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The dose verification in radiotherapy quality assurance (QA) is time-consuming and places
a heavy workload on medical physicists. To provide a clinical tool to perform patient
specific QA accurately, the UNet++ is investigated to classify failed or pass fields (the GPR
lower than 85% is considered “failed” while the GPR higher than 85% is considered
“pass”), predict gamma passing rates (GPR) for different gamma criteria, and predict dose
difference from virtual patient-specific quality assurance in radiotherapy. UNet++ was
trained and validated with 473 fields and tested with 95 fields. All plans used Portal
Dosimetry for dose verification pre-treatment. Planar dose distribution of each field was
used as the input for UNet++, with QA classification results, gamma passing rates of
different gamma criteria, and dose difference were used as the output. In the test set, the
accuracy of the classification model was 95.79%. The mean absolute error (MAE) were
0.82, 0.88, 2.11, 2.52, and the root mean squared error (RMSE) were 1.38, 1.57, 3.33,
3.72 for 3%/3mm, 3%/2 mm, 2%/3 mm, 2%/2 mm, respectively. The trend and position
of the predicted dose difference were consistent with the measured dose difference. In
conclusion, the Virtual QA based on UNet++ can be used to classify the field passed or
not, predict gamma pass rate for different gamma criteria, and predict dose difference.
The results show that UNet++ based Virtual QA is promising in quality assurance
for radiotherapy.
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INTRODUCTION

Intensity-modulated radiation therapy (IMRT), a widely used
treatment modality for cancer patients, provides highly
conformal dose distribution to the target while sparing
surrounding healthy tissues (1). Quality assurance is performed
to confirm the accuracy of dose calculation, data transmission,
linear accelerator performance, radiotherapy positioning, and
dosimeter response accuracy (2–6). It is essential to ensure the
reliability of treatment delivery and improve patient safety. The
process commonly involves comparing the calculated dose
distribution or fluence with the measured dose distribution or
fluence (7). However, the implementation of patient-specific QA
measurement is time-consuming and places a heavy workload on
medical physicists (8). Additionally, the measurement work takes
a lot of clinical treatment time, which is unrealistic for busy
centers. Furthermore, the QA process needs to be accomplished
prior to treatment. For those QA results which do not meet the
predefined “pass” criteria, re-planning and verification will cause
an inevitable treatment delay. Therefore, a more streamlined,
less-resourced, and automated patient-specific QA method for
dose verification is necessary for radiotherapy centers.

With the development of machine learning and deep
learning and its application in QA results prediction, the
efficiency of patient-specific QA is expected to be improved
(9–16). Valdes, Lam, Li (9–12) etc. to established prediction
models for the gamma passing rate (GPR) based on the
complexity parameters of the TPS plan. Other researchers (13,
14) investigated the deep learning algorithms to establish GPR
prediction models based on planar dose distribution. Granville
(15) used support vector machines (SVMs) to classify cold, hot,
and normal plans based on the plan complexity parameters and
accelerator performance parameters. Li (12) discussed the
prediction model of whether the plan could pass the threshold
using machine learning method. The above researchers have
developed an accurate prediction model of QA results,
confirming the feasibility of using machine learning or deep
learning for patient-specific QA.

Previous prediction models based on machine learning or
deep learning were only the results of dose verification but could
not provide detailed information of dose difference (9–18).
Predicting the trend and position of dose difference is an
important work in automatic patient-specific QA in the
near future.

In this study, we proposed a novel QA prediction model based
on UNet + + using the planar dose distribution as input. A model
can (a) provide the classification results whether the field QA
passes; (b) predict the GPRs of different gamma criteria; (c)
predict the trend and position of dose difference. The prediction
model allows physicists to pre-mark potentially failed fields in a
proactive way, analyze dose difference simultaneously and
reduce patient delays associated with unqualified measurements.
Additionally, it could reduce patient-specific QAmeasurements to
verify data transmission and delivery accuracy combination with
other tools. The model is expected to be a practical clinical tool to
perform patient-specific QA accurately and provide new ideas for
the development of virtual QA and process optimization.
Frontiers in Oncology | www.frontiersin.org 2
MATERIALS AND METHODS

Data Collection
109 IMRT plans (including 568 fields) from December 2019 to
May 2020 were selected. All plans were generated in the Eclipse
version11 (Varian Medical Systems, Palo Alto, CA). Dose
distributions were calculated using the Acuros External Beam
(AXB, ver.11.0.31, Varian Medical Systems, Palo Alto, CA) with
a dose calculation grid of 2.5 mm. Each plan was delivered using
a linear accelerator equipped with a Varian Millennium 120
MLC. Patient-specific dose verification was performed prior to
treatment using the actual angle by Portal Dosimetry. Daily dose
calibration was performed during the period of data collection.

