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More than 8 billion tonnes of plastic were produced between 1950 and 2015, that is 1 tonne for every man, woman and child on our planet.
Global plastic production has been growing exponentially with an annual growth rate of 8.4% since 1950, equating to approximately 380 million
tonnes per annum. A further 50 kg of plastic is now being produced for each person every year with production continuing to accelerate. Here,
we discuss the human and planetary health hazards of all that plastic. We consider each step in the journey of these complex and pervasive
industrial materials: from their synthesis predominantly from fossil fuel feedstocks, through an often-brief consumer use as plastic products, and
onto waste streams as fuel, permanent landfill or as unmanaged waste in our environment, food, air and bodies.
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Hazards of Plastic Production

What are plastics?

Consumer plastics are highly complex industrial materials,

incorporating a polymer matrix mixed with a diverse array of

additives and processing agents, plus impurities, by-products,

breakdown products and contaminants.1,2 More than 10 500

monomers, additives and processing agents are registered for

production internationally, with nearly 40% produced at high

volumes2 at a total of 25 million tonnes annually.1 Additives

comprise approximately 7% of plastic products by weight,1 and

include plasticisers, flame retardants, antioxidants, UV

stabilisers and pigments that are mixed with the polymer to

produce specific products,1–3 or as fillers.1 Additives are not

typically bonded to the polymer and leach out over time and

with use.3–5

Raw materials

While plastic waste is a visible environmental problem, there is

less consumer awareness of the significant environmental

impact of plastic production.6–8 Plastic polymers and additives

are overwhelmingly synthesised from ‘virgin’ petrochemicals.

Plastic production starts with the extraction, transport and

refinement of crude oil, with environmental damage at the

site of extraction, risk of crude-oil spillage during extraction

and transportation, contamination of groundwater due to

fracking, and air pollution from flaring (burning off excess

gasses at extraction), transportation emissions and refine-

ment9,10 (Fig. 1).

Manufacture

Refined petrochemicals such as ethylene, propylene or benzene

are used to synthesise plastic monomers, which are bonded

together as polymers. Similar to refinement, this is energy-

intensive and produces significant amounts of carbon dioxide.9

Additionally, the vast majority of these processes use hazardous

chemicals, including the monomers themselves (such as propyl-

ene, styrene, vinyl chloride and butadiene), intermediates in

monomer production (such as benzene and toluene), processing

agents and by-products.9 Additives follow a similar process of

chemical synthesis through multiple intermediates. These pose

occupational as well as environmental hazards, through emission

Key Points

1 Global plastic production has been growing and has diverse
and concerning effects on human and planetary health.

2 As consumers, we can ask where the plastic comes from, what
is in it, and where it goes.

3 As health professionals, we can educate ourselves about the
harms of plastic, and advocate for recyclable, safer plastic to
rescue the health of future generations and of the planet.
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of gases/vapours, contamination of waterways or soils by chemi-

cal waste mismanagement, or through industrial accidents9

(Figs 1, 2).

For example, antimony is used as a catalyst during monomer

synthesis and remains in the process stream during polymerisa-

tion and manufacturing of, for example, drinking bottles and tex-

tiles. Insufficient wastewater treatment or leaching from plastic

products leads to antinomy pollution of rivers near polyethylene

terephthalate production sites which threatens local drinking

water supplies.11

Human health implications of plastic production

Environmental hazards of plastic production affect human health

directly and indirectly (Fig. 3). The contribution of plastics pro-

duction to both global carbon emissions and particulate air pollu-

tion is of growing concern. Throughout the supply chain, plastic

contributes approximately 4% of total global greenhouse emis-

sions.12 Urgent changes to global emissions are critical to avoid a

disastrous 1.5�C increase in anthropogenic warming.13 The

human health effects of climate change alone are profound, and

Fig. 1 Plastic supply chain and potential hazards for planetary and human health and share of main polymers for plastic production. PE, polyethylene;
PET, polyethylene terephthalate; PP, polypropylene; PS, polystyrene; PU, polyurethanes; PVC, polyvinyl chloride; VOCs = volatile organic compounds.
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already being felt.14 Outdoor fine particulate matter (PM2.5) – such

as produced during flaring, from transportation diesel and in crude

oil refinement – is the fifth leading death risk factor world-wide15

and underscores the risk of such a large-scale industry dependent

on petrochemical feedstock.

