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Introduction: Fully convoluted neural networks (FCNN) applied to video-analysis are of
particular interest in the field of head and neck oncology, given that endoscopic
examination is a crucial step in diagnosis, staging, and follow-up of patients affected by
upper aero-digestive tract cancers. The aim of this study was to test FCNN-based
methods for semantic segmentation of squamous cell carcinoma (SCC) of the oral cavity
(OC) and oropharynx (OP).

Materials and Methods: Two datasets were retrieved from the institutional registry of a
tertiary academic hospital analyzing 34 and 45 NBI endoscopic videos of OC and OP
lesions, respectively. The dataset referring to the OC was composed of 110 frames, while
116 frames composed the OP dataset. Three FCNNs (U-Net, U-Net 3, and ResNet) were
investigated to segment the neoplastic images. FCNNs performance was evaluated for
each tested network and compared to the gold standard, represented by the manual
annotation performed by expert clinicians.

Results: For FCNN-based segmentation of the OC dataset, the best results in terms of
Dice Similarity Coefficient (Dsc) were achieved by ResNet with 5(×2) blocks and 16 filters,
with a median value of 0.6559. In FCNN-based segmentation for the OP dataset, the best
results in terms of Dsc were achieved by ResNet with 4(×2) blocks and 16 filters, with a
median value of 0.7603. All tested FCNNs presented very high values of variance, leading
to very low values of minima for all metrics evaluated.

Conclusions: FCNNs have promising potential in the analysis and segmentation of OC
and OP video-endoscopic images. All tested FCNN architectures demonstrated satisfying
outcomes in terms of diagnostic accuracy. The inference time of the processing networks
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were particularly short, ranging between 14 and 115 ms, thus showing the possibility for
real-time application.
Keywords: oral cancer, oropharyngeal cancer, segmentation, machine learning, neural network, deep learning,
narrow band imaging
INTRODUCTION

Surgical data science (SDS) (1) is an emerging field of medicine
aimed at extracting knowledge from medical data and providing
objective measures to assist in diagnosis, clinical decision making,
and prediction of treatment outcomes. In this context, image
segmentation, an essential step in computer vision, can be defined
as the task of partitioning an image into several non-intersecting
coherent parts (2). It is also well known that segmentation is a
prerequisite for autonomous diagnosis, as well as for various
computer- and robot-aided interventions. Many methodologies
have been proposed for image segmentation (3), but the most
recent and successful approaches are based on fully convolutional
neural networks (FCNNs), applying convolutional filters that learn
hierarchical features from data (i.e., input images), and then
collecting them in maps. In general, a high number of filters will
give better results up to a certain point, when a further increase in
their number either does not improve the segmentation
performance, or deteriorates it (4).

FCNNs applied to video-analysis are of particular interest in
the field of head and neck oncology, since endoscopic examination
(and its storage in different ways and media) has always
represented a crucial step in diagnosis, staging, and follow-up of
patients affected by upper aero-digestive tract cancers. In this view,
Narrow Band Imaging (NBI) represents an already consolidated
improvement over conventional white light endoscopy, allowing
for better and earlier identification of dysplastic/neoplastic
mucosal alterations (5–8). However, so far, NBI-based
endoscopy remains a highly operator-dependent procedure, and
its standardization remains particularly challenging, even when
employing simplified pattern classification schemes (9–14). In fact,
even though such bioendoscopic tools are aimed at identifying
pathognomonic superficial vascular changes in forms of abnormal
intrapapillary capillary loops, a relatively long learning curve and
intrinsic subjectivity of subtle visual evaluations still hamper their
general and widespread adoption in daily clinical practice.
Furthermore, subtle differences in NBI patterns according to the
head and neck subsite to be analyzed have also been described.
This is especially true considering the oral cavity (OC) in
comparison with other upper aero-digestive tract sites (9).

The aim of this study was to test FCNN-based methods for
semantic segmentation of early squamous cell carcinoma (SCC)
in video-endoscopic images belonging to OC and oropharyngeal
(OP) subsites to pave the way towards development of intelligent
systems for automatic NBI video-endoscopic evaluations.

