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Crossing the legs at the knees, during BP measurement, is one of the several physiological stimuli that considerably influence the
accuracy of BP measurements. Therefore, it is paramount to develop an appropriate prediction model for interpreting influence
of crossed legs on BP. This research work described the use of principal component analysis- (PCA-) fused forward stepwise
regression (FSWR), artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS), and least squares support
vector machine (LS-SVM) models for prediction of BP reactivity to crossed legs among the normotensive and hypertensive
participants. The evaluation of the performance of the proposed prediction models using appropriate statistical indices showed
that the PCA-based LS-SVM (PCA-LS-SVM) model has the highest prediction accuracy with coefficient of determination
(R2) = 93.16%, root mean square error (RMSE) = 0.27, and mean absolute percentage error (MAPE) = 5.71 for SBP prediction in
normotensive subjects. Furthermore, R2 = 96.46%, RMSE= 0.19, and MAPE= 1.76 for SBP prediction and R2 = 95.44%,
RMSE= 0.21, and MAPE= 2.78 for DBP prediction in hypertensive subjects using the PCA-LSSVM model. This assessment
presents the importance and advantages posed by hybrid computing models for the prediction of variables in biomedical
research studies.

1. Introduction

Accurate measurement of blood pressure (BP) is indispens-
able for the diagnosis of hypertension at its early stage.
Hypertension appears as a top risk factor for life-
threatening conditions such as coronary artery disease,
stroke, and kidney failure [1]. However, according to a recent
editorial in the Hypertension journal of the American Heart
Association (AHA), “few measurements in medicine are
done as poorly and consistently as BPmeasurement. Though,
there is clear recognition of biological variability, we continue
to make decisions largely on measurements taken at random
times under poorly controlled conditions” [2]. This observa-
tion supports the need to develop novel methods for accurate
prediction of BP.

Recommendations of several international organisations
including the AHA [3], British Hypertension Society (BHS)
[4], and European Society of Hypertension (ESH) [5]
revealed that BP is influenced by numerous biological and
analytical sources of variation. Biological variations are rela-
tive to changes in the individual and are induced by, for
instance, emotions, day and night rhythm, seasons, meals,
and postures. Analytical variations are derived from the var-
iability of the instrument used, observer bias, and so forth.
However, it is not always feasible to control all the factors,
but we can minimize their effect by taking them into account
in reaching a decision [5].

Correct positioning of a subject’s legs is often neglected
during BP measurement. As it seems a comfortable position,
subjects spontaneously cross their legs at the knees. Several
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clinical and research studies have been proved that crossing
the legs at knee level during BP measurement has a potential
effect on the accuracy of measurements. Foster-Fitzpatrick
et al. demonstrated a significant increase in BP taken with
the legs crossed at the knee level in hypertensive subjects
[6]. Peters et al. reported that crossed legs during BP mea-
surement significantly increased systolic BP (SBP) and dia-
stolic BP (DBP) in hypertensive subjects. In healthy
volunteers, SBP and DBP increased when legs were crossed
at knee level, but the effect was nonsignificant on DBP [7].
Keele-Smith and Price-Daniel, demonstrated that BP was
significantly higher when legs were crossed versus uncrossed
in a well-senior population [8]. Pinar et al. showed that
crossing legs at knee level increased BP readings in hyper-
tensive subjects [9]. Adiyaman et al. found significant
increases in BP readings when the legs were crossed at knee
level [10]. van Groningen et al. measured BP using a Fin-
ometer; they found an increase in BP readings with the legs
crossed at knee level [11]. Pinar et al. reported that in hyper-
tensive subjects, BP increased significantly when they
crossed their legs [12].

Despite studies confirming the importance of leg position
on BP measurement, it is likely that leg position varies mark-
edly in clinical practice and also in published studies [2] and
it may result in the misdiagnosis of hypertension or in over-
estimation of the severity of hypertension and may lead to
overly aggressive therapy. Antihypertensive treatment may
be unnecessary in the absence of concurrent cardiovascular
risk factors [13].

Moreover, there is growing evidence that anthropometric
indices are a major determinant of BP. Several studies have
been conducted in the past to identify anthropometric char-
acteristics that can be used as markers of BP [14–16]. These
studies have explored a significant correlation between BP
and anthropometric characteristics of a subject. Therefore,
anthropometric characteristics should be considered to attain
an accurate measurement of BP reactivity. However, multi-
collinearity between anthropometric characteristics has also
been reported, which may result in “overfitting” of the
prediction model [17–19].

