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Abstract: This paper considers the active detection of a stealth target with aspect dependent reflection
(e.g., submarine, aircraft, etc.) using wireless sensor networks (WSNs). When the target is detected,
its localization is also of interest. Due to stringent bandwidth and energy constraints, sensor
observations are quantized into few-bit data individually and then transmitted to a fusion center (FC),
where a generalized likelihood ratio test (GLRT) detector is employed to achieve target detection and
maximum likelihood estimation of the target location simultaneously. In this context, we first develop
a GLRT detector using one-bit quantized data which is shown to outperform the typical counting rule
and the detection scheme based on the scan statistic. We further propose a GLRT detector based on
adaptive multi-bit quantization, where the sensor observations are more precisely quantized, and the
quantized data can be efficiently transmitted to the FC. The Cramer-Rao lower bound (CRLB) of the
estimate of target location is also derived for the GLRT detector. The simulation results show that the
proposed GLRT detector with adaptive 2-bit quantization achieves much better performance than the
GLRT based on one-bit quantization, at the cost of only a minor increase in communication overhead.

Keywords: aspect dependent target; wireless sensor network (WSN); joint detection and localization;
generalized likelihood ratio test (GLRT); maximum likelihood estimate (MLE); observation quantization

1. Introduction

Recently, wireless sensor networks (WSNs) have received considerable attention due to their
applicability to reconnaissance, surveillance, security, and environmental monitoring [1,2]. A typical
WSN consists of a large number of low-cost battery-powered devices and usually has very stringent
energy and bandwidth constraints [3].

The detection of specific events (targets, transmitters, etc.) is one of the main tasks for a
WSN [4]. In a detection system based on WSN, centralized and decentralized frameworks are two
typical setups for information transmission from sensors to the fusion center (FC) which is in charge
of making the final decision [5]. In a centralized framework, the FC has full knowledge of all sensor
observations, which results in optimal performance. However, the centralized setup amounts to
instantaneous high-precision communication between sensors and the FC [6], which is impractical for
WSNs due to the stringent bandwidth and energy constraints. To address this issue, decentralized
schemes that allow sensors to transmit a few condensed information bits to the FC, are of significant
interest. For decentralized target detection by a WSN, one of the key problems is how to quantize the
sensor observations. Some one-bit quantization [7] and multi-level quantization schemes [8,9] have
been studied for decentralized detection. However, these quantization schemes only work under the
assumptions of Gaussian noise and a single unknown parameter.

When detecting a non-cooperative target (or signal) with unknown parameters in a WSN, a natural
strategy is the so-called counting rule test, namely, the FC counts the number of local on-off detections
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and compares it with a threshold [10]. The generalized likelihood ratio test (GLRT) detector, which is
obtained by substituting the unknown parameters with their maximum likelihood estimates (MLEs),
is also commonly employed at the FC to make a final decision [11]. A GLRT detector based on
one-bit quantized data was studied in refs. [7,12] to detect (i) an unknown scalar deterministic
signal, and (ii) a random Gaussian signal with an unknown variance. GLRT and its computationally
simpler alternatives were considered in [13–17] to detect a non-cooperative target with spatially
dependent emission. In particular, GLRT fusion was derived in the context of detecting a target
emitting a known signal at an unknown location [13], and detecting an unknown transmitter with
an unknown location [14]. In the latter case, a complicated grid search on both the target location and
emitted power domains may be required for implementation. To reduce the computational complexity,
a generalized Rao test was developed in ref. [15]. Different from refs. [13–15] that treated the target
emission as a deterministic signal, the emitted signal was presumed to be unknown and fluctuating in
refs. [16,17], where generalized forms of locally optimum detectors were proposed as computationally
simpler alternatives to the GLRT. While these works dealt with targets that emit or reflect a isotropic
signal, the detection of a target with aspect dependent reflection is still under study.

A few works have addressed the localization [18,19] or detection [20] of a target with aspect dependent
reflection in a WSN. More specifically, a model accounting for the aspect dependence of the reflected signal
from a underwater target was utilized for the MLE of a submarine’s location in ref. [18]. In ref. [19],
a scenario involving the location of low-visibility ground or air targets using multiple unmanned
autonomous vehicles and a large number of distributed sensors, was considered. Later, in ref. [20],
Song et al., studied the underwater target detection with a barrier sensor network. There, the aspect and
distance dependence of the acoustic reflection signal of underwater targets were considered, and binary
local decisions were fused in the FC via scan statistic to form a global decision. However, such a scan
statistic-based detection schemes have obvious limitations, namely, numerous sensors are required to make
a reliable decision, and target localization can not be achieved.

In this paper, we consider the detection and localization of a target with aspect dependent
reflection. The detection and localization tasks are accomplished by the GLRT detector, where the
MLE of target location is given as a by-product of the GLRT once the target is detected. The main
contributions can be summarized as follows:

• A GLRT detector based on one-bit quantized data is developed. If the target is detected, the MLE
of the target location is given as a by-product of the GLRT detector. The differential evolution
(DE) algorithm is introduced to solve the MLE. It is shown that the GLRT detector with one-bit
quantization outperforms the existing detection scheme based on scan statistic [20].

• A GLRT detector based on adaptive multi-bit quantization is proposed to further improve
the detection and localization performance. The proposed adaptive quantizer achieves higher
quantization precision; meanwhile, its yielding data has a greatly reduced communication burden
compared with the typical multi-bit quantization scheme. The Cramer–Rao lower bound (CRLB)
of the MLE is also derived.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the active target
detection and localization model where the reflected signal of the target is aspect and distance dependent.
Then, the GLRT detector based on one-bit quantized data is studied in Section 3. In Section 4, we propose
a GLRT detector based on adaptive multi-bit quantization, together with its CRLB derivation and
communication overhead analysis. Numerical results and comparisons are provided in Section 5.
Finally, Section 6 concludes the paper.