MATERIALS AND METHODS

This study was performed following the principles of the
Declaration of Helsinki and approved by the Institutional
2

Review Board, Ethics Committee of our academic hospital
(Spedali Civili of Brescia, University of Brescia, Brescia, Italy).
The workflow of the approach used is shown in Figure 1. In
particular, informative NBI frames were selected from videos of
OC and OP SCC through a case by case evaluation (“Original
frames”, Figure 1). Each frame was manually annotated by an
expert clinician contouring the lesion margins, thus creating a
mask referring to every frame (“Original mask”, Figure 1). The
original frames and masks were then employed to train the
FCNNs in order to obtain an automatic tumor segmentation.

Mucosal Cancer Segmentation
Two datasets were retrieved from the institutional registry
analyzing 34 and 45 NBI endoscopic videos of OC and OP,
respectively. Each video was from a different patient affected by
SCC, clinically presenting as a leuko- or erythroplastic lesion.
Image acquisition was performed at the Department of
Otorhinolaryngology – Head and Neck Surgery, ASST Spedali
Civili, University of Brescia, Brescia, Italy between January 2010
and December 2018. Only video-endoscopies of biopsy-proven
OC and OP SCC were included in the study. Patients with
previous surgical and/or non-surgical treatments for tumors of
these anatomical sites and frankly ulcerated neoplasms with
significant loss of substance were excluded from the analysis.

All videos were acquired under white light and NBI by a rigid
telescope coupled to an Evis Exera II HDTV camera connected to
an Evis Exera II CLV-180B light source (Olympus Medical
Systems Corporation, Tokyo, Japan). From the total amount of
frames constituting the NBI videos, non-informative frames (i.e.,
blurred, out of focus, dark, or with signs of bleeding) were
discarded through a case by case evaluation. After this selection
process, the dataset referring to the OC was composed of 110
frames, while a total of 116 frames composed the OP dataset.
Table 1 shows the number of frames tested per patient for each
dataset and the relative total amount of frames and patients
involved. Each frame in these databases was manually annotated
by an expert clinician contouring the lesion margins. The
correspondent mean lesion size in percentage of pixels with
respect to the entire frame size for each dataset is reported in
Table 2.

Before segmenting the tumor area with FCNNs, the images
underwent a cropping procedure to remove black borders. Given
the different dimensions and shapes of extracted NBI video-
frames, the cropping was customized for each of them. For
memory constraints, frames were down-sampled to dimensions
of 256×256 pixels to prevent exceeding the available GPU
memory (∼14858 MB). Prior to FCNN-based segmentation,
images were standardized sample-wise, namely the image
mean was removed from each image. Given the small size of
the two datasets, data augmentation was performed to avoid
March 2021 | Volume 11 | Article 626602
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overfitting and to increase the ability of the model to better
generalize the results. Hence, the training set was augmented by
∼10 times at each cross-validation, imposing the following
random transformations to the frames (and corresponding
gold-standard masks obtained with manual segmentation):
image rotation (random rotation degree in range 0°-90°), shift
(random shift in range 0-10% of the frame side length for both
Frontiers in Oncology | www.frontiersin.org 3
width and height), zoom (with zoom values in range 0 and 1),
and horizontal and vertical flip.

Three FCNNs were investigated to segment neoplastic images
in OC and OP. The architectures tested were:

• U-Net, a fully convolutional U-shaped network architecture
for biomedical image segmentation (15);

• U-Net 3, consisting of the previous deep network improved
by Liciotti et al. (16) to work with very few training images
and yield more precise segmentations;

• ResNet, composed of a sequence of residual units (17).
Technical Definitions
FCNNs are a type of artificial neural networks that have wide
application in visual computing. Their deep hierarchical model
roughly mimics the nature of mammalian visual cortex, making
FCNNs the most promising architectures for image analysis.
FCNNs present an input layer, an output layer, and a variable
number of hidden layers, that transform the input image through
the convolution with small filters, whose weights and biases are
learned during a training procedure.