The various methods utilized for prediction of biological
variables range from the traditional statistical models to the
complicated artificial intelligence-based models [20–25].
Recent studies on prediction of BP are as follows: Monte-
Moreno presented a system for simultaneous noninvasive
estimate of the blood glucose level (BGL), SBP, and DBP
using a photoplethysmograph (PPG) and machine learning
techniques. Physiological properties including blood viscos-
ity, vessel compliance, hemodynamics, metabolic syndrome,
demographic characteristics, and emotional state were used
as input variables. The machine learning techniques tested
were as follows: ridge linear regression, multilayer perceptron
artificial neural network (ANN), support vector machine
(SVM), and random forest. The best results were obtained
with the random forest technique [26]. Genc proposed a lin-
ear stochastic model that integrated a known portion of the
cardiovascular system and unknown portion through a
parameter estimation to predict evolution of the mean arte-
rial pressure (MAP). The performance of the model was

tested on a case study of acute hypotensive episodes (AHEs)
on PhysioNet data. They concluded that true positive rates
(TPRs) and false positive rates (FPRs) were improved during
the prediction period [27]. Forouzanfar et al. presented a
novel feature-based ANN for estimation of BP from wrist
oscillometric measurements. Unlike previous methods that
used the raw oscillometric waveform envelope (OMWE) as
input to the ANN, in this paper, they proposed to use features
extracted from the envelope. The OMWE was mathemati-
cally modeled as a sum of two Gaussian functions. The
optimum parameters of the Gaussian functions were found
by minimizing the least squares error (LSE) between the
model and the OMWE using the Levenberg Marquardt
algorithm and were used as input features. The performance
of ANN was compared with that of the conventional maxi-
mum amplitude algorithm (MAA), adaptive neuro fuzzy
inference system (ANFIS), and already-published ANN-
based methods. It was found that the proposed approach
achieved lower values of mean absolute error (MAE) and
standard deviation (σ) of error (SDE) in the estimation of
BP [28]. Kurylyak et al. estimated the BP from the PPG signal
using ANN. Training data were extracted from the multipa-
rameter intelligent monitoring in an intensive care waveform
database for better representation of possible pulse and pres-
sure variation. The comparison between estimated and refer-
ence values showed better accuracy than the linear regression
method [29]. Golino et al. compared the classification tree
technique with traditional logistic regression for prediction
of BP. Body mass index (BMI), waist circumference (WC),
hip circumference (HC), and waist-hip ratio (WHR) were
used as predictor variables. Finally, the comparison of the
classification tree technique with traditional logistic regres-
sion indicated that the former outperformed the latter in
terms of predictive power [30].

Hsin-Hsiuang et al. compared logistic regression, SVM,
and permanental classification methods in predicting hyper-
tension by using the genotype information. They used logis-
tic regression analysis in the first step to detect significant
single-nucleotide polymorphisms (SNPs). In the second step,
they used the significant SNPs with logistic regression, SVM,
and permanental classification methods for prediction pur-
poses. The results showed that SVM and permanental classi-
fication both outperformed logistic regression [31]. Khan
et al. proposed SVM for performing the prediction of BP with
primary emotions using Facebook status. Current human BP
and those belonging to up to six previous primary emotions
and BP values with respect to human emotion were given
as input variables. The outcome showed that SVM can be
prosperously applied for prediction of BP through primary
emotions. On the contrary, validations signified that the
error statistics of the SVM model marginally outperformed
[32]. Barbe et al. developed a logistic regression model to
calibrate and correct an oscillometric monitor such that the
device better corresponds to the Korotkoffmethod regardless
of the health status of the patient. The model eliminated the
systematic errors caused by patients suffering from hyper-
or hypotension. They reported that systematic error was
reduced by nearly 50% corresponding to the performance
specifications of the device [33].
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To perform a better training process and improve the
forecasting accuracy, hybrid computing models in medical
diagnosis are being developed to support physicians in suc-
cessful decision making regarding clinical admission, early
prevention, early clinical diagnosis, and application of clin-
ical therapies by allowing calculation of disease likelihood
based on known subject characteristics and clinical test
results [34]. The main premise behind developing a hybrid
computing model is to exploit the synergy between two or
more models, leveraging their benefits and overcoming
their respective limitations. The past few years have seen
a vast interest in the hybrid computing models that seem
to have completely replaced the traditional unisystem
approaches. The rationale of using hybrid modeling in
biomedical research studies is mainly to obtain fewer
important predictor variables, and the selected predictor
variables can serve as inputs for the designed prediction
model. Hence, hybrid approach can improve the diagnostic
accuracy with reduction in complexity of the prediction
model [35].