Hazards of Plastic Use

The next step in the plastic supply chain is the use of man-

ufactured plastic products, the largest markets being packaging

(38%), building and construction (16%) and textiles (15%),1 but

Fig. 2 Potential hazards for planetary and human health from different forms of plastic disposal (top) and fragmentation of plastic products into micro-
and nanoplastics (bottom).
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Fig. 3 Common routes of plastic exposure for children and adults (top) and impacts on human health based on systematic review with meta-analysis
(bottom). See text for references.
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with diverse applications across almost every aspect of our lives

(Fig. 3). The volumes at which plastics are produced reflect a

growing dependence on these products including household

goods, food processing and packaging, personal care products and

medical applications, both external and internal. In each

application, including food packaging,4 we are exposed to a

complex mixture of chemicals. With use, degradation products

are also formed and plastic itself fragments to micro- and

nanoplastics (Fig. 3).

The primary hazard during direct consumer exposure to plastic

is chemicals that leach out from the plastic,3–5 and which may

enter food and drink during processing or from packaging. Some

of the smallest and most volatile chemicals can also be absorbed

transdermally or dispersed into the air and inhaled (in each case

bypassing first-pass metabolism). Young children have additional

exposure through oral exploratory behaviour and/or non-

nutritional ingestion, including their toys and accumulated

chemicals in household dust and soil.

For the vast majority of plastic additives, we know little

about the degree of human exposure or possible human health

impacts. There are limitations of in vitro and animal studies to

evaluate effects of low-dose, long-term human exposure, and

there is no systematic process for post-marketing surveillance,

as there is for pharmaceuticals or pesticides. This issue is com-

pounded for non-intentionally added substances where iden-

tity is unknown or not disclosed.4 Indeed, of approximately

10 500 known plastic monomers, chemical additives and

processing aids, approximately 4100 lack any reported hazard

classifications.2 Of the 6436 chemicals for which hazard data

are available, 3950 have been identified as substances of low

concern; of the remaining 2486 chemicals, 1232 are of medium

concern and 1254 are of high concern.2

Knowledge of direct human health effects is limited to a

small subset where techniques have been independently devel-

oped to measure the chemical or its metabolites in human bio-

samples, and observational studies have then evaluated the

association between individual exposure and health outcomes.

Examples include certain bisphenol monomers, phthalate plas-

ticisers, organohalide flame retardants and polyfluoroalkyl

processing aids. The key findings evaluated by meta-analysis of

multiple individual study populations are summarised in

Figure 3.

Bisphenols

Bisphenols are used to make polycarbonates and epoxy resins,

including plastic food and beverage containers or their linings.

Bisphenol A (BPA) has attracted the most research with adverse

associations including: anogenital distance in newborn girls,16

hypertension,17 cardiovascular disease,18 polycystic ovary syn-

drome,19 insulin resistance,20 type 2 diabetes,17,21,22 obesity and

increased waist circumference.17,21,22 There are no global treaties

relating to BPA or other bisphenols; regulations vary from coun-

try to country. Driven by consumer pressure, industry has

reduced BPA use but BPA has largely been replaced by other

bisphenols with very similar biological activity in vitro and in ani-

mal studies.23

Phthalates (ortho-phthalate diesters)

Phthalates are the main plasticisers used to increase the flexibility

of plastics. Exposure is usually measured as a metabolite in urine.

Adverse associations include: miscarriage,24 anogenital distance in

newborn boys25 and sperm concentration.26 Additional concerns

for harm, but with differing findings for different phthalates,

include birthweight in newborns,27 asthma,28,29 psychomotor

development,30 cognitive development and IQ,30 precocious

puberty in girls,31,32 increased blood pressure in children,27 insulin

resistance,20,33 type 2 diabetes,20 thyroid function,34 obesity and

waist circumference,21,27 endometriosis35 and additional sperm

quality measures.26 There are no global treaties relating to

phthalates.

Halogenated flame retardants

Halogenated flame retardants used in plastics include poly-

chlorinated biphenyls (PCBs) and polybrominated diphenyl

ethers (PBDEs). Adverse health effects associated with PCBs

include: reduced birthweight,36,37 death from certain cancers,38,39

cardiovascular disease,18 type 2 diabetes20,40 and endometri-

osis.41,42 Adverse health effects associated with PBDEs include:

reduced birthweight,43 cognitive development and IQ.44 Addi-

tional concerns include: insulin resistance,20 infant bronchitis,45

several cancers38,39,42,46–49 for PCBs and thyroid function17 for

PBDEs. PCBs and certain PBDEs are regulated under the

Stockholm Convention as Persistent Organic Pollutants (POPs),

but replacements include other brominated flame retardants,

some with strong structural similarities.

Per- and polyfluoroalkyl substances

Per- and polyfluoroalkyl substances (PFAS) are used in firefighting

foams, as protective coatings for food packaging, textiles and furni-

ture, but also in the manufacture of fluoropolymer plastics for non-

stick cookware and waterproof fabrics. There are more than 9000

PFAS,50 but only a handful have been studied for human exposure

and health effects. Adverse health effects associated with PFAS

include: decreased birthweight and length in newborns51–53 and obe-

sity in children.54 Additional concerns include: neurodevelopment,55

allergic rhinitis in children56 and thyroid function.57 Some PFAS are

regulated under the Stockholm Convention as POPs, but otherwise

regulation varies from country to country.

