ACC, and the details are shown in Table 8, where the largest
values are marked in bold typeface. From Table 9, we can conclude that the values of ACC obtained
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by the LJELSR method for different datasets are almost all higher than the other methods. In this
section, based on the above analysis, we can summarize that the efficiency of our method is higher
than other methods.

Table 9. ACC of different methods for different datasets.

Methods ALL_AML Colon ESCA

LJELSR 81.579 64.520 96.354
JELSR 81.579 61.290 95.833
ReDac 68.421 61.290 95.313

SMART 44.740 63.980 94.790
Kmeans 78.530 53.420 96.350

3. Materials and Methods

3.1. Related Notations and Definitions

In this paper, mi and mj are defined as the i-th row and j-th column of matrix M, respectively.
Denote X ∈ Rm×n as the original data matrix, where its row represents a gene (feature) and its column
represents a sample. For an arbitrary matrix M, Lr,s norm is represented as below:

‖M‖r,s =

 n

∑
i=1

(
m

∑
j=1

∣∣mij
∣∣r) s

r
 1

s

(2)

where r and s represent a positive number. When r = s = 1, the above formula becomes the expression
of the L1 norm or LASSO, i.e.,

‖M‖1 =
n

∑
i=1

m

∑
j=1

∣∣mij
∣∣ (3)

Similarly, when r = 2, s = 1, and (2) becomes the expression of the L2,1 norm, i.e.,

‖M‖2,1 =
n

∑
i=1

(
m

∑
j=1

∣∣mij
∣∣2) 1

2

(4)

Additionally, the inherent geometric structure of data is fully taken into account to deal with data
for lessening the appearance of the inexact results in actual applications. Considering its benefits, it is
also added to our work. Therefore, we firstly construct a q -nearest-neighbor graph G with n vertices in
the data space, where a vertex corresponds to a data point [15], and q is the nearest neighbor number.
wij represents the correlation between two data point xj and xj. All wij make up the weight matrix W.
There are many strategies to compute W. However, three strategies are frequently employed [15].

(1) 0-1 weighting:

wij =

{
1, i f xi ∈ Nq

(
xj
)

or xj ∈ Nq(xi)

0, otherwise
(5)

where Nq(xi) indicates the set gained by the way of q -nearest neighbors of the data point xi.
(2) Heat kernel weighting:

wij =

e−
‖xi−xj‖

2

σ , i f xi ∈ Nq
(
xj
)

or xj ∈ Nq(xi)

0, otherwise
(6)

where σ is a proper constant, and its value is obtained by the previous experience.
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(3) Dot-product weighting:

wij =

{
xi

Txj, i f xi ∈ Nq
(
xj
)

or xj ∈ Nq(xi)

0, otherwise
(7)

These three strategies are applied to different occasions. Since the operation of the 0-1 weighting
is relatively uncomplicated, it is commonly used for computing the weight matrix. The second is
widely applied to image data, and the third is frequently used in the IR community for processing
documents [15].

Next, we define a diagonal matrix D, where its diagonal values are given as dii = ∑j wij. The
graph Laplacian matrix L is defined as L = D−W [27].

3.2. Joint Embedding Learning and Sparse Regression (JELSR)

Traditional feature selection methods are performed independently. To further heighten the
performance of the previous algorithm, the JELSR method was proposed by Hou et al. [5]. Firstly,
it uses linear approximation weights and the L2,1-norm regularization to combine embedding learning
and sparse regression to establish a new objective function. Then, the sparse regression matrix is
used to finish the corresponding feature selection [5]. The objective function of the JELSR algorithm is
written as follows:

min
P,Y

tr
(

YLYT
)
+β
(
‖PTX− Y‖2

2+α‖P‖2,1

)
s.t.YYT= Ik×k

(8)

where Y ∈ Rk×n is a low dimensional embedding matrix; P ∈ Rm×k is the sparse regression matrix;
α and β are two balance parameters; and k is the dimension of low-dimensional space.

3.3. The Proposed Method

Assuming that the expression level of the gene is within the normal range, the higher the
sparseness of the sparse regression matrix, the easier it is to find the differentially expressed genes.
What is more, the results of identifying the differentially expressed genes are much more accurate.

Compared with the previous methods, the JELSR method proposed by Hou et al. [5] has a good
effect on the feature selection. However, it is inevitable that some redundancy values and artificial
noise values in the sparse regression matrix have to be taken into account, such that the sparseness
of this method is far from satisfactory. Consequently, it is necessary to discover an efficacious sparse
method to improve the performance. Therefore, we propose the LJELSR method, which may improve
the sparseness of the algorithm and the accuracy of the results.

The objective function of LJELSR is:

min
P,Y

tr
(

YLYT
)
+β
(
‖PTX− Y‖2

2+α1‖P‖1+α2‖P‖2,1

)
s.t.YYT= Ik×k

(9)

where Y ∈ Rk×n is a low-dimensional embedding matrix; P ∈ Rm×k is the sparse regression matrix;
and α1, α2, and β are three balance parameters.