2. Problem Statement

Consider an active detection system that consists of an active source, K passive sensors, and an FC.
As illustrated in Figure 1, the source first sends out a probing signal to the surveillance area for target
detection as well as to all the sensors to activate them from sleep mode. If a target exists, the reflected
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signal from the target is concentrated within a narrow angle. In addition to such an aspect dependence,
the reflected signal is also distance dependent due to free-space attenuation. The observed information is
then transmitted from sensors to the FC where the global decision is made.

: Source

: Target

: Sensor

x

y

j

Figure 1. Low-visibility target detection by a sensor network where the reflected signal of the target is
aspect and distance dependent.

2.1. Observing the Reflected Signal at Sensors

Since the waveform of the probing signal is known to sensors, a matched filter can be applied
to preprocess the received signal, thus yielding the observation rk, where k = 1, 2, . . . , K is the sensor
index. Assume that sensor noises are independent and identically distributed zero-mean complex
Gaussian variables with a variance of σ2. In the absence of a target (H0), rk is exponentially distributed,
and has a probability density function (pdf) of [20,21]

f k
0 (rk) =

1
2ησ2 exp

(
− rk

2ησ2

)
, (1)

where η is the known waveform energy. In the presence of a target (H1), the received signal at the
sensors is a combination of the reflected signal and the noise. The energy of the reflected signal
depends on the sensor–target geometry and the target aspect, which is parameterized by εk. Assuming
a Rayleigh fading signal model, the pdf of rk can be written as [20,21]

f k
1 (rk) =

1
2ησ2 + 2ηε2

k
exp

(
− rk

2ησ2 + 2ηε2
k

)
,

1
2ησ2(1 + ρk)

exp
(
− rk

2ησ2(1 + ρk)

)
, (2)

where the definition ρk ,
ηε2

k
σ2 is employed. In accordance with refs. [18–20], ρk is specified by

ρk = C0g1(dk)g2(αk, ϕ), (3)

where C0 is a constant, g1(·) specifies the power loss caused by the propagation distance, and g2(·)
describes the aspect dependence of the reflected signal. More specifically, dk denotes the propagation
distance of the signal from the source to the k-th sensor via target reflection, i.e.,

dk =
√
(x− Xs)2 + (y−Ys)2 +

√
(x− Xk)2 + (y−Yk)2, (4)

with (x, y), (Xs, Ys) and (Xk, Yk) being locations of the target, the active source, and the k-th sensor,
respectively; αk is the angle from the k-th sensor to the target:

αk = arctan
(
− x− Xk

y−Yk

)
, (5)
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and ϕ is the principal reflection angle of the target which implies the aspect dependence of the
target reflection.

Next, we define the attenuation funtion (g1(dk)) and the aspect dependence (g2(αk, ϕ)). Assuming
free-space attenuation, we have [19]

g1(dk) = (dk)
−β, (6)

where β = 1 corresponds to cylindrical spreading, β = 2 is spherical spreading, and sometimes, larger
values of β are used to model loss due to shadowing, e.g., β = 3.5. In this work, we set β = 1, and the
corresponding development can be easily extended to other types of attenuation.

On the other hand, the aspect dependent reflection gain is modeled by the following Butterworth
filter [18–20]:

g2(αk, ϕ) =
1

1 +
(

αk−ϕ
Φ

)2Ω , (7)

where Ω denotes the filter order, and 2Φ is the 3 dB bandwidth. Although the exact function
(g2(·)) might be different from (7) under specific circumstances, the following analysis can be
similarly performed for other aspect dependent reflection models as long as its closed-form expression
is available.

In the following analysis, we assume perfect knowledge of the model parameters σ2, C0, Φ and Ω.
In practice, these values could be estimated based on training data. In addition, sensor positions are
assumed to be known to the FC, since they can be estimated periodically during network maintenance
(see, e.g., refs. [22,23], and references therein). However, under hypothesis H1, the target’s position
((x, y)) and the principal reflection angle (ϕ) remain unknown.

2.2. Data Transmission and Global Decision Making

After making observations, the sensors send their local information to the FC which makes a final
decision on whether the target exists or not. To meet the stringent energy and bandwidth constraints in
WSNs, sensor measurements are usually quantized into few-bit data individually before transmission.
The design of a quantizer is one of the focuses of this work.

At the FC, a composite binary hypothesis testing problem is addressed due to the unknown target
parameters. GLRT solutions, which achieve target detection and localization simultaneously, are also
of interest here.

3. Target Detection and Localization by GLRT Utilizing One-Bit Quantized Data

We start with the scenario where sensors only transmit one-bit of information to the FC.
Faced with a composite hypothesis testing problem, the FC employs the GLRT approach which is
obtained by substituting the unknown parameters with their MLEs into a general likelihood ratio test.
The DE algorithm is employed to solve the MLE of unknown target parameters since no closed-form
solutions are available for the MLE. The CRLB of the MLE is also given for evaluation of the target
localization performance.

3.1. Derivation of GLRT Detector

The optimal one-bit quantization at each sensor is known to be a thresholding rule of the likelihood
ratio [15]. However, it is impractical to compute the likelihood ratio at each sensor due to the unknown
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target parameters. A natural one-bit quantization strategy is to compare each sensor’s observation
with a preset threshold ∆ [18,20], which produces the output {bk}K

k=1 as follows:

bk =

{
1, if rk ≥ ∆,
0, otherwise,

, k = 1, 2, · · · , K. (8)

We first derive the distribution of the quantizer output, {bk}K
k=1. In accordance with refs. (1)

and (2), the probabilities that bk takes a value of 1 under hypotheses H0 and H1 are respectively
given by

P0 , Pr(bk = 1|H0) =
∫ ∆

0
f k
0 (rk)drk = exp

(
− ∆

2ησ2

)
, (9)

and

Pk
1,θ , Pr(bk = 1|H1) =

∫ ∆

0
f k
1,θ(rk)drk = exp

(
− ∆

2ησ2(1 + ρk
θ)