PD Mining, an in-house software developed by C #, was used
to register, resample, and compare the calculated and measured
dose distribution. This software was developed based on the
interface of Varian ESAPI portal dosimetry and verified with the
manual processing results. All patient dose data was searched
through patient ID. The gamma analysis results and dose
difference were obtained and exported to the local file in the
form of text file automatically.

As 2%/2mm was the most sensitive criterion to detect
clinically relevant errors (19, 20), it was used for establishing
the classification model. If the GPR was higher than 85%, the
field was considered to pass the QA, vice versa. The GPRs in the
criteria of 3%/3mm, 3%/2mm, 2%/3mm were calculated at
the same time. Absolute dose mode and 10% dose threshold
were used for the above GPR analysis.

Data Preprocessing
Pylinac library was used to extract the original image of planar
dose distribution in the resolution of 1190 × 1190. Then the
redundant information such as the frame and coordinate axis
was cut off to get the image with the resolution 968 × 968.
Flipping (horizontal random lip probability: 0.5, vertical random
flip probability: 0.5) and random clipping were used to prevent
overfitting. The images for the training set were randomly
cropped from 968 × 968 to 960 × 960. The images in the test
set were cut from the center, sizing from 968 × 968 to 960 × 960.

UNet++ Architecture
Based on the traditional medical image processing network
UNet, UNet++ enables the network to learn important features
of different depths through a series of nested and dense jumping
connections. By adopting deep supervision, UNet++ allows
model complexity tuning to balance speed and performance
optimization (21).

Figure 1 shows the architecture of the UNet++ used in this
s t u d y . T h e d own s amp l e e n c o d i n g c h a n n e l o f
X0,0!X1,0!X2,0!X3,0!X4,0 adopted ResNet-101 architecture
as the backbone network, and then the image size was restored by
the corresponding upsample decoding nodes with skip
connections. The planar dose distribution was input from X0,0,
and the predicted dose difference image output of the same size
was obtained from X0,4 after passing through the UNet++
network. At the same time, X0,4 was downsampled through
three max-pooling layers and two bottleneck layers, and the
July 2021 | Volume 11 | Article 700343
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linear layer was connected in series to predict the four gamma
criteria GPR and the classification results.

Model Training and Evaluation
To reduce dose difference prediction error caused by image
scaling, the original resolution was adopted for the input and
output. This processing would increase network memory and
training time. Therefore, small batches rather than N-fold
validation were selected. We randomly selected 95 fields (about
1/6) from the collected 568 samples as the test set. Four of the
remaining samples (378 fields) were used as the training set and
one as the validation set (95 fields).

The mean square error (MSE) loss function was used to
evaluate the regression error of dose difference and GPR, and the
binary cross-entropy was used to evaluate the classification error.
The total loss was obtained by the weighted (1/3, 1/3, 1/3) sum of
Frontiers in Oncology | www.frontiersin.org 3
the three errors. The commonly used Adam optimizer (22) was
adopted to learn the back-propagation error. The initial learning
rate was set to 0.001, and it decreased exponentially as training
going on, with the dropping rate setting to 0.9. A Mini batch
method was used to train the model, the batch size was set to 2,
and the epoch was set to 120. The prediction model was built by
the open-source pytorch library. The entire training cost about
32 hours on the NVIDIA GTX-3080 GPU.
RESULTS

Learning Curve for the Prediction Model
It is expected that more epochs would give rise to higher
prediction accuracy. Thus, there typically exists a minimum
number of epochs beyond which the increase in prediction
FIGURE 1 | Architecture of the UNet++ used for prediction model.
July 2021 | Volume 11 | Article 700343
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accuracy would saturate. Figure 2 shows how the number of
epochs will affect the accuracy for the prediction model. With
more epochs, the loss on the training data, validation data and
testing data decrease. With 60 epochs, the testing, validation and
training loss converge at a stable level, indicating that increasing
the epochs of training sets may not yield further improvement in
the accuracy of the prediction model.

Performance of Classification Model
The proportion of GPR less than 85% was 7.37% (7/95) and 8.42%
(8/95) in the validation set and test set, respectively. As shown in
Table 1, the sensitivity of the validation set is 57.14%, the specificity
is 100%, and the accuracy is 96.84%. For the test set, the sensitivity is
62.50%, the specificity is 98.85%, and the accuracy of the
classification model is 95.79%. From the analysis for the failed
fields in measurement, while the prediction results are pass, the
GPRs for these fields are near 85%, and the predicted GPRs are
higher than 85%, so the classification results are pass fields.