3.4. Optimization

Since there are the L1-norm and the L2,1-norm constraints on the objective formula, it is difficult
to optimize and solve the optimal solution directly. With the elicitation of Wang et al. [11] and
Nie et al. [28], the iterative strategy is introduced to solve the above problem. Now, we will explain in
detail the specific optimization process of our method.
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Before solving the optimization problem, we introduce two diagonal matrices, U ∈ Rm×m and
Ũ ∈ Rm×m, whose i-th diagonal values are defined as follows:

U =
k

∑
i=1

Ui, (Ui)jj =
1

2
∣∣Pji
∣∣ (j = 1 . . . m) (10)

Ũjj =
1

2‖pj‖2
(11)

where Ui represents i-th diagonal matrix U; (Ui)jj represents the j-th diagonal value of the i-th matrix

U; and Ũjj indicates the j-th diagonal value of matrix Ũ.
To prevent the emergence of spillover, a small constant ε is added to the diagonal matrices U and

Ũ, respectively, that is:

U =
k

∑
i=1

Ui, (Ui)jj =
1

2max
(∣∣pji

∣∣, ε
) (j = 1 . . . m) (12)

Ũjj =
1

2max
(
‖pj‖2, ε

) (13)

Owing to the fact that the partial derivatives of ‖P‖1 and tr
(

PTUP
)

on P are identical, ‖P‖1 can

be replaced by tr
(

PTUP
)

. Analogously, we carry out an exchange for ‖P‖2,1 and tr(PTŨP). Therefore,
(9) can be rewritten as:

min
P,U,Ũ,Y

tr
(

YLYT
)
+ β

(
‖PTX− Y‖2

2 + α1tr
(

PTUP
)
+ α2tr(PTŨP)

)
s.t.YYT= Ik×k

(14)

We firstly optimize the matrix P. We denote

L(P, U, Ũ) = ‖PTX− Y‖2
2 + α1tr

(
PTUP

)
+ α2tr(PTŨP) (15)

When two diagonal matrices U and Ũ are fixed, we compute the partial derivative of L(P, U, Ũ)

on P and make it equal to zero. Therefore, we can get the following equation:

∂L(P)
∂P

= 2XXTP− 2XYT + 2α1UP + 2α2ŨP = 0 (16)

namely,

P =(XXT+α1U + α2Ũ)
−1

XYT (17)

To facilitate optimization, we introduce an auxiliary variable A into the objective formula, and
denote A = XXT+α1U + α2Ũ. According to the above analysis, (17) is brought into (14), such that we
will get

L(P, U, Ũ, Y) = tr
(

Y
(

L + βIn×n − βXTA−1X
)

YT
)

(18)

Since Y is subject to the orthogonal constraint YYT= Ik×k, the optimization problem of Y becomes

arg min
Y

tr
(

Y
(

L + βIn×n−βXTA−1X
)

YT
)

s.t.YYT= Ik×k

(19)

When A and L are fixed, we use the strategy of the eigen-decomposition of the matrix G =(
L + βIn×n−βXTA−1X

)
YT to update Y in (19). For Yi(i = 1, 2, · · · , k), we firstly choose the k smallest
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eigenvalues of the matrix G, and then seek out the corresponding eigenvectors to constitute a new
matrix Y =(Y1, Y2, · · · , Yk) [29]. In addition, the diagonal matrices U and Ũ are updated by (12) and
(13) when P is fixed, respectively. Additionally, we initialize U and Ũ as an identity matrix, respectively.

3.5. Feature Selection

According to the above update rules, the sparse regression matrix P is acquired after repeated
iterations of LJELSR. Then, to acquire some differentially expressed genes, we conduct a detailed
analysis of the matrix P. In the first place, each element of the matrix P is subjected to absolute
processing. Secondly, we sum the absolute values by each row of the sparse regression matrix P and
get a new vector, as follows.

P =
(
P1, P2, · · · , Pm

)T (20)

Pi =
k

∑
j=1

= |Pij| (21)

Then, we rank the vector Pi in descending order to get a new vector, as follows:

P̃ = (P̃1, P̃2, · · · , P̃m)
T

(22)

Finally, the genes corresponding to the first l values are selected as differentially expressed genes
to analyze their property (l < m). By and large, the value of the element is directly proportional to the
importance of the corresponding gene. Next, we put the selected genes into ToppFun and GeneCards
to analyze them, where they are publicly accessible from https://toppgene.cchmc.org/enrichment.jsp
and http://www.genecards.org/, respectively.

In summary, the procedure of LJELSR is shown in Algorithm 1.

Algorithm 1. Procedure of LJELSR.

Input: Data matrix X; Neighborhood size q; Balance parameters α1, α2, β ; Dimensionality of embedding k;
Feature selection number l.
Output: Selected feature index set {P1, P2, · · · , Pm}
Stage one: Graph construction
Construct the weight matrix W; Compute the diagonal matrix D, graph Laplacian matrix L;
Stage two: Alternative optimization,
Initialize U = Ũ = Im×m;
Loop
Update Y and fix A, L by (19),
Update P and fix U, Ũ by (17),
Update U, Ũ and fix P by (12) and (13).
until convergence
Stage three: Feature selection

3.6. Convergence Analysis

In this study, an alternative algorithm is utilized to finish iteratively updating work of the
proposed method. Now, let us analyze its convergence behavior of LJELSR. The lemma given below
was proposed by Nie et al. [28].