)
, (10)

where θ denotes the vector of all unknown parameters, i.e., θ , [x, y, ϕ], and f k
1,θ(rk) is the pdf of

the received signal under H1 with specific θ. Also, ρk
1,θ is the value of ρk with a given θ. Using the

notations P0 and Pk
1,θ, the probability mass functions (pmfs) of bk under hypotheses H0 and H1 are

given as follows, respectively:

hk
0(bk) = (P0)

bk (1− P0)
1−bk , (11)

and

hk
1,θ(bk) =

(
Pk

1,θ
)bk
(
1− Pk

1,θ
)1−bk . (12)

Assuming that all the binary data b , [b1, b2, . . . , bK] can be received by the FC without errors,
the FC is faced with the following composite binary hypothesis testing problem:{

H0 : bk ∼ hk
0(bk), k = 1, 2, · · · , K,

H1 : bk ∼ hk
1,θ(bk), k = 1, 2, · · · , K,

(13)

where ∼ denotes “distributed according to”. A natural approach to solve the composite hypothesis
testing problem above is to replace the unknown parameters with their MLEs [11], which yields the
GLRT detector, {

T̃ (b) , log
maxθ ∏K

k=1 hk
1,θ(bk)

∏K
k=1 hk

0(bk)

} H1
≷
H0

λ, (14)

where λ is a prescribed decision threshold to satisfy certain error probabilities. After substituting (11)
and (12) into (14), the generalized log-likelihood ratio (GLLR) T̃ (b) can be written as:

T̃ (b) = max
θ

K

∑
k=1

log hk
1,θ(bk)−

K

∑
k=1

log hk
0(bk)

=
K

∑
k=1

[
bk log

Pk
1,θ̃

P0
+ (1− bk) log

1− Pk
1,θ̃

1− P0

]
. (15)
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In ref. (15), θ̃ denotes the MLE of the unknown parameter vector θ, which is obtained by
maximizing the log-likelihood function of θ, i.e.,

θ̃ = arg max
θ
L̃b(θ), (16)

where

L̃b(θ) =
K

∑
k=1

[
bk log Pk

1,θ + (1− bk) log(1− Pk
1,θ)

]
. (17)

Clearly, if a target is detected, θ̃ provides the desired estimation of the target location.

3.2. Solve the MLE with the Differential Evolution Algorithm

Note that no closed-form solution can be found for (16) due to the complicated objective function.
Conventional optimization methods, such as the gradient decent method, to a great extent, rely on the
assumption of the objective function’s characteristics (e.g., concavity, convexity, and monotonicity).
However, it is difficult to check the concavity of the objective function in (17). Furthermore, it is a subtle
task to tune the parameters of conventional optimization methods for high-quality solutions. On the
other hand, the DE algorithm [24] addresses these issues properly. Thus, we resort to the DE algorithm
to solve (16).

The DE algorithm imitates the biological evolution and can generate a good solution that maximizes
(or minimizes) the objective function via the iterative process of reproduction and selection [25].
Specifically, the DE first randomly initializes the population to cover the entire search space uniformly.
The individuals of the population are then perturbed and combined by applying mutation and crossover
operators to produce new candidates. The better individuals among the current population and the newly
produced candidates are selected, constituting the next generation. The mutation, crossover, and selection
procedures are repeated until the stopping criterion is satisfied. Then, the best individual among the last
generation is chosen as the final solution.

In this work, the detailed steps used to solve the MLE by the DE algorithm were as follows. First,
given the size of the population (Np), the scalar number (F), the crossover rate (Cr), the maximum
number of generations (Gmax), the maximum bounds of the parameters were θmax = [xmax, ymax, ϕmax]

and the minimum bounds were θmin = [xmin, ymin, ϕmin].

1. Initialization. The generation number was set to G = 0 and Np individuals were randomly
initialized with their goal vectors (θi,G = [θ1,i,G, θ2,i,G, θ3,i,G]) uniformly drawn from the search
space (θmin, θmax), where i = 1, 2, · · · , Np.

2. Generation Evolution. While the current generation count (G < Gmax) was occurring, Steps
2.1–2.3 were performed for each individual i, and then G = G + 1 was set.

Step 2.1: Mutation.Create a donor vector ϑi,G = [ϑ1,i,G, ϑ2,i,G, ϑ3,i,G] for the i-th goal vector
following the differential mutation scheme:

ϑi,G = θγi
1,G + F(θγi

2,G − θγi
3,G). (18)

The indices γi
1, γi

2, and γi
3 are different integers randomly chosen from {1, 2, · · · , Np}, which are

also different from the current goal vector index (i).

Step 2.2: Crossover. On the basis of goal vector θi,G and donor vector ϑi,G, generate a trial
vector µi,G = [µ1,i,G, µ2,i,G, µ3,i,G] by performing the following crossover operation on each of the
three components:

µj,i,G =

{
ϑj,i,G if (randi,j ≤ Cr or j = jrand),
θj,i,G otherwise,

, j = 1, 2, 3, (19)
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where randi,j is a uniformly distributed random number within (0, 1), and jrand ∈ {1, 2, 3} is
a randomly chosen index ensuring that µi,G gets at least one component from ϑi,G.

Step 2.3: Selection. Determine whether the goal vector θi,G or the trial vector µi,G survives to the
next generation by comparing their objective function values, which are respectively calculated
by substituting θi,G and µi,G into (17), i.e.,

θi,G+1 =

{
µi,G if L̂b(µi,G) ≥ L̂b(θi,G),
θi,G otherwise.

(20)

3. Termination. The iteration in Step 2 stops at the Gmax-th generation. Among the Np goal vectors
of the Gmax-th generation, the goal vector that yields the largest objective function value is chosen
as the final solution.