U-Net is a fully convolutional U-shaped neural networks
that is especially suitable for biomedical images. The
descending path U-Net is made of repeated 3x3 convolutions
and max-pooling, for down-sampling the input image. This
path acts as an encoder for feature extraction. The ascending
path consists of 3x3 convolutions and up-sampling, for
restoring the original input image size. This path acts as
decoder for feature processing to achieve the segmentation.
The encoder and decoder are linked to each other via long skip
connections. U-Net3 is inspired by U-Net but introduces batch
normalization, which makes the training process faster. ResNet
is also divided in two parts: the descending and ascending
FIGURE 1 | Workflow of the approach used for detection of mucosal SCC in videoendoscopic frames by NBI.
TABLE 1 | Investigated datasets for mucosal SCC segmentation task and
corresponding number of NBI videoframes per patient.

Oral cavity

No. patients No. frames per patient No. frames

6 1 6
26 2 52
8 4 32
5 4 20

Total 45 110

Oropharynx

No. patients No. frames per patient No. frames
10 2 20
8 3 24
12 4 48
4 6 24

Total 34 116
TABLE 2 | Investigated datasets for mucosal SCC segmentation task and
corresponding amount of mean percentages of lesion pixels per frame and
relative standard deviations.

Dataset Mean of lesion
pixels in %

Standard deviation of
lesion pixels in %

Oral cavity 22.84 11.68
Oropharynx 38.04 18.54
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paths, each consisting of 5 blocks. Each block of the descending
path is made of a convolutional sub-block and two identity sub-
blocks, whereas in the ascending path there is one up-
convolutional sub-block and two identity sub-blocks. The
convo lut iona l and ident i ty sub-b locks fo l low the
implementation of (17) and are made of convolution filters.
In order to study the complexity of ResNet, in this work we also
tested the performance of ResNet considering 1 block, 3 blocks,
and 4 blocks per path. In each block, we kept the number of
filters for each convolution equal to 16. We also investigated the
ResNet with 1 block per path and 8 filters per convolution
instead of 16: this represents the simplest model.

Data Analysis
FCNN performance was evaluated for each network tested and
compared to the gold standard represented by manual
annotation performed by expert clinicians. A contingency table
considering true positive (TP), true negative (TN), false negative
(FN), and false positive (FP) results was used. The overall
accuracy (Acc) was calculated and defined as the ratio of the
correctly segmented area by the algorithm over the annotated
area by the expert examiner. The positive and negative samples
refer to pixels within and outside the segmented region,
respectively. Precision (Prec) was defined as the fraction of
relevant instances among the retrieved ones (i.e., positive
predictive value = true positives over true and false positives).
Recall (Rec) was defined as the fraction of the total amount of
relevant instances that were actually retrieved (i.e., true positive
rate = true positives over true positives and false negatives). The
Dice Similarity Coefficient (Dsc) was evaluated as overlapping
measure. The Dsc is a statistical validation metric based on the
spatial overlap between two sets of segmentations of the same
anatomy. The value of Dsc ranges from 0, indicating no spatial
overlap between two sets of binary segmentation results, to 1,
indicating complete overlap. Tumor detection performance was
evaluated by measuring the computational time required by each
of the FCNN architectures investigated to perform automatic
segmentation per frame.

Analysis of variance (Anova test) with a significance level of
0.05 was performed to check whether the averages of the
computed metrics significantly differed from each other. When
significant differences were found, a pairwise T-test for multiple
comparisons of independent groups was performed.
RESULTS

Oral Cavity Dataset
For FCNN-based segmentation of the OC dataset, the best results
in terms of Dsc were achieved by ResNet with 5(×2) blocks (5 for
the descending and 5 for the ascending path) and 16 filters, with
a median value of 0.6559, as reported in Figure 2. The
comparison in terms of Acc in Figure 3 for the tested FCNN
architectures showed the best results in terms of median for the
U-Net, with a value of 0.8896. Both the abovementioned
architectures showed the best results in terms of other metrics.
Frontiers in Oncology | www.frontiersin.org 4
Specifically, ResNet with 5(×2) blocks and 16 filters appeared to
be the best in terms of Rec, with a median value of 0.7545, as
reported in Figure 4. U-Net, in contrast, showed the best result
in terms of Prec, with a median value of 0.7079, as reported in
Figure 5. All FCNNs tested presented very high values of
variance, leading to very low values of minima for all
metrics evaluated.