Lemma 1. For any non-zero vectors P, Pt ∈ Rk, the following inequality holds:

‖P‖2 −
‖P‖2

2
2‖Pt‖2

≤ ‖Pt‖2 −
‖Pt‖2

2
2‖Pt‖2

(23)

https://toppgene.cchmc.org/enrichment.jsp
http://www.genecards.org/
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The convergence result of the proposed method is explained by the following theorem:

Theorem 1. The value of the target function for each iteration is monotonically decreasing in the Algorithm 1.
Detailed proof of Theorem 1 is given in the Appendix A.

4. Conclusions

In this paper, we discuss a new feature selection method by adding an L1-norm constraint on
the sparse regression matrix based on the JELSR method. Firstly, the four methods are executed to
select differentially expressed genes and cluster the samples from ALL_AML, colon cancer, and ESCA
datasets, respectively. Secondly, some of materials related to this paper are presented, and our methods
and the corresponding optimization strategy are given. Finally, the conclusion is drawn that the
performance of the proposed method is better than other methods through the experimental results.
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of the LJESLR method and the writing of the manuscript were completed by S.-S.W. The data analysis was
contributed by M.-X.H and C.-M.F. The final manuscript was read and approved by all authors.

Acknowledgments: This work was supported in part by the National Natural Science Foundation of China under
Grant Nos. 61872220 and 61572284.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Proof. We can come to the following conclusion in accordance with the objective function of the
proposed method.

L
(

Pt+1, Yt+1
)
= tr

(
YtL

(
Yt)T

)
+β
(
‖
(
Pt)TX− Yt‖2

2+α1‖Pt‖1+α2‖Pt‖2,1

)
= tr

(
YtL

(
Yt)T

)
+ β

(
tr
((

Pt)TX− Yt
)T((

Pt)TX− Yt
))

+ β

(
α1

k
∑

i=1

(
pt

i
)TUt

ip
t
i + α2tr

((
Pt)T

)∼
U

t(
Pt))

Consequently, we obtain

tr
(

Yt+1L
(

Yt+1
)T
)
+β

(
tr
((

Pt+1
)T

X− Yt+1
)T((

Pt+1
)T

X− Yt+1
))

+β

(
α1

k
∑

i=1

(
pt+1

i

)T
Ut

ip
t+1
i +α2tr

((
Pt+1

)T
)∼

U
t(

Pt+1
))

≤ tr
(

YtL
(
Yt)T

)
+β

(
tr
((

Pt)TX− Yt
)T((

Pt)TX− Yt
))

+β

(
α1

k
∑

i=1

(
pt

i
)TUt

ip
t
i+α2tr

((
Pt)T

)∼
U

t(
Pt))

→

tr
(

Yt+1L
(

Yt+1
)T
)
+β

(
tr
((

Pt+1
)T

X− Yt+1
)T((

Pt+1
)T

X− Yt+1
))

+α1β
m
∑

i=1

k
∑

j=1

( (
pt+1

ij

)2

2‖pt+1
ij ‖
− ‖ pt+1

ij ‖ + ‖ pt+1
ij ‖

)
+α2β

m
∑

c=1

(
‖(pt+1)

c‖2
2

2‖(pt+1)
c‖2
− ‖

(
pt+1)c ‖2 +

(
pt+1)c ‖2

)
≤ tr

(
YtL

(
Yt)T

)
+β

(
tr
((

Pt)TX− Yt
)T((

Pt)TX− Yt
))

+α1β
m
∑

i=1

k
∑

j=1

(
‖ pt

ij ‖ +
(

pt
ij

)2

2‖pt
ij‖
− ‖ pt

ij ‖
)
+α2β

m
∑

c=1

(
‖
(
pt)c ‖2 +

‖(pt)
c‖2

2
2‖(pt)c‖2

− ‖
(
pt)c ‖2

)
→

tr
(

Yt+1L
(

Yt+1
)T
)
+β

(
tr
((

Pt+1
)T

X− Yt+1
)T((

Pt+1
)T

X− Yt+1
))

+ β

(
α1

m
∑

i=1

k
∑

j=1

(
‖ pt+1

ij ‖
)
+α2

m
∑

c=1

(
‖
(
pt+1)c ‖2

))

≤ tr
(

YtL
(
Yt)T

)
+β

(
tr
((

Pt)TX− Yt
)T((

Pt)TX− Yt
))

+β

(
α1

m
∑

i=1

k
∑

j=1

(
‖ pt

ij ‖
)
+α2

m
∑

c=1

(
‖
(
pt)c ‖2

))

According to Lemma 1, the last step is established. Thus, this algorithm monotonically decreases
the objective value in each iteration. �
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