We note that the runtime-complexity of solving the MLE by the DE method is O(3 · Np · Gmax),
since, in each generation of the DE, a loop over Np is performed, containing a loop over the three
components of θ in the mutation and crossover operations.

3.3. Discussion

It is well known that false alarm probability and detection probability are performance indicators
of any given detection rule and are defined as

P f a = Pr{T̃ (b) ≥ λ|H0}, and Pd = Pr{T̃ (b) ≥ λ|H1}. (21)

However, P f a and Pd cannot be analytically derived since the conditional pdfs of P(T̃ (b)|H0),
and P(T̃ (b)|H1) are unavailable. Nevertheless, the simulation results under target absence hypothesis
may help the designer choose a threshold (λ) to form a constant false alarm rate detector. Pd is also
evaluated by simulations, which is acceptable since Pd is target dependent in any case.

If a target is detected, θ̃ provides the MLEs of the target location and the principal reflection
angle. The theoretical performance limits of the MLEs are given by the CRLB matrix. It is worth
mentioning that the CRLB of the MLE was derived for underwater target localization in ref. [18],
and that analysis is also applicable here. Therefore, the Fisher information matrix (FIM), which is
employed to characterize the CRLB, is a 3× 3 matrix with the (i, j)-th element given by ref. [18]

[
Ĩ
]

i,j =
K

∑
k=1

{
∆2Pk

1,θ

4η2σ4(1 + ρk
θ)

4
(
1− Pk

1,θ
) ∂ρk

θ

∂θi

∂ρk
θ

∂θj

}
. (22)

Taking the inverse of Ĩ leads to the CRLB matrix Ĩ−1, and the diagonal entries of Ĩ−1 specify the
lower bounds on the estimation accuracy of the corresponding parameters.

In (22), the first-order partial derivative of ρk
θ is calculated as

∂ρk
θ

∂θi
= −ρk

θ

[
g1 (dk)

∂dk
∂θi

+ 2ΩΦ−2Ω(αk − ϕ)2Ω−1g2 (αk, ϕ)

(
∂αk
∂θi
− ∂ϕ

∂θi

) ]
, (23)

and ∂ρk
θ

∂θj
can be readily obtained with similar steps. As θi, θj ∈ {x, y, ϕ}, the partial derivatives required

in (23) are derived from (4) and (5), i.e.,

∂dk
∂x

=
x− Xs√

(x− Xs)
2 + (y−Ys)

2
+

x− Xk√
(x− Xk)

2 + (y−Yk)
2

,

∂dk
∂y

=
y−Ys√

(x− Xs)
2 + (y−Ys)

2
+

y−Yk√
(x− Xk)

2 + (y−Yk)
2

,
∂dk
∂ϕ

= 0, (24)
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∂αk
∂x

=
Yk − y

(x− Xk)
2 + (y−Yk)

2 ,
∂αk
∂y

=
x− Xk

(x− Xk)
2 + (y−Yk)

2 ,
∂αk
∂ϕ

= 0, (25)

and

∂ϕ

∂x
= 0,

∂ϕ

∂y
= 0,

∂ϕ

∂ϕ
= 1. (26)

Though the GLRT based on one-bit quantized data is easy to implement with only one-bit
communication required between sensors and the FC, it suffers severe information loss during
observation quantization at sensors which may lead to an unacceptable performance at low
signal-noise-ratios (SNRs). To mitigate this degradation, we propose the GLRT detector which employs
multi-bit quantization on sensor observations.

4. Target Detection and Localization by GLRT Employing an Adaptive Multi-Bit Quantizer

In this section, we consider a GLRT detector based on multi-bit quantization where sensor
observations are uniformly quantized. Considering the aspect dependence of the target reflection,
an adaptive multi-bit quantizer is proposed to efficiently transmit the observed information from
sensors to the FC. Then, the GLRT based on adaptive multi-bit quantization is derived for target
detection and localization. Additionally, the CRLB matrix of the MLE is also derived.

4.1. Adaptive Multi-Bit Quantization

The optimal multi-bit (or multi-level) quantizer design has been widely studied where the
main challenge is the high computational complexity as the design of a multi-level quantizer often
involves a nonlinear, multi-dimensional search process [9]. Due to the lack of knowledge of the
target parameters, it seems impossible to optimize the quantization strategy. Therefore, it is natural to
uniformly quantize the sensor observations, and to employ the same quantization thresholds among
all of the sensors.

The typical Q-bit uniform quantization scheme quantizes the observations into one of the M , 2Q

quantization levels as follows:

mk =


0, 0 < rk < Γ,
1, Γ ≤ rk < 2Γ,
...
M− 1, (M− 1)Γ ≤ rk < ∞,

, k = 1, 2, · · · , K, (27)

where mk denotes the quantizer output of the k-th sensor, and Γ is the quantization parameter. Then,
the quantized data (mk) is encoded into a binary codeword with fixed number of bits (i.e., Q bits)
according to a certain encoding rule, before being transmitted to the FC.

In the aspect dependent target reflection model, much of the reflected energy from the target will
be concentrated within a particular conical angle (cf. Figure 1). Therefore, when the target is present,
only a few sensors located in a certain zone can receive the reflected waves and hence, have relative
larger valued observations, while the other sensors merely observe noises with probably small values.
On the other hand, it is known from refs. (1) and (2) that the probability of the sensor observation
taking a specific value decreases rapidly with a growing rk under both H0 and H1. Consequently,
we can conclude that only those rarely occurring but relatively large valued {rk}s, and hence, large
quantizer outputs ({mk}s) contain information about the target. To strike a balance between using less
bits to quantize most of the observations containing probably small valued noise and using more bits
to represent those rare but relatively large valued observations containing valuable knowledge about
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the target, we propose the following adaptive Q-bit quantization scheme which quantizes the sensor
observations into one of the L , 2Q+1 − 2 quantization levels, i.e.,