No significant difference was found when analyzing variance
with the Anova test (p>0.05) to the Dsc, Acc, Rec, and Prec
vectors constituted by the metrics of each architecture.

The computational times required by the FCNNs for the
automated segmentation task for one image are reported in Table 3.
FIGURE 2 | Boxplots of Dsc for the OC dataset, obtained for (a) U-Net
architecture, (b) U-Net 3, (c) ResNet with 4(×2) blocks and 16 filters, (d)
ResNet with 1(×2) blocks and 8 filters, (e) ResNet with 1(×2) blocks and 16
filters, (f) ResNet with 3(×2) blocks and 16 filters, and (g) ResNet with 5(×2)
blocks and 16 filters. Green triangles indicate the mean values, while the
orange numbers at the top of each boxplot are the corresponding median
values.
FIGURE 3 | Boxplots of Acc for the OC dataset, obtained for (a) U-Net
architecture, (b) U-Net 3, (c) ResNet with 4(×2) blocks and 16 filters, (d)
ResNet with 1(×2) blocks and 8 filters, (e) ResNet with 1(×2) blocks and 16
filters, (f) ResNet with 3(×2) blocks and 16 filters, and (g) ResNet with 5(×2)
blocks and 16 filters. Green triangles indicate the mean values, while the
orange numbers at the top of each boxplot are the corresponding median
values.
March 2021 | Volume 11 | Article 626602
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It is worth noticing that less deep networks, such as ResNet with
1(×2) blocks and 8 filters, and ResNet with 1(×2) blocks and 16
filters, achieved automated segmentation in shorter times than
the others. In particular, ResNet with 1(×2) blocks and 8 filters
took only 14 ms to predict a single frame.

Oropharyngeal Dataset
Considering FCNN-based segmentation for the OP dataset, the
best results in terms of Dsc were achieved by ResNet with 4(×2)
blocks and 16 filters, with a median value of 0.7603, as reported
in Figure 6. The comparison in terms of Acc in Figure 7 for the
FCNN architectures showed the best results in terms of median
FIGURE 4 | Boxplots of Rec for the OC dataset, obtained for (a) U-Net
architecture, (b) U-Net 3, (c) ResNet with 4(×2) blocks and 16 filters, (d)
ResNet with 1(×2) blocks and 8 filters, (e) ResNet with 1(×2) blocks and 16
filters, (f) ResNet with 3(×2) blocks and 16 filters, and (g) ResNet with 5(×2)
blocks and 16 filters. Green triangles indicate the mean values, while the
orange numbers at the top of each boxplot are the corresponding median
values.
FIGURE 5 | Boxplots of Prec for the OC dataset, obtained for (a) U-Net
architecture, (b) U-Net 3, (c) ResNet with 4(×2) blocks and 16 filters, (d)
ResNet with 1(×2) blocks and 8 filters, (e) ResNet with 1(×2) blocks and 16
filters, (f) ResNet with 3(×2) blocks and 16 filters, and (g) ResNet with 5(×2)
blocks and 16 filters. Green triangles indicate the mean values, while the
orange numbers at the top of each boxplot are the corresponding median
values.
Frontiers in Oncology | www.frontiersin.org 5
TABLE 3 | Tested FCNNs and the corresponding times of inference for each
single frame, expressed in milliseconds (ms).