GPR Prediction for Different Gamma Criteria
As shown in Table 2, the MAE and RMSE of the validation set
and test set increase with stricter gamma criteria. In the test set,
the smallest MAE and RMSE are 0.82 and 1.38 under 3%/3mm.
Frontiers in Oncology | www.frontiersin.org
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The 2%/2mm gamma criteria has the largest MAE and RMSE in
the test set, which are 2.52 and 3.72, respectively.

The distribution of errors between the predicted GPR and the
measured GPR under different gamma criteria are shown in
Figure 3. The prediction errors among different gamma groups
(90%-100%, 80%-90%, and < 80%) are compared. The accuracy
of the prediction model is affected by the measured value itself.
The higher the measured GPR, the smaller prediction errors
between the measured and predicted GPR are observed.

Dose Difference Prediction
In the prediction of dose difference, the dose difference and the
histogram of distribution relative to TPS for the pass field and fail
field are shown in Figures 4, 5, respectively. The position and
trend of predicted dose difference are consistent with the
measured dose difference.

Figure 4 shows the dose difference for a passing field of a
patient. Figure 4A shows the dose difference between the
measured planar dose and TPS calculated, and Figure 4B
shows the dose difference between the predicted and TPS
calculated planar dose. Even for a passing field, there are still
some pixels with large dose difference, and their positions can be
obtained. Figure 4C is the histogram of the dose difference
between measured and TPS calculated planar dose for one
FIGURE 2 | Learning curve of the prediction model.
TABLE 1 | Results of classification model.

Predicted-Fail Predicted-Pass

Validation set (95)
Measured Fail 4 3 57.14%
Measured Pass 0 88 100.00%
Test set (95)
Measured Fail 5 3 62.50%
Measured Pass 1 86 98.85%
The results are classified into four categories: failed measurement results and failed
prediction results, TP; passed measurement results and passed prediction results (TN)
passed measurement results and failed prediction results (FP); failed measurement results
and passed prediction result passed (FN).
TABLE 2 | MAE and RMSE for different gamma criteria.

MAE RMSE

Validation set Test set Validation set Test set

3%/3mm 0.79 0.82 1.28 1.38

3%/2mm 0.93 0.88 1.50 1.57

2%/3mm 2.01 2.11 2.31 3.33

2%/2mm 2.17 2.52 3.00 3.72
July 2
021 | Volume 11 |
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FIGURE 3 | The distribution of prediction errors in test set among different
groups under different gamma criteria. (Error bar: Mean ± standard
deviation. The number on the vertical axis represents the number of fields
for different groups).
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failed field, and Figure 4D is the histogram of the predicted
planar dose relative to TPS calculated dose. The histogram of
predicted dose difference is consistent with the measured dose
difference, the maximum and the minimum dose difference are
almost the same.

As Figure 5 shows, the predicted dose difference and
measured dose difference for one of the failed fields and the
histogram of dose difference. Large dose difference mainly
located in the edge, and the measured dose is lower than the
TPS calculated dose. The trend and position of the predicted
dose difference is consistent with the measured dose difference,
indicating that the virtual QA results could be used as guidance
for the analysis of dose difference and plan redesign. By
comparing and analyzing the dose difference for pass field and
failed field, we found that the number of pixels having the large
dose difference in the failed field was larger than in the pass field.
DISCUSSIONS

IMRT is a complex technology in radiotherapy, so special QA is
required to ensure the accuracy of dose delivery. In this study,
Frontiers in Oncology | www.frontiersin.org 5
the UNet++ was used to classify QA results, GPR prediction of
different gamma criteria and accurate dose difference prediction
based on planar dose distribution. The accuracy of the
classification model was 95.79%; there were small RMSE
(1.38-3.72) and MAE (0.82-2.52) between the measured and
the predicted GPR in the test set, and the trend and position of
predicted dose difference were consistent with the measured
dose difference. The results showed that the prospect of
realizing virtual patient-specific QA with UNet++ and
provides a new idea for the optimization of the individual
QA process.