mk =


0, 0 < rk < Λ,
1, Λ ≤ rk < 2Λ,
...
L− 1, (L− 1)Λ ≤ rk < ∞,

, k = 1, 2, · · · , K, (28)

where Λ denotes the quantization parameter of the proposed quantizer. Correspondingly, the quantizer
output mk is adaptively encoded into binary codeword wk following the encoding scheme shown in
Table 1. The design philosophy of the proposed encoding scheme is described as follows. Different from
the conventional encoding scheme that employs fixed number of bits to encode the quantized message,
here, the codeword length of wk, denoted by qk, is determined by the value of mk. More specifically,
shorter codeword lengths are used to represent smaller mks that have larger occurring probabilities,
while longer codeword lengths are employed to represent rarely occurring but larger valued mks.
In this encoding manner, each sensor can efficiently transmit its quantized data to the FC, which
is important to the WSNs with strictly constrained bandwidths and energy levels. Recall that the
number of quantization levels in the typical Q-bit quantization scheme is M = 2Q, while our proposed
adaptive Q-bit quantizer has more quantization levels available, i.e., L , 2Q+1− 2. Thus, the proposed
quantization scheme achieves much more precise quantization than the typical quantizer, which is
another benefit of the proposed scheme.

Note that the choice of the quantization parameter Λ for the proposed quantizer should affect
the final detection and localization performance. However, the optimization of parameter Λ is
a impermissible task due to the unavailability of target parameters. Nevertheless, we set Λ to be the
same as the quantization threshold in the one-bit quantization case described in Section 3, i.e., set
Λ = ∆ to gain insight into the performance of the detector employing the proposed adaptive quantizer
as well as to make a relatively fair comparison with the one-bit quantization-based GLRT.

Table 1. Proposed Encoding Scheme.

mk 0 1 2 3 4 5 · · · 2Q − 2 2Q − 1 · · · 2Q+1 − 3

qk 1 2 · · · Q

wk 0 1 00 01 10 11 · · · 00 · · · 00︸ ︷︷ ︸
Q

00 · · · 0︸ ︷︷ ︸
Q−1

1 · · · 11 · · · 11︸ ︷︷ ︸
Q

Note: mk , qk , and wk denote the input message, codeword length, and output codeword, respectively.

To be specific, the resulting communication overhead of the proposed adaptive Q-bit quantizer is
quantitatively analyzed as follows. Denote the expected total number of bits required to be transmitted
to the FC under hypotheses H1 and H0 as N1,θ and N0, respectively. For the proposed quantizer,
the pmf of codeword length qk under hypothesisH1 is given by

χ1,θ(qk) , Pr(qk|H1) =

{ ∫ (2qk+1−2)∆
(2qk−2)∆ f k

1,θ(rk)drk = (Pk
1,θ)

(2qk−2) − (Pk
1,θ)

(2qk+1−2), 1 ≤ qk < Q,∫ ∞
(2qk−2)∆ f k

1,θ(rk)drk = (Pk
1,θ)

(2qk−2), qk = Q,
(29)

where the notation Pk
1,θ defined in (10) is employed. The corresponding expectation of total number of

bits under transmission is then calculated as

N1,θ =
K

∑
k=1

Q

∑
qk=1

qk · χ1,θ(qk) =
K

∑
k=1

Q

∑
qk=1

exp
[
− (2qk − 2)∆

2ησ2(1 + ρk
θ)

]
. (30)
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Similarly, the expected communication overhead between sensors and the FC under hypothesis
H0 can be derived as

N0 =
K

∑
k=1

Q

∑
qk=1

exp
[
− (2qk − 2)∆

2ησ2

]
. (31)

Compared with the typical Q-bit quantization scheme in ref. (27) that has the expected
communication overhead between sensors and the FC fixed as Q · K, the proposed adaptive multi-bit
quantization scheme greatly reduces the expected communication overhead under bothH1 andH0.
Moreover, the expected communication overhead of the proposed quantization scheme increases slowly
with a growing Q, while the expected communication overhead of the typical multi-bit quantization
increases proportionally to Q. More specifically, it is shown later by simulation that the adaptive 2- or
3-bit quantizer only incurs a fractional increase of communication overhead compared with the one-bit
quantizer in Section 3, and this minor compromise brings substantial performance gain.

It is worth mentioning that the encoded data {wk}K
k=1 with variable codeword length may increase

the complexity of data reception at the FC. Nevertheless, we assume that the binary codewords {wk}K
k=1

can be received without errors, with the help of symbol synchronization (e.g., [26]).

4.2. Derivation of GLRT Detector

Assume that the encoded data {wk}K
k=1 can be transmitted to the FC reliably. Then, the FC is

responsible for making a global decision based on the recovered messages {mk}K
k=1.

For the proposed adaptive Q-bit quantization scheme, the probability that the output data (mk)
takes the specific value l under hypothesisH1 can be calculated as

Uk,l
1,θ , Pr(mk = l|H1) =

{ (
Pk

1,θ
)l −

(
Pk

1,θ
)l+1, 0 ≤ l < L− 1,(

Pk
1,θ
)l , l = L− 1.

(32)

Correspondingly, the pmf of message (mk) underH1 is

sk
1,θ(mk) =

L−1

∏
l=1

(
Uk,l

1,θ
)δ(mk−l), (33)

where δ(·) denotes the Dirac function. Similarly, the probability that mk takes the value l underH0 is
given by

Uk,l
0 , Pr(mk = l|H0) =

{ (
Pk

0
)l −

(
Pk

0
)l+1, 0 ≤ l < L− 1,(

Pk
0
)l , l = L− 1,

(34)

where the notation P0 defined in (9) is employed. The corresponding pmf of mk under H0 can be
written as

sk
0(mk) =

L−1

∏
l=1

(
Uk,l

0
)δ(mk−l). (35)

On the basis of the received data, m , [m1, m2, · · · , mK], the FC is faced to tackle the following
composite hypothesis testing problem.{

H0 : mk ∼ sk
0(mk), k = 1, 2, · · · , K,

H1 : mk ∼ sk
1,θ(mk), k = 1, 2, · · · , K.