FCNNs Inference time per frame (ms)

U-Net ∼115
U-Net 3 ∼96
ResNet with 4x2 blocks, 16 filters ∼66
ResNet with 1x2 blocks, 8 filters ∼14
ResNet with 1x2 blocks, 16 filters ∼23
ResNet with 3x2 blocks, 16 filters ∼59
ResNet with 5x2 blocks, 16 filters ∼59
March 20
FIGURE 6 | Boxplots of Dsc for the OP dataset, obtained for (a) U-Net
architecture, (b) U-Net 3, (c) ResNet with 4(×2) blocks and 16 filters, (d)
ResNet with 1(×2) blocks and 8 filters, (e) ResNet with 1(×2) blocks and 16
filters, (f) ResNet with 3(×2) blocks and 16 filters, and (g) ResNet with 5(×2)
blocks and 16 filters. Green triangles indicate the mean values, while the
orange numbers at the top of each boxplot are the corresponding median
values.
FIGURE 7 | Boxplots of Acc for the OP dataset, obtained for (a) U-Net
architecture, (b) U-Net 3, (c) ResNet with 4(×2) blocks and 16 filters, (d)
ResNet with 1(×2) blocks and 8 filters, (e) ResNet with 1(×2) blocks and 16
filters, (f) ResNet with 3(×2) blocks and 16 filters, and (g) ResNet with 5(×2)
blocks and 16 filters. Green triangles indicate the mean values, while the
orange numbers at the top of each boxplot are the corresponding median
values.
21 | Volume 11 | Article 626602
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for the ResNet with 3(×2) blocks and 16 filters, with a median
value of 0.8364. Both the abovementioned architectures also
showed the best results in terms of Rec, with a median value of
0.8560 for both, as reported in Figure 8.

Conversely, considering the comparison in terms of Prec in
Figure 9, the best result was achieved with a deeper network, the
ResNet with 5(×2) blocks and 16 filters. However, no significant
difference was found when analyzing variance with the Anova
test (p>0.05) to the Dsc vectors constituted by the Dsc of
each architecture.

A significant difference among the available FCNNs was
found applying the same test to the Rec vectors (Figure 8). A
further investigation was performed using a pairwise T-test for
multiple comparisons of independent groups that demonstrated
a p value of 0.043 between U-Net 3 and ResNet with 1(×2) blocks
and 8 filters, demonstrating that architectures with skip
connections (i.e., all the architectures tested except for U-Net
and U-Net 3) had greater performances in detecting mucosal
sites affected by SCC.

Moreover, a significant difference among the various
FCNNs was also found by applying the Anova test to the
Prec vectors (Figure 9). A further investigation using a
pairwise T-test for multiple comparisons of independent
groups showed a p value of 0.0454 between ResNet with 5
(×2) blocks and 16 filters, and ResNet with 1(×2) blocks and 8
filters, demonstrating that deeper architectures were more
precise in detecting SCC.

Samples of original frames, manual masks, and relative
predicted masks for the OC and OP are shown in Figures 10–
12 in order to provide a visual input on the characteristics of
correctly and incorrectly segmented tumors, and non-
diagnostic cases.
Frontiers in Oncology | www.frontiersin.org 6
DISCUSSION

This study presents a computer-aided method for segmentation
of SCC through FCNN-based evaluation of NBI video-
endoscopic frames afferent to two frequently involved upper
aero-digestive tract sites (OC and OP), and evaluates its
performance in distinguishing between neoplastic and healthy
areas. The overall median Dsc for OC and OP frames of the best
performing FCNN [ResNet with 1(×2) blocks and 8 filters] with
the shortest time of inference (14 ms) were 0.5989 and
0.6879, respectively.

Of note, this was the first attempt to automatically segment
SCC in complex anatomical regions from NBI video-frames.
Considering the absence of deep-learning methods in the head
and neck literature from which to draw inspiration, this early
experience can be considered as a practical approach for
segmentation of pathological areas in endoscopic videos,
applicable in real time during routine clinical activities, given
the short time of inference needed per frame.

Moreover, this approach demonstrates the value of SDS in
OC/OP examination and could motivate more structured and
regular data storage in the clinic. Indeed, large amounts of data
would lead to the possibility of further exploring deep-learning-
based algorithms for semantic segmentation, covering a more
substantial variability of tissues classification scenarios. In
addition, associating such diagnostic videos to subsequently
obtained radiologic imaging, pathological specimens, and
prognostic characteristics, could pave the way to data mining
aimed at understanding adjunctive tumor features (e.g., HPV
status, depth of infiltration, risk of regional/distant metastasis) by
simple video-endoscopy (18).