The present study is a continuation of our previous
studies [36, 37] dealing with the development of hybrid
computing techniques for prediction of BP reactivity to
talking and unsupported back. This research work focuses
on the development of principal component analysis-
(PCA-) based forward stepwise regression (FSWR), ANN,
ANFIS, and least squares SVM (LS-SVM) hybrid comput-
ing models for prediction of BP reactivity to crossed legs
by taking into account the anthropometric markers of
BP in normotensive and hypertensive subjects. The predic-
tion accuracy of the developed models was assessed using
coefficient of determination (R2), root mean square error
(RMSE), and mean absolute percentage error (MAPE).

2. Materials and Methods

2.1. Participants. A total of 40 normotensive and 30 hyper-
tensive subjects among the students, staff, and faculty of
Sant Longowal Institute of Engineering and Technology,
Deemed University, Longowal, Distt. Sangrur, Punjab,
INDIA, were included in this study. Participants were
aged over 18 years. Exclusion criteria were pregnant
subjects, arrhythmic subjects, and the subjects who had
a history of any condition that would interfere with
positioning of lower extremity of the subjects. The insti-
tutional research committee approved the research

protocol and all participants gave written informed con-
sent before participation.

2.2. Data Collection. A standard questionnaire was adminis-
trated for the collection of anthropometric data including
age, height, weight, BMI, and mid-upper arm circumfer-
ence (MUAC) of the participants. The mean and standard
deviation (SD) of the collected anthropometric data is
given in Table 1.

A specially separated room was used to conduct this
study. This ensured minimal interference within the room
while the tests were being carried out. The observers involved
in the study were trained using the BHS’s BP measurement
training materials [38].

To eliminate the observer bias, BP was measured using
a validated, newly purchased, and fully automated sphygmo-
manometer OMRONHEM-7203 (OMRONHEALTHCARE
Co. Ltd., Kyoto, Japan) that uses the oscillometric method of
measurement. The BP monitor is available with a small
cuff (17–22 cm), medium cuff (22–32 cm), and large cuff
(32–42 cm). BP measurement was preceded by selection
of the appropriate size cuff according to the MUAC of
the subjects.

Subjects were advised to avoid alcohol, cigarette smok-
ing, coffee/tea intake, and exercise for at least 30 minutes
prior to their BP measurement. They were instructed to
empty their bladder prior to measurements. Subjects were
also instructed to sit upright on a chair with a supported
back, kept the feet flat on the floor and the upper arm
(under measurement) at heart level, as they are the poten-
tial confounding factors. Moreover, they were asked not to
talk and move during measurement [3].

After a rest period of 5 minutes [3], the measurements
were performed four times repeatedly at an interval of one
minute. First measurement was discarded and the average
of the last three measurements was taken into account. Sub-
sequently, the legs were crossed at the knees and after four
minutes, the same measurement protocol was repeated. All
measurements were obtained under similar measurement
conditions except for the different leg positions. And the
measurement protocol was repeated for 7 days.

2.3. Experimental Methods

2.3.1. PCA. PCA is the first step of counteracting multicolli-
nearity. It is a dimension reduction technique that does not

Table 1: Descriptive statistics of anthropometric characteristics of study samples.

Anthropometric characteristics
Normotensives Hypertensives

Mean SD Mean SD

Age (years) 23.1 1.24 42.83 6.665

Height (cm) 1.61 0.03 1.583 0.035

Weight (kg) 55.96 7.29 62.48 10.89

BMI (kg/m2) 21.55 2.504 23.57 3.497

MUAC (cm) 26.56 2.45 26.72 2.4
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take the correlation between the input variables into account.
Thus, PCA is considered as an unsupervised dimension
reduction method [39–41]. To evaluate the influence of each
input variable in the PCA, varimax rotation was used to
obtain values of rotated factor loadings. The Kaiser-Meyer-
Olkin (KMO) measure of sampling adequacy and Barlett’s
test of sphericity were used to check the suitability of data
for application of PCA [42–45].