(36)
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Accordingly, the GLRT should be employed to simultaneously reach a final decision and give the
target location estimation once it is detected. Similar to ref. (16), the MLE of θ is given by

θ̄ , arg max
θ

[
K

∏
k=1

sk
1,θ(mk)

]
= arg max

θ

K

∑
k=1

L−1

∑
l=0

δ(mk − l) log
(
Uk,l

1,θ
)
, (37)

which can also be solved by the DE algorithm. The corresponding GLLR is then computed as

T̄ (m) = log
maxθ ∏K

k=1 s1,θ(mk)

∏K
k=1 sk

0(mk)
=

K

∑
k=1

L−1

∑
l=0

δ(mk − l) log
Uk,l

1,θ̄

Uk,l
0

. (38)

The final decision is easily made by comparing the GLLR with a predetermined threshold.

4.3. Discussion and Derivation of the Cramer–Rao Lower Bound

The global false alarm and detection probability of the GLRT detector based on adaptive multi-bit
quantization have similar definitions as in ref. (21); however, neither of these two performance
indicators can be analytically derived since the conditional probability density functions of
P(T̄ (m)|H0) and P(T̄ (m)|H1) are not available. The simulation results under hypothesis H0 help
to find global decision thresholds for the detector, following a constant false alarm probability setup.
Later, in Section 5, we present simulation results to reveal the detection performance of the proposed
GLRT detector. On the other hand, if the target is detected, the CRLB matrix of the MLEs of target
parameters is derived to evaluate the target localization performance.

Denote Ī as the FIM for θ under the adaptive multi-bit quantization scheme which is derived as
follows to characterize the CRLB matrix. According to ref. (37), the log-likelihood function of θ can be
written as

L̄m(θ) = log
[ K

∏
k=1

sk
1,θ(mk)

]
=

K

∑
k=1

L−1

∑
l=0

δ(mk − l) log
(
Uk,l

1,θ
)
. (39)

Taking the second-order partial derivative of (39) with respect to θi and θj, we obtain

∂2L̄m(θ)

∂θi∂θj
=

K

∑
k=1

L−1

∑
l=0

[
− δ(mk − l)(

Uk,l
1,θ
)2

∂Uk,l
1,θ

∂θi

Uk,l
1,θ

∂θj
+

δ(mk − l)

Uk,l
1,θ

∂2Uk,l
1,θ

∂θi∂θj

]
, (40)

where θi, θj ∈ {x, y, ϕ}. The first-order partial derivative of Pk
1,θ required in (40) is written as

∂Uk,l
1,θ

∂θi
=

{ [
l
(

Pk
1,θ
)l−1 − (l + 1)

(
Pk

1,θ
)l
]

∂Pk
1,θ

∂θi
, 0 ≤ l < L− 1,

l
(

Pk
1,θ
)l−1 ∂Pk

1,θ
∂θi

, l = L− 1,
(41)

and the second-order partial derivative of Pk
1,θ can be computed as

∂2Uk,l
1,θ

∂θi∂θj
=



[
l(l − 1)

(
Pk

1,θ
)l−2 − l(l + 1)

(
Pk

1,θ
)l−1

]
∂Pk

1,θ
∂θi

∂Pk
1,θ

∂θj

+
[
l
(

Pk
1,θ
)l−1 − (l + 1)

(
Pk

1,θ
)l
]

∂2Pk
1,θ

∂θi∂θj
, 0 ≤ l < L− 1,

l(l − 1)[
(

Pk
1,θ
)l−2

]
∂Pk

1,θ
∂θi

∂Pk
1,θ

∂θj
+ l
(

Pk
1,θ
)l−1 ∂2Pk

1,θ
∂θi∂θj

, l = L− 1,

(42)

where
∂Pk

1,θ
∂θi

=
∆Pk

1,θ
2ησ2(1+ρk

θ)
2

∂ρk
θ

∂θi
.
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Note that E1,θ[δ(mk − l)] = Uk,l
1,θ and ∑L−1

l=0
∂2Uk,l

1,θ
∂θi∂θj

= 0. The (i, j)-th element of the FIM is then
obtained by taking the negative expectation of (40) with respect to mk, i.e.,

[
Ī
]

i,j = −E1,θ

[
∂2L̄m(θ)

∂θi∂θj

]
=

K

∑
k=1

{
∆2Pk

1,θ
[
1− (Pk

1,θ)
L−1]

4η2σ4(1 + ρk
θ)

4
[
1− Pk

1,θ
]2 ∂ρk

θ

∂θi

∂ρk
θ

∂θj

}
. (43)

The CRLB matrix is then
[

Ī
]−1. Recalling that Pk

1,θ < 1 and L = 2Q+1 − 2, it can be expected
that the term 1− (Pk

1,θ)
L−1 in (43) will quickly approach 1 with a growing number of quantization

bits (Q). Therefore, it is enough to use a small number of bits (e.g., 2 or 3 bits) for quantization of the
sensor observations in terms of closely achieving the localization performance when L = ∞. A further
increase in the number of quantization bits brings negligible gain in the localization performance,
except for adding a communication burden.