In this field, few methodologies have been presented for
automatic diagnosis of tumors of the upper aero-digestive
tract. As in the present series, most were focused on
FIGURE 8 | Boxplots of Rec for the OP dataset, obtained for (a) U-Net
architecture, (b) U-Net 3, (c) ResNet with 4(×2) blocks and 16 filters, (d)
ResNet with 1(×2) blocks and 8 filters, (e) ResNet with 1(×2) blocks and 16
filters, (f) ResNet with 3(×2) blocks and 16 filters, and (g) ResNet with 5(×2)
blocks and 16 filters. Green triangles indicate the mean values, while the
orange numbers at the top of each boxplot are the corresponding median
values. The star indicates a significant difference has been found (Anova test,
p<0.05).
FIGURE 9 | Boxplots of Prec for the OP dataset, obtained for (a) U-Net
architecture, (b) U-Net 3, (c) ResNet with 4(×2) blocks and 16 filters, (d)
ResNet with 1(×2) blocks and 8 filters, (e) ResNet with 1(×2) blocks and 16
filters, (f) ResNet with 3(×2) blocks and 16 filters, and (g) ResNet with 5(×2)
blocks and 16 filters. Green triangles indicate the mean values, while the
orange numbers at the top of each boxplot are the corresponding median
values. The star indicates a significant difference (Anova test, p<0.05).
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FIGURE 10 | Sample of original OC frames, manual masks, and relative predicted masks for ResNet with 5 (x2) blocks and 16 filters. The red and green boxes
correspond to values of Dsc less than 45% (Dsc <0.45) and Dsc greater than 85% (Dsc >0.85), respectively.
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FIGURE 11 | Sample of original OP frames, manual masks, and relative predicted masks for ResNet with 4 (x2) blocks and 16 filters. The red and green boxes
correspond to values of Dsc less than 45% (Dsc <0.45) and Dsc greater than 85% (Dsc >0.85), respectively.
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FIGURE 12 | Sample of original frames excluded from the boxplot comparisons due to their Dsc less than 5% (Dsc <0.05) assessed by ResNet with 4 (x2) blocks
and 16 filters for OP frames, and ResNet with 5 (x2) blocks and 16 filters for OC frames. The manual masks and relative predicted masks are also reported.
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optimizing the analysis by providing adjunctive features (e.g.,
NBI, autofluorescence) complementing those obtained by
conventional white light endoscopy. Taking advantage of the
value of autofluorescence in the OC, Song et al. (19) developed an
automatic image classification using a smartphone-based system
for OC lesions employing CNNs that evaluated dual-modality
images (white light and autofluorescence). The final model
reached an accuracy of 87%, sensitivity of 85%, and specificity
of 89%.

Conversely, different approaches aimed at maximizing
extraction of features focusing on tissue vascularization.
Specifically, Barbalata et al. (20) proposed a method for
automated laryngeal tumor detection based on post-processing
of images. Laryngeal tumors were detected and subsequently
classified, focusing on their abnormal intrapapillary capillary
loops through anisotropic filtering and matched filter. This
further reinforces the rationale of using NBI data for our
analysis, since this light-filtering system better highlights blood
vessels, thus increasing the quality and quantity of data to be
analyzed in each image. This concept was also confirmed by
Mascharak et al. (21) who took advantage of naïve Bayesian
classifiers trained with low-level image features to automatically
detect and quantitatively analyze OP SCC using NBI
multispectral imaging. The authors showed a significant
increase in diagnostic accuracy using NBI compared to
conventional white light video-endoscopy.

Recent studies confirmed the potential of FCNNs in the
automatic diagnosis of benign and malignant diseases of the
upper aero-digestive tract (22–26), demonstrating an outstanding
Acc, comparable with that of experienced physicians. However,
these studies were only focused on tumor detection and did not
include OC and anterior OP tumors since the examination was only
based on transnasal/transoral flexible video-endoscopy.
Furthermore, no attempt at segmentation of the precise tumor
margins was made.