2.3.2. FSWR. FSWR is a traditional statistical modeling
technique used for developing an optimum prediction model
by extracting the best anthropometric characteristics or
predictor variables depending upon their statistical signifi-
cance or probability (p) value. It starts with an empty pre-
diction model and adds one anthropometric predictor
variables at a time. The first predictor variable included
in the model has the highest correlation with the indepen-
dent variable y. The second variable included is the one
which has the highest correlation with y, after y has been
adjusted for the effect of the first predictor variable. This
process terminates when the last variable entering the
model has insignificant regression coefficient [46].

2.3.3. ANN. To achieve the best architecture of ANN, various
structures of feed-forward ANN with different numbers of
hidden layers and neurons in each hidden layer were
investigated. Finally, in light of the performance indices
obtained from investigations, an ANN structure with two
hidden layers and six nodes in each hidden layer was
selected for further analysis. In addition, the architecture
of ANN also consisted of one input layer with four input
nodes (representing four PCs) and one output layer with
one output node (representing BP reactivity to crossed
legs). The choice of hyperbolic tangent sigmoid activation
function for hidden layer and linear activation function
for output layer trained the network in lesser number of
epochs with better performance criteria and also yielded
the best outcome predictions. The back propagation learn-
ing algorithm based on the Levenberg-Marquardt tech-
nique was used to find the local minimum of the error
function. It blends the steepest descent method and the
Gauss-Newton algorithm and inherits the speed advantage
of the Gauss-Newton algorithm and the stability of the
steepest descent method. It is more powerful and faster
than the conventional gradient descent technique [47, 48].

2.3.4. ANFIS. A Sugeno-type FIS model was developed using
“genfis1” with grid partitioning on data for prediction of BP
reactivity to crossed legs. Different ANFIS parameters
including numbers of membership functions (MFs) and
types of input and output MF were tested to achieve the
perfect training and maximum prediction accuracy. Input
membership function “psigmf” and output membership
function “linear” were used to develop the prediction
model [49].

Other parameters of the trained ANFIS model were as
follows: number of MFs=16, number of nodes = 55,
number of linear parameters = 80, number of nonlinear

parameters = 32, total number of parameters = 112, and
number of fuzzy rules = 16.

2.3.5. LS-SVM. The most important steps to develop a LS-
SVM model are as follows: selection of a kernel and its
parameters. After many experimental observations, radial
basis function (RBF) kernel and grid search optimization
algorithm (with 2-fold cross-validation) were selected to
obtain the optimal combination of regularization parameter
(γ) and squared bandwidth (σ2) [50, 51].

3. Results

3.1. Effect of Crossed Legs on BP. The results of the paired
t-test demonstrated a statistically significant higher SBP
with crossed legs (mean difference± SD=5.838± 2.5919,
p < 0 001) in normotensive subjects, but there was no
significant difference between DBPmeasurements (mean dif-
ference± SD=0.0037± 0.0126, p = 0 0737). In hypertensive
subjects, both SBP (mean difference± SD=10.3524± 4.5844,
p < 0 001) and DBP (mean difference± SD=6.1704± 1.8531,
p < 0 001) were significantly different when legs were crossed
at knee level. These results are consistent with the recommen-
dations of the AHA council for BP measurement in humans
and experimental animals [3].

3.2. Multicollinearity Diagnostic. A visual inspection of the
Pearson’s correlation coefficients revealed the existence of
multicollinearity, as correlation coefficient> 0.6 [52],
between pairs of anthropometric characteristics, in normo-
tensive and hypertensive individuals, as shown in Table 2.

3.3. Application of PCA on BP Data. In the next step, PCA
was used to omit the multicollinearity between pairs of
anthropometric characteristics and simplify the complexity
of the relationship between them [53].

To verify the applicability of PCA, Bartlett’s test of sphe-
ricity was applied [54]. A high value of chi square (χ2), for
normotensive (χ2 = 231 012, DF = 10, p < 0 0001) and
hypertensive (χ2 = 119 48, DF = 10, p < 0 0001) individuals

Table 2: Pearson’s correlation coefficients between each pair of
anthropometric characteristics in normotensive and hypertensive
subjects.