Other monomers, additives, processing aids and
non-intentionally added substances

The small number of chemicals studied across the above catego-

ries only captures a tiny fraction of over 10 500 chemicals in

plastics,2 leaving considerable uncertainty regarding health effects

of other high-volume production additives. ‘Non-targeted’
approaches to identify other chemicals leaching from consumer

products,58,59 in food,60 household environmental samples,61 or

indeed in human biospecimens,62,63 are starting to identify a

much more extensive range of plastic chemical exposure, includ-

ing organophosphate flame retardants, UV filters and stabilisers

and non-phthalate plasticisers,58–63 for which human health

effects are unknown.
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Hazards of Plastic Waste

Waste streams and recycling

Global plastic waste management has lagged behind waste pro-

duction with only approximately 9% being recycled.1 Traditional

mechanical recycling methods largely yield down-cycled plastic

of inferior quality, more limited application and reduced recycling

options.64 Emerging chemical recycling technologies provide

potential recycling of the same plastic,65,66 but need further

development to address high cost and energy requirements.

A greater proportion (12%) is incinerated in purpose-built facili-

ties. This provides an option for lower grade non-recyclable plas-

tic, but releases the embedded carbon as carbon dioxide. In the

absence of controlled incineration, open burns are common,

releasing toxic airborne pollutants alongside embedded carbon.67

The vast majority (79%) of plastic waste is discarded.1 Even in

the best-case scenario, processing and landfill results in accumu-

lation because anaerobic conditions limit degradation.68 Of all

plastics produced annually, nearly half is mismanaged,69 with

littering or leaking from landfills resulting in pollution of land,

freshwater waterways and the ocean.70

Macro, micro- and nanoplastic waste

The visible components of plastic waste are macroplastics includ-

ing plastic products that retain sufficient integrity to be

recognisable and initial fragmentation products. Progressive

weathering and fragmentation lead to ever smaller fragments,

namely microplastics (<5 mm)71 and nanoplastics (typically

defined either as <1 μm or <100 nm).5,71

Macroplastics present certain physical hazards to humans such

as injury and substantive hazards to marine life.72 There is strong

public awareness of these environmental hazards, especially for

marine life, but less so of micro- and nanoplastics.6,7

Micro- and nanoplastics present very different hazards, with

four key areas of concern being: leaching of additives; plastic par-

ticles as vectors for environmental contaminants and micro-

organisms; indirect effects through actions at the lining of our

guts or lungs; and, for particles small enough to pass through bio-

logical barriers, direct effects within tissues.

In addition to degradation of waste macroplastics, micro- and

nanoplastics are also intentionally added, for example as abra-

sives in personal care products,73–76 or released from plastic prod-

ucts during daily use, including synthetic clothing,73,75,77 plastic

food containers and even baby bottles.78 Most research has

focused on larger microplastics >10 μm that are visible with

microscopy techniques. There are concerning knowledge gaps

regarding nanoplastics which, because of their smaller size, are

anticipated to pose greater hazards for human toxicity.5 The

smallest microplastics (<10 μm) and nanoplastics are too small to

detect with microscopy techniques used for larger microplastics,

and their small size poses additional analytical challenges,5 with

techniques only beginning to emerge.