Considering segmentation and margin recognition tasks, a
study by Laves et al. (3) put effort into using FCNN to segment
a dataset of the human larynx. The dataset, consisting of 536
manually segmented endoscopic images obtained during transoral
laser microsurgery, was tested in order to monitor the
morphological changes and autonomously detect pathologies.
The Intersection-over-Union metric reached 84.7%. To date, no
attempt to a precise visual segmentation by FCNN has been
described in the pertinent OC/OP cancer literature.

It should be underlined that our investigation is only a
preliminary assessment of feasibility and future potential that
could encourage collection of additional evidence and support
more extensive studies. The datasets, in fact, were relatively small
and partially patient-unbalanced, denoting their high variability.
In particular, the OC dataset was composed of a relatively low
number of frames in relation to its considerable anatomical
complexity and variability of epithelia with different histological
and NBI-associated features (27). Moreover, the mean percentage
of lesion pixels in each frame was only 22.82 ± 11.68% (with
respect to the 38.04 ± 18.54% of the OP dataset). Hence, the high
values of Acc might be partially due to the small size of the OC
Frontiers in Oncology | www.frontiersin.org 10
lesions with respect to the entire size of each frame presented in
the dataset. Finally, it is worth noticing that all FCNNs tested
presented very high values of variance, leading to low values of
minima. This is probably due to the difficult task related to the
small size of datasets and the significant tissue variability in the
regions analyzed. Additionally, OC and OP are characterized by
very different endoscopic superficial appearances, with the
richness in lymphoid tissue of the latter being one of the most
prominent diagnostic obstacles when searching for small tumors
of this site even by NBI (27). The lower overall accuracy of FCNNs
in the OP observed in the present study may be a sign of such a
potential confounding factor.

In general, the type of FCNN did not lead to radical differences
in the diagnostic performance in both subsites (while some minor
differences may be observed in the OP). The same holds true
considering inference times, that were always in the range of “real-
time detection” (between 14 and 115 ms). However, in the OP it
was possible to observe a higher precision in deeper architectures,
demonstrating that an added layer of complexity may improve
diagnostic results. Still, deeper architectures were also those
needing higher inference times, thus requiring more processing
power, and potentially impacting on the aim of real-time
segmentation. In this view, when dealing with automatic
detection and segmentation of mucosal neoplastic lesions, it will
be essential to find a balance between depth of the FCNN and time
needed to detect lesions and delineate their margins.

At a subjective evaluation, all FCNNs tended to detect
malignant areas where illumination was more prominent,
usually in the middle of the picture (Figures 10–12). This factor
hints at the importance of optimal and homogeneous
illumination, which should be equally distributed throughout the
visual field, and not directed only on its central portion. In fact, the
operator usually centers the endoscopic image on the lesion to be
identified, leading to a significant bias in automatic segmentation
by FCNNs. The key role of illumination has also been emphasized
by others (22, 23), even showing different diagnostic performances
in relation to the types of endoscopic device employed (23). In this
view, novel advances in the field of image analysis should be
supported by a parallel technical evolution of endoscopes,
especially in terms of homogeneous illumination, high
definition, colors, and optimization of image clarity.

An adjunctive limitation of this type of studies is that the
“ground truth” (i.e., the image segmentation defining true tumor
margins) was defined through a single expert opinion. This issue is
related to the current impossibility in creating a histopathologic
image to be superimposed to the endoscopic view, defining tumor
margins at a microscopic level. However, independent evaluations
by multiple experts may lead to a more accurate definition of
endoscopic tumor margins.
CONCLUSIONS

SDS has promising potential in the analysis and segmentation of
OC and OP video-endoscopic images. All tested FCNN
architectures demonstrated satisfying outcomes in terms of
March 2021 | Volume 11 | Article 626602
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Dsc, Acc, Rec, and Prec. However, further advances are needed
to reach a diagnostic performance useful for clinical applicability.
On the other hand, the inference time of the processing networks
were particularly short, ranging between 14 and 115 ms, thus
showing the possibility for real-time application. Future
prospective studies, however, should take into account the
number and quality of training images, optimizing these
variables through accurate planning and data collection.
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