Anthropometric
characteristics

Height Weight BMI MUAC

Age (years)
0.535
0.113

0.784∗

0.598
0.701∗

0.509
0.668∗

0.585

Height (cm)
0.543
0.165

0.237
0.305

0.619∗

0.021

Weight (kg)
0.934∗

0.885∗
0.743∗

0.767∗

BMI (kg/m2)
0.617∗

0.691∗

∗ indicates p < 0 001; bold values indicate correlations between
anthropometric characteristics of hypertensive subjects.
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implied that PCA is applicable to our data set. The value of
KMO was also greater than 0.6 for normotensive (0.63) and
hypertensive (0.75) individuals, which indicates that our
sample size is enough to apply PCA [55].

Out of 5 PCs, only the first four PCs (PC1–PC4), explain-
ing more than 5% of variations, were retained for further
analysis. In normotensive subjects, the selected PCs
explained 99.8% of the total variation. Variance proportions
explained by PC1, PC2, PC3, and PC4 were found as
71.84%, 16.58%, 6.34%, and 5.04%, respectively. In hyperten-
sive subjects, the selected PCs explained 98.04% of the total
variation. Variance proportion accounted for by PC1, PC2,
PC3, and PC4 was estimated to be 61.10%, 22.5%, 8.78%,
and 5.66%, respectively. Loadings of anthropometric charac-
teristics after varimax rotation give an indication of the
extent to which the original variables are influential in form-
ing new variables. For both normotensive and hypertensive
subjects, weight and BMI were the characteristics having
the highest correlation with PC1 and height had the highest
correlation with PC2.

Moreover, Pearson’s correlation between pairs of PCs, as
shown in Table 3, indicates that the problem of multicolli-
nearity presented in Table 2 is solved as there is no significant
relationship between any pair of PCs in the correlation table
(correlation coefficient< 0.6).

To develop PCA-based prediction models, principal
score values obtained from the principle score coefficients
were used as independent variables and BP reactivity was
used as dependent variable. Moreover, 80% data were used
for training while the entire data set was used for testing.
Data were normalized before training to achieve more accu-
rate predictions. MATLAB (version 7.5) was used to develop
the prediction models.

3.4. PCA-Based FSWR (PCA-FSWR). When probabilities
were taken into consideration, the regressions of standard-
ized SBP reactivity on PC1 (composed of weight and BMI)
were found statistically significant in normotensive
subjects. Whereas, PC3 (composed of age) was found sta-
tistically significant for SBP and DBP reactivity in hyper-
tensive subjects. Figures 1(a)–1(c) show the scatter plot
between the observed and predicted values of BP reactivity
from the PCA-FSWR model in normotensive and hyper-
tensive subjects.

The final model equations for prediction of BP reactivity
in normotensive and hypertensive subjects are given as
follows:

(a) Model equation obtained for prediction of SBP reac-
tivity in normotensive subjects:

SBP reactivity = 5 8381 − 1 8514 PC1 1

(b) Model equation obtained for prediction of SBP reac-
tivity in hypertensive subjects:

SBP reactivity = 10 3524 − 1 6246 PC3 2

(c) Model equation obtained for prediction of DBP reac-
tivity in hypertensive subjects:

DBP reactivity = 6 1704 − 0 6467 PC3 3

3.5. PCA-Based ANN (PCA-ANN). The scatter plots between
the observed and predicted values of BP reactivity from the
PCA-ANN model, as illustrated in Figures 2(a)–2(c),
although revealed marked deviations, but they were smaller
than those from the PCA-FSWR model.

3.6. PCA-Based ANFIS (PCA-ANFIS). As presented in
Figures 3(a)–3(c), the scatter plots plotted between
observed and predicted values of BP reactivity from the
PCA-ANFIS model clearly demonstrate improvements in
predicted values as compared to those of the performance
of the PCA-FSWR and PCA-ANN prediction models.

3.7. PCA-Based LS-SVM (PCA-LS-SVM). The optimal values
of regularization parameter (γ) and squared bandwidth
(σ2) obtained from the developed PCA-LS-SVM model
are as follows:

(1) γ = 200, σ2 = 0 53 (for prediction of SBP reactivity in
normotensive subjects)

(2) γ = 253 0920, σ2 = 0 0782 (for prediction of SBP
reactivity in hypertensive subjects)

(3) γ = 1 0635e + 004, σ2 = 0 0148 (for prediction of DBP
reactivity in hypertensive subjects)

The scatter plots between the observed and predicted
values of BP reactivity from PCA-LS-SVM as shown in
Figures 4(a)–4(c) revealed the best predicted values when
compared to predictions of the PCA-FSWR, PCA-ANN,
and PCA-ANFIS models.