Note that the FIM for the GLRT employing the adaptive multi-bit quantizer (i.e., ref. (43)), as
well as the FIM for the GLRT based on one-bit quantized data (i.e., ref. (22)), is a summation of K
components. The contributions of the k-th sensor to the (i, j)-th element of the FIM are denoted as Īk

i,j

and Ĩk
i,j for the GLRT detectors based on multi-bit and one-bit quantized data, respectively, i.e.,

Īk
i,j ,

∆2Pk
1,θ
[
1− (Pk

1,θ)
L−1]

4η2σ4(1 + ρk
θ)

4
(
1− Pk

1,θ
)2

∂ρk
θ

∂θi

∂ρk
θ

∂θj
,

Ĩk
i,j ,

∆2Pk
1,θ

4η2σ4(1 + ρk
θ)

4
(
1− Pk

1,θ
) ∂ρk

θ

∂θi

∂ρk
θ

∂θj
. (44)

Consequently, we have the ratio

Īk
i,j

Ĩk
i,j

=
1− (Pk

1,θ)
L−1

1− Pk
1,θ

≥ 1. (45)

This result agrees with our intuition whereby the GLRT employing the multi-bit quantizer
obtains more precise information from sensors, compared with that based on one-bit quantized data.

Specifically, the information gain at the k-th sensor is determined by the term
1−(Pk

1,θ)
L−1

1−Pk
1,θ

.

5. Simulation Results

In this section, we provide simulation results to demonstrate the performance of our proposed
GLRT detectors under different settings. The simulations were carried out on a core i5-8250U
3.4 GHz personal computer using MATLAB software. Following refs. [18,20], an active source
was assumed to be located at (0, 0), and η = 1, σ2 = 1, ∆ = 5.9915 was set (thus giving rise to
P0 = 0.05). Also, the beampattern parameters of the reflection model were assumed to be Ω = 4
and Φ = 5π/180. The constant C0 was defined through C0 = γref · SNR, such that the specified
SNR was achieved at the reference distance γref. In our tests, we set γref = 1600. The sensors were
deployed within the area {(X, Y)| − 1200 ≤ X ≤ 1200, 0 ≤ Y ≤ 240}. Note that although our proposed
method works for any sensor deployment pattern as long as sensor locations are known, we assumed
uniformly deployed sensors here for simplicity. Specifically, sensors were deployed on the grids of
{(Xk, Yk)|Xk = ax ·Dmin, Yk = ay ·Dmin}, where ax, ay are integers, and Dmin is the minimum distance
between sensors. The experiment time for Monte Carlo (MC) simulations is 106. Note that the exact
detection and localization performance may be target dependent. Nevertheless, we assumed a target
located at (0, 800) with the principal reflection angle being ϕ = π/6 (or 30◦), to gain insight into the
performance of the proposed schemes.
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As mentioned before, the solutions of the MLEs in refs. (16) and (37) used the DE algorithm.
The corresponding parameters were set as follows. The population size was Np = 24, the maximal
generation number was Gmax = 60, the scalar number was F = 0.5, and the crossover rate was
Cr = 0.9. Additionally, the upper and lower bounds for searching the target parameters θ were set as
θmax = [1000, 1300, π

4 ] and θmin = [−1000, 300,−π
4 ], respectively.

5.1. Detection Performance Evaluation

We first examined the detection performance of the GLRT based on one-bit quantized data and
the GLRT detector employing multi-bit adaptive quantizer under different sensor deployments. Two
uniformly deployed sensor fields were considered: (a) a sensor field with Dmin = 120, and thus
−10 ≤ ax ≤ 10, 0 ≤ ay ≤ 2, with K = 63 sensors; amd (b) a sensor field with Dmin = 80, and thus
−15 ≤ ax ≤ 15, 0 ≤ ay ≤ 3, and K = 124.

Figure 2 illustrates the receiver operating characteristic (ROC) curves of the proposed GLRT
detectors either based on one-bit or adaptive multi-bit quantization under the assumed sensor
deployments. The ROC curve of the typical counting rule test based on one-bit data from sensors [10]
and that of the decentralized detection scheme proposed in ref. [20], which employs the scan statistic
(SS) to fuse the one-bit quantized sensor measurements as well as the ROC curves of the GLRT detectors
using typical multi-bit quantizers, are also given for comparison. For the scan statistic-based scheme,
its scanning window length is set at 7. Correspondingly, Table 2 shows the expected communication
overhead between sensors and the FC for the detectors mentioned above.

(a) (b)
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Figure 2. Receiver operating characteristic curves when the signal-noise-ratio (SNR) was 8 dB,
and different sensor deployments were employed: (a) a sensor field consisting of 3 rows and 21
columns of sensors; (b) a sensor field consisting of 4 rows and 31 columns of sensors.

Table 2. Expected communication overhead under different sensor deployments (SNR = 8 dB).

Sensor
Field Field (a): 3 × 21 Field (b): 4 × 31

Schemes 1-bit GLRT/
SS/Counting

2-bit
Adaptive

2-bit
Typical

3-bit
Adaptive

3-bit
Typical

1-bit GLRT/
SS/Counting

2-bit
Adaptive

2-bit
Typical

3-bit
Adaptive

3-bit
Typical

Overhead
underH1

63 64.78 126 65.05 189 124 127.77 248 128.35 372

Overhead
underH0

63 63.16 126 63.16 189 124 124.31 248 124.31 372

We can observe from Figure 2 that the GLRT detectors greatly outperform the existing scan
statistic-based scheme and the counting rule test, even with one-bit quantization; this is because more
prior knowledge about the target reflection model and the sensor locations is utilized by the GLRT
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detectors. By combining Figure 2 and Table 2, it is found that the GLRT based on adaptive 2-bit
quantization achieves better performance than the GLRT employing the typical 2-bit quantizer at
low false alarm probabilities; meanwhile, the communication overhead of the former is significantly
reduced. Also, similar phenomenons can be observed for the GLRT detectors either based on adaptive
3-bit quantization or typical 3-bit quantization. These results can be explained as follows. Compared
with the typical quantizer with the same number of quantization bits, the adaptive quantizer achieves
more precise quantization since it has more quantization levels available; meanwhile, the adaptive
quantizer encodes the quantized data into binary codewords more smartly, in the sense of using short
codeword lengths to represent the quantized data that have small values but frequently appear. It is
also viewed from Figure 2 that the GLRT detectors with 3-bit quantization bring in negligible gain
in the detection performance, compared with the adaptive 2-bit quantization-based GLRT. Thus, it is
enough to use a small number of bits to quantize sensor observations.