Human exposure

Microplastics have been detected in almost every part of the

environment,75,76,79 including freshwater and air,73,75,76 in

drinking water and a diverse range of foods and beverages

including honey, milk, seafood, table salt and beer.73–75

Ingestion and local effects in the gut

Estimates of microplastic ingested are imprecise, but could be as

high as approximately 200 000 microplastic particles/day or

0.1–5 g/week.80 Microplastics are present in stools of humans

and also many animals.81 Animal studies have reported multiple

local effects of engineered nano- and microplastics in the gut,

including inflammation, barrier function deterioration and gut

microbiota changes.76

Inhalation and local effects in the lung

Airborne microplastics are prevalent even in very remote plane-

tary regions.82 Inhalation of airborne microplastics is modelled to

be a major route of human exposure,73,83 with evidence for plas-

tic fibres in human lung tissue.82,84 There are multiple sources of

airborne microplastics including microplastic fibres from synthetic

textiles and the synthetic textile industry82,83 and microplastic

degradation products from vehicle tyres.82 ‘Tyre crumb’ alone is

a substantive component of overall PM2.5 and PM10 particulate

air pollution,82 although the overall contribution of microplastics

is unknown.82

Occupationally exposed textile workers may experience a

range of interstitial lung disease82,83: lung biopsies reveal inflam-

mation, fibrosis and granuloma formation.82,83 In vitro studies in

human lung cell lines have separately reported pro-inflamma-

tory, cytotoxic or pro-apoptotic effects of engineered nano- and

microplastics.82

Internal exposure and detection in tissues

The likelihood of uptake of micro- and nanoplastics through gas-

trointestinal and alveolar epithelium differs by size.5,73 Animal

and in vitro models of human biological barriers show transloca-

tion of microplastics below 5–10 μm from the gut into the circula-

tory and/or lymphatic systems.73,75,85 In animal models, in vitro

and in a human placental perfusion study, engineered

nanoplastics cross cell membranes as well as specialist biological

barriers such as the mammalian placental barrier and blood–brain

barrier.73,75

To date, microplastics have been detected in human faeces,86

lung82,84 and colectomy samples87 as well as placenta88,89 although

the latter requires further confirmation. Techniques to directly

detect nanoplastics in human tissue are yet to be established.

It is not known what the direct biological effects of micro- and

nanoplastic fragments may be in the diverse tissues and organs

but there is the potential, as shown in animal models and human

in vitro studies, to disrupt fundamental processes across multiple

cell types and trigger, for example, inflammation and oxidative

stress.75,85,90

Vectors for additives, environmental toxins and
micro-organisms

Not only do micro- and nanoplastics contain complex mixtures of

additives and other chemicals from their initial manufacture, but
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there is growing evidence that once in contaminated environ-

ments, like our ocean, toxic chemicals including POPs75,77 and

heavy metals77 accumulate through adsorption. Decreasing parti-

cle size results in increasing surface-area-to-volume ratio, provid-

ing greater opportunity for diffusion of additives from the plastic,

or adsorption and subsequent release of chemicals from the envi-

ronment.5 Nanoplastics are of particular concern because the

combination of available surface-area for exchange and tissue

penetration due to their small size could deliver locally high doses

of leached compounds.5

Environmental microplastics may also be coated with a biofilm

or ‘eco-corona’,5 of particular concern due to mixing between

microplastics and human effluent in sewerage.77 There is evi-

dence that biofilms carry pathogenic bacteria, some with micro-

bial resistance.72,75,77

Conclusion

Not simple, not cheap, not convenient, not inert
and not sustainable

We need to fundamentally re-think plastics. Consumers perceive

plastics to be cheap, convenient and recyclable.7 But plastics are

complex mixtures of industrial chemicals, and our review

uncovers an intricate set of hazards that we poorly understand

and are currently failing to manage. Not only are plastics rarely

recycled to keep them out of waste streams and turn the virgin

plastic production tap off, but they are also largely not recyclable

with existing technology. As with other fossil fuel commodities,

market forces are not factoring in the cost of managing hazards

to human and planetary health, and current generations are

effectively passing responsibility for the problem onto future gen-

erations who do not have a voice.

What can you do?

As consumers, we can value the full cost of the plastic we use

each day, ‘choose to refuse’ and reduce use. We can be curious

and ask questions about where the plastic comes from, what is in

it and where it goes.

As medical professionals, we have expertise to share the sci-

ence and the respected voice to advocate for the health of future

generations and the planet that they depend on. We can use that

voice to advocate with regulators so that industry takes responsi-

bility for the hazards of their products, and to empower con-

sumers to demand this of industry, regulators and brands.

Opportunity for change

Change is possible. Plastics can be simpler, safer and recyclable.

This will require improved recycling technology to turn off the

tap on virgin plastic,91 redesign of the plastics themselves and

redesign plastic chemical regulation. Working with industry to

introduce extended producer responsibility for plastic use and

waste management will require intervention by policy-makers to

reduce demand for plastics, for example by banning unnecessary

plastic applications, and to level the economic playfield for sus-

tainable circular plastic, for example by taxing virgin fossil fuel-

based feedstocks and introducing minimum recycled content

standards. A mechanism for post-marketing surveillance, just as

with pharmaceuticals or pesticides, is also critical. We should not

be producing vast quantities of chemicals of unknown human

toxicity if we cannot detect human exposure nor monitor health

effects. Transparency around additives and non-intentionally

added substances in plastics is therefore essential, as are methods

for detecting plastic chemicals in ongoing biomonitoring

programmes. Investment in techniques to measure nanoplastics

and study their health effects is also critical.

Change is starting. Global bodies such as the Organisation for

Economic Co-operation and Development are reviewing our rela-

tionship with plastics,92 as are influential regional regulatory bod-

ies such as the European Union.93,94 Canada has defined plastics

as toxic,95 acknowledging the environmental impact of plastic

and its harm to human health. Adding the authoritative voice of

medical professions to advocate for the health of future genera-

tions is a critical element that adds weight to the urgent need to

regulate and redesign plastic.
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