The comparison of statistical indices of the models, as
shown in Table 4, reveals that the PCA-LS-SVM model has
the highest value of R2 and lowest value of RMSE and MAPE
for prediction of BP reactivity to crossed legs in normoten-
sive and hypertensive subjects.

4. Discussion

Accurate prediction of BP is integral to successful decision
making and leads to better patient care. Overestimation of

Table 3: Pearson’s correlation coefficient between each pair of PCs
in normotensive and hypertensive subjects.

PC PC2 PC3 PC4

PC1
−0.00000225
0.00000878

0.0000000798
0.00000423

−0.0000167
0.00000659

PC2
−7.237e−016
0.00000919

5.808e−016
0.0000142

PC3
−7.557e−017
0.0000175

Bold values indicate correlation in anthropometric characteristics of
hypertensive subjects.
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BP would increase the number of patients with hypertension.
They may experience adverse effects of medication and have
increased insurance and treatment cost. Furthermore, the
inaccurate labeling leads to an increased perception of dis-
ease and absenteeism from work [56].

The marked elevation in BP with the crossed leg posi-
tion may be due to isometric activity of the leg muscles.
Isometric activity increases vascular resistance or total
peripheral resistance (TPR) and BP [57]. Another explana-
tion for the significant rise in BP with the crossed legs is

translocation of blood volume from the dependent vascu-
lar beds in the legs to the central thoracic compartment
that causes a high stroke volume, as cardiac output is
determined by the stroke volume multiplied by heart rate.
Therefore, an increase in stroke volume causes an increase
in cardiac output [6].

Evidently, this work demonstrates that crossed legs in
sitting position significantly elevated SBP of normotensive
subjects and SBP and DBP of hypertensive subjects. Similar
conclusions were found by previous studies [6–12].
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Figure 1: Scatter plot between observed and predicted values of BP reactivity using the PCA-FSWR model.
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Furthermore, PCA-based hybrid computing models for
predictions of BP reactivity to crossed legs are proposed in this
paper. To the best of our knowledge, this is the first study that
focused specifically on prediction of BP reactivity to crossed
legs using the PCA-FSWR, PCA-ANN, PCA-ANFIS, and
PCA-LS-SVM models. Therefore, the results were compared
with indirectly related prediction studies, as shown in Table 5.

In all studies, the higher performance of the soft com-
puting models was sourced from a greater degree of
robustness and fault tolerance than traditional models.
The results of present research work illustrated that the

PCA-LS-SVM hybrid model obtained the best prediction
results because LS-SVM is firmly based on the theory of
statistical learning; therefore, it can attain a global optimal
solution and has good generalization ability and low
dependency on sample data.

The present study has a number of merits. We used small,
medium, and large size cuffs to cover the entire MUAC range
demanded by participants. Inappropriate cuff size results in
underestimation or overestimation of BP. Moreover, to
strengthen the accuracy of measurements, we took the mean
of three readings per leg position for seven days [3].
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Figure 2: Scatter plot between observed and predicted values of BP reactivity using the PCA-ANN model.
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However, any single comparison between the prediction
models might not reliably represent the true end results. It
is essential to assess the performance of prediction models
in external validation studies using larger database.

5. Conclusions

This paper has detailed an examination of hybrid computing
models in an effort to predict BP reactivity to crossed legs
using anthropometric predictor variables. By eliminating
the multicollinearity problem, PCA provided more objective

interpretation of anthropometric predictor variables used for
prediction. Then, the PCA-FSWR, PCA-ANN, PCA-ANFIS,
and PCA-LS-SVM models were tested for prediction of BP
from PCs. It was found that the PCA-LS-SVM model
achieves substantial improvements in terms of R2, RMSE,
and MAPE compared with all the other models. This
research work may provide valuable reference for researchers
and engineers who apply hybrid computing approaches for
modeling biological variables. The results may also be helpful
to physicians in making more accurate diagnosis of hyper-
tension in clinical practice. Our future research is targeted
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Figure 3: Scatter plot between observed and predicted values of BP reactivity using the PCA-ANFIS model.
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Figure 4: Scatter plot between observed and predicted values of BP reactivity using the PCA-LS-SVM model.

Table 4: Statistical indices for the proposed models.