Table 3 specifies the computational time of the above-mentioned detectors with a given deciding
threshold (e.g., 8). It is found that the computational time of the scan statistic-based detection scheme
is slightly longer than that of the counting test rule, and both of them are significantly shorter than the
computational time of all the GLRT detectors. This is because that the GLRT detectors are required to
solve the MLE of target parameters and have more complicated expressions for test statistics.

Table 3. Computational time of different detection schemes for 106 Monte Carlo runs (Unit: Seconds).

Counting SS 1-bit GLRT 2-bit
Adaptive

2-bit
Typical

3-bit
Adaptive

3-bit
Typical

Field (a): 3× 21 1728.6 1746.7 79,581 87,643 86,887 87,632 89,267

Field (b): 4× 31 1752.8 2574.1 126,189 136,617 136,390 136,146 134,108

We then tested the detection performance and the communication overhead of the proposed
GLRT detectors under different SNR conditions. The sensor field with 4 rows and 31 columns of
sensors (i.e., Dmin = 80) was employed. Figure 3 shows the detection probability as a function of
reflected signal’s SNR when the false alarm probability is fixed; correspondingly, Table 4 gives the
expected communication overheads of the detectors.

Figure 3 again verifies the behaviors for which the GLRT detector with one-bit quantization
outperforms the existing scan statistic-based scheme, and the GLRT employing adaptive 2-bit quantizer
achieves better detection performance than the GLRT using a typical 2-bit quantizer, especially at
low SNRs. It is noticed from Table 4 that the expected communication overhead of the adaptive 2-bit
quantization scheme underH1 increases with growing SNR, which agrees with our intuition that more
encoded data exists with long codeword lengths at higher SNRs. Nevertheless, the communication
burden of the GLRT employing the proposed adaptive 2-bit quantization is still much lower than that
using a typical 2-bit quantizer. By combining Figure 3 and Table 4, it is found that the proposed 2-bit
quantizer only incurs a fractional increase of communication overhead, compared with the one-bit
quantization scheme. Moreover, this minor compromise brings substantial performance gain.
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Figure 3. Detection probability versus SNR under fixed false alarm probabilities where the sensor field
consists of 4 rows and 31 columns of sensors (i.e., Dmin = 80).

Table 4. Expected communication overhead under different SNRs, where Dmin = 80.

SNR (dB) 6 7 8 9 10 11

2-bit adaptive: H1 126.58 127.15 127.77 128.42 129.08 129.74

2-bit adaptive: H0 124.31

1-bit GLRT /Scan
statistic: H1 &H0

124

2-bit typical: H1&H0 248

5.2. Localization Performance Evaluation

In this subsection, we are interested in the target localization performance of the proposed
GLRT detectors. Similar to ref. [18], the root-mean-square-error (RMSE) is used as the localization
performance metric. The definition of RMSE is given by

RMSE ,

√
E
[
(x̃− x)2 + (ỹ− y)2

]
, (46)

where (x̃, ỹ) is the MLE of the target location. The lower bounds of the RMSE for different GLRT

detectors are then specified by their CRLB matrixes. Specifically,
√[

Ĩ−1
]

1,1 +
[

Ĩ−1
]

2,2 gives the lower
bound of the RMSE for one-bit quantization based GLRT, and the lower bounds of the RMSE for the
GLRT detectors based on 2-bit quantization can be obtained similarly.

Figure 4 illustrates the RMSE of the MLE of target location under different SNR conditions. Solid
lines are the results of MC experiments; dashed lines are the CRLBs calculated according to the derived
expressions (cf. (22) and (43)). It is known from Figure 4 that the RMSEs of MC experiments do not
reach their CRLBs. The reason for this is that the MLE is asymptotically efficient when a sufficiently
large number of samples are available. While for the aspect dependent target reflection model discussed
here, only a few sensor observations are utilized for the maximum likelihood estimation, since the
power of the reflected signal is concentrated within a narrow conical angle. It is also observed that the
GLRT employing an adaptive 2-bit quantizer achieves much better localization performance than the
GLRT based on one-bit quantization at the cost of only a minor increase of communication overhead
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(cf. Table 4). For all three GLRT detectors, the RMSEs from the MC experiment are shown to be closer
to the corresponding CRLBs of RMSE as the SNR grows.
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Figure 4. Root-mean-square-error (RMSE) under different SNR conditions where the sensor field consists
of 4 rows and 31 columns of sensors.

Figure 5 demonstrates the RMSE under various sensor deployments. More specifically,
the minimum distances between sensors are Dmin = 120, 80, 48, 40, and 30, respectively, thus giving
rise to the sensor fields with K = 63, 124, 306, 427, and 729 sensors. It is observed that when the
number of sensors increases, the RMSE decreases considerably; meanwhile, the gap between the RMSE
of MC experiments and its CRLB also decreases.
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Figure 5. RMSE under various sensor deployments, where SNR = 8 dB.

6. Conclusions

This paper considered the aspect-aware target detection and localization in a WSN, where the
analysis focused on the aspect and distance dependent target reflection model. First, the GLRT detector
based on one-bit quantization was proposed to simultaneously achieve target detection and localization.
We then proposed the GLRT detector employing an adaptive multi-bit quantizer which quantizes sensor
observations more precisely to further improve the detection and localization performance. When the
target was detected, the CRLB matrix of the MLE was also derived for the proposed GLRT detector.
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The numerical results showed that the proposed GLRT detector based on one-bit quantization outperforms
the existing scheme that based on scan statistic. Moreover, the proposed GLRT detector employing
a adaptive 2-bit quantizer achieves much better performance than the one-bit quantization based GLRT at
the cost of only a minor increase in communication overhead.
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