QA is required for every patient before treatment to ensure
the accuracy of dose delivery (2–6). Dose verification depends on
the equipment highly. The resolution and energy response of the
detector will affect the result of dose verification. For the fields
that fail the threshold, it is necessary to adjust the radiotherapy
plan repeatedly, which will bring treatment delay. The process of
dose verification is labor-consuming and time-consuming, so it
brings more workload to the busy center. Automatic dose
verification pre-measurement can mark the plans that fail the
verification in advance and predict the dose difference, which is
expected to be an effective method to solve the above problems.
FIGURE 4 | (A) the dose difference between the measured planar dose and TPS calculated (B) the dose difference between the predicted and TPS calculated
planar dose. (C) the histogram of the dose difference between measured and TPS calculated planar dose for one pass field (D) the histogram of the predicted planar
dose relative to TPS calculated dose.
July 2021 | Volume 11 | Article 700343
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As suggested in the TG 218 (6), the ability of the prediction
model to accurately classify plans into “pass” or “fail” based on
gamma criteria used is one of the most important indicators to
evaluate the clinical feasibility of the model. The prediction of
GPRs under different gamma criteria could provide more
comprehensive information for physicists to judge whether the
plan is acceptable clinically. The dose difference prediction
model predicts the trend and location of dose difference, which
provides direction for physicists to modify the plan. The
paradigm shift of pre-measurement QA will improve the
efficiency of dose verification greatly.

Since 2%/2mm is the most sensitive to clinically relevant
errors (19, 20), it is selected as the basis of classification model in
this study. The accuracy of failed fields was lower compared to
pass fields, as the measured GPR were near 85% for some failed
fields, and the predicted GPR were higher than 85%, so the
predicted results of these fields were passed. Therefore, the
selection of appropriate threshold plays an important role in
the accuracy of the classification model and the proportion of
failed fields needed to improve the accuracy of classification. The
classification model gives the physicist a more intuitive result
whether the field pass the QA pre-measurement.
Frontiers in Oncology | www.frontiersin.org 6
The prediction model in this study can give the classification
results according to the standard of the classification model, and
also give the GPRs of different gamma criteria (3%/3mm, 3%/
2mm, 2%/3mm, 2%/2mm). As an example, for one of the fail
fields under the classification result, the GPR for 3%/3mm was
98.51% (Error: 0.01%), and GPR was 97.42% (Error: 0.22%) for
3%/2mm. After discussion by physicists and the doctors, the plan
can be delivered. Therefore, the prediction of the GPRs of
different gamma criteria could make a comprehensive
judgment for the clinical enforceability of the plan.

In the prediction of GPR under different gamma criteria, the
MAE and RMSE for the measured and predicted GPR of the
model increase with the stricter gamma criteria, which is caused
by the increase of the uncertainty of the prediction with the
stricter gamma criteria. The accuracy of the model is affected by
the measured GPR itself. The higher measured GPR is, the higher
accuracy. This can be explained that the data with high measured
GPR accounts for a large part of our model, so the accuracy of
higher GPR prediction is high.

Previous studies only predicted the results of QA using
machine learning or deep learning (9–18, 23, 24), but it is
impossible to predict the trend and position of dose difference.
FIGURE 5 | (A) the dose difference between the measured planar dose and TPS calculated (B) the dose difference between the predicted and TPS calculated
planar dose. (C) the histogram of the dose difference between measured and TPS calculated planar dose for one failed field (D) the histogram of the predicted
planar dose relative to TPS calculated dose.
July 2021 | Volume 11 | Article 700343
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The trend and position of dose difference plays a very important
role in the analysis of the error source. However, there are no
relevant reports about dose difference at present. In this study,
prediction of dose difference based on the planar dose
distribution is fulfilled. The result of this study that the
predicted dose difference is consistent with the position and
trend of the measured dose difference, can provide guidance for
reason analysis.

It is noting that the pre-treatment prediction model
established in this study is an auxiliary tool that needs a
reparatory guarantee of the accuracy of the energy calibration
and delivery process of the accelerator (2, 4). The purpose of this
prediction model is not intended to replace the traditional QA,
but to help physicists reduce the measurement burden of patient-
specific QA when verifying the dose distribution and optimize
the process of QA combined with other methods (25–28). There
are still some limitations in this study: 1) As most of the clinical
fields are pass fields, which leads to the unbalance of data
distribution. Adequate amounts of low GPR plans for model
training are needed to improve the accuracy of the model in
future. 2) The model is limited to our data that all the data come
from the same accelerator, the same energy, the same verification
equipment. To expand the universality of the model, the research
on models that include a variety of energy, different types of
accelerators and dose verification equipment will be done in
the future.
CONCLUSION

In this study, we developed a UNet++ based prediction model for
patient-specific QA. The prediction model could classify whether
the field passes or fail QA, predict GPR of different gamma criteria,
predict the trend and location of dose difference and mark the
position. The virtualQA tool developed in this studyprovides a new
Frontiers in Oncology | www.frontiersin.org 7
idea for the optimization of patient-specific QA process, and
promote the development of automated patient-specific QA.
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