Model
Normotensive subjects Hypertensive subjects

SBP SBP DBP
R2 (%) RMSE MAPE (%) R2 (%) RMSE MAPE (%) R2 (%) RMSE MAPE (%)

PCA-FSWR 29.05 2.21 40.33 38.35 3.66 48.35 37.21 1.49 22.72

PCA-ANN 55.67 0.67 26.25 60.11 0.74 30.39 67.91 0.57 14.63

PCA-ANFIS 75.42 0.67 17.39 84.81 0.44 6.74 84.26 0.44 5.06

PCA-LS-SVM 93.16 0.27 5.71 96.46 0.19 1.76 95.44 0.21 2.78
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Table 5: Comparison of results with other studies.

Ref. Model developed Predicted parameter Results

[26]
Ridge linear regression, ANN, SVM, and

random forest
BGL, BP

Random forest technique outperformed
ridge linear regression, ANN, and SVM.
R2 = 0.91% (SBP), R2 = 0.89% (DBP), and

R2 = 0.90% (BGL)

[28]
ANN (raw input), ANN (feature based),

MAA, and ANFIS (feature based)
SBP, DBP

ANN (feature based) achieved the best
performance compared to other models. For
SBP predictions: MAE= 6.28, SDE= 8.58.

For DBP predictions: MAE= 5.73,
SDE= 7.33

[29] ANN SBP, DBP

The experimental results confirmed the
correctness of the ANNwhen compared with
the linear regression model. Mean±σ: SBP:
3.80± 3.46, DBP: 2.21± 2.09. Relative error:

SBP: 3.48± 3.19. DBP: 3.90± 3.51

[32] SVM with RBF and polynomial kernel SBP, DBP

SVM (RBF kernel) outperformed SVM
(polynomial kernel). Coefficient of

correlation (R) = 0.97 (SBP), 0.96 (DBP).
RMSE= 6.94 (SBP), and 5.78 (DBP). Scatter

index (SI) = 22.34 (SBP), 22.79 (DBP)

[36] PCA-ANN, PCA-ANFIS, and PCA-LS-SVM SBP, DBP

PCA-LS-SVM outperformed PCA-ANN and
PCA-ANFIS.

For normotensive subjects: SBP:
R2 = 95.42%, RMSE= 0.21, and

MAPE= 5.88%. DBP: R2 = 94.22%,
RMSE= 0.24, and MAPE= 4.05%. For
hypertensive subjects: SBP: R2 = 98.76%,
RMSE= 0.11, and MAPE= 0.88%. DBP:

R2 = 98.78%, RMSE= 0.11, and
MAPE= 0.84%

[37]
PCA-SWR, PCA-ANN, PCA-ANFIS,

and PCA-LS-SVM
DBP

PCA-LS-SVM outperformed PCA-FSWR,
PCA-ANN, and PCA-ANFIS. For
normotensive subjects: R2 = 98.49%,

RMSE= 0.1243, and MAPE= 3.01%. For
hypertensive subjects: R2 = 95.95%,
RMSE= 0.2013, and MAPE= 2.9%

[58] ANN, ANFIS, and SVM
River flow in the semiarid

mountain region

In comparing the results of the ANN,
ANFIS, and SVMmodels, it was seen that the
values of R, RMSE, mean absolute relative
error (MARE), and Nash-Sutcliffe (NS) of
the SVM model were higher than those of
ANN and ANFIS for all combinations of

input data

[59] ANN, ANFIS

To predict depths-to-water table one
month in advance, at three wells
located at different distances from

the river

Both models can be used with a high level of
precision to the model water tables without a
significant effect of the distance of the well
from the river, as model precision expressed
via RMSE was roughly the same in all three
cases (0.14154–0.15248). R varied from

0.91973 to 0.9623 and coefficient of efficiency
(COE) from 0.84588 to 0.92586

[60] ANN, ANFIS, and SVM
Longitudinal dispersion coefficient

(LDC)

The SVM model was found to be superior
(R2 = 90%) in predicting LDC due to low
uncertainty as compared with those in the
ANN (R2 = 82%) and ANFIS (R2 = 83%)

models, while the ANFIS model performed
better than the ANN model
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to study an ensemble approach by combining the outputs of
different hybrid techniques with more predictor variables. In
addition, future research work will address using an ensem-
ble approach by combining the outputs of different hybrid
models with more predictor variables.
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