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. Infection with SARS-CoV-2 

In the year 2021 the SARS-CoV-2 pandemic has impacted us 

ll, including people with cystic fibrosis (PwCF) and health care 

roviders. International epidemiology studies have improved our 

nderstanding of the clinical sequalae of SARS-CoV-2 in CF. The 

uropean data registry reported on 130 PwCF (adults and children) 

ith confirmed SARS-CoV-2 between February and June 2020 [1] . 

verall, the incidence of infection was 2.70 per 10 0 0 in PwCF 

hich was greater compared to age-matched controls in the gen- 

ral population, although this figure may reflect more frequent 

esting in the Cystic Fibrosis (CF) population. Of those with SARS- 

oV-2 infection, just over half (58%) of PwCF required hospital ad- 

ission and 9% intensive care support, which was again greater 

han reported in the general population. This figure may reflect 

 more cautionary approach to hospitalize PwCF for observation. 

hose PwCF who had undergone lung transplantation or were im- 

unocompromised were associated with an adverse prognosis. Of 

he five PwCF who had died, three were lung transplant recipients. 

 history of transplantation was associated with higher rates of 

ospitalization (82% versus 53%) and intensive care support (26% 

ersus 5.6%) than those PwCF without transplants [1] . Other stud- 

es have shown that PwCF with lower lung function, lower body 

ass index (BMI), and with comorbidities such as diabetes or liver 

isease were also more likely to have severe infection [ 2 , 3 ]. The
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ystic Fibrosis Registry Global Harmonization Group reported data 

n 105 children with SARS-CoV-2 infection from 13 countries over 

 6-month period [3] . Over two thirds of children had a mild self- 

imiting illness which was managed in the community. Children 

ho were hospitalized had a lower lung function and lower BMI, 

nd no deaths were attributed to COVID-19 [3] . Thirty-seven per- 

ent of children were treated with oral antibiotics and 46% re- 

eived intravenous (IV) antibiotics. Overall, studies showed the ma- 

ority of PwCF with SARS-CoV-2 infection maintain their lung func- 

ion and were managed with antibiotics either at home or in the 

ommunity [1–3] . 

Overall, PwCF fared better than our initial expectations. PwCF 

ere advised to shield in the first wave and areused to meticu- 

ous infection control measures, which may have been beneficial 

uring the first wave. It has also been suggested that CFTR mu- 

ations may have protective mechanisms, such as increasing lev- 

ls of angiotensin-converting-enzyme-2 messenger RNA in the air- 

ay epithelium reducing proinflammatory cytokines, which may 

itigate infection severity [ 4 , 5 ]. Others hypothesized that SARS- 

oV-2 may dysregulate the epithelial sodium (ENaC) and CF trans- 

embrane conductance regulator (CFTR) channels leading to in- 

reased lung edema, which could have led to worse clinical out- 

omes. Thankfully, this does not seem to have come into fruition. 

. Impact of COVID-19 on clinical care 

The SARS-2-CoV2 pandemic has led to significant changes in 

ealth care delivery for PwCF. A widespread surge in ‘tele’ or dig- 

tal health has occurred [ 6 , 7 ]. In general, this has been reason-
eserved. 

https://doi.org/10.1016/j.jcf.2022.02.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jcf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcf.2022.02.014&domain=pdf
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bly successfully implemented and accepted by PwCF and care 

roviders, particularly adults [8–12] . Health care providers and 

wCF have adapted to home spirometry, remote microbiological 

ample collection, blood monitoring and video consultants well 

 7 , 10 , 13 ]. Advantages include less risk of cross infection and conve-

ience for PwCF who are clinically well [ 10 , 14 , 15 ]. However, disad-

antages have also been highlighted. Home spirometry is estimated 

o be 2.0 (95% CI: 0.3 to 3.5%) percentage points lower than clinic 

pirometry [16] . Over half of adults and parents/carers for PwCF 

xpress concerns about lack of in-person assessments such as lung 

unction and microbiological testing [10] . Other disadvantages in- 

lude the lack of ability to perform a physical examination, dif- 

culties in microbiological surveillance, and the loss of subtleties 

n communication that may get lost without face to face contact, 

articularly where there is a language barrier [ 7 , 9–12 , 14–16 ]. Pe-

iatric teams and parents have been less likely to advocate for re- 

ote consultations and have raised concerns regarding monitoring 

dherence, safeguarding issues, and engaging teenagers [ 8 , 9 , 12 , 14 ].

isparities in high speed internet access and technology may cre- 

te a ‘digital divide’ [ 9 , 12 , 17 ]. Whilst the surge in telehealth has

ubsided and confidence in returning to face to face visits has 

rown, in person consultations will probably not return to pre pan- 

emic levels [ 6 , 10–14 ]. Health care delivery has evolved and there

s much work to do with evaluation and implementation of new 

ybrid models that address the individual needs of PwCF. This will 

ave financial implications for health care providers [ 15 , 18 ]. It will

e important to include patient reported outcome measures as 

ell as home monitoring and adherence work in these new mod- 

ls [ 17 , 19 ]. 

. CFTR modulators 

We have gained further insight into the effects of CFTR modu- 

ators through in vitro studies, through clinical trials, and through 

se of real-world data. Studies have shown the in vitro effect of 

lexacaftor (ELE) consists of corrector and additional potentiator 

ctivity, in human bronchial and nasal epithelia of PwCF with 

he508del mutation, class III gating mutations, and rare mutations 

20–22] . These preclinical studies suggest clinical benefit in pa- 

ients with the above-mentioned mutations [20–22] . Conversely, 

n vitro results of some rare missense mutations show no addi- 

ional effect on the adding of ELE, suggesting there will be no clin- 

cal benefit to the addition of ELE to tezacaftor-ivacaftor (TEZ-IVA) 

23] . These studies support the use of in vitro models as a preci-

ion model, to predict the most beneficial combination of modu- 

ators for rare mutations and support the role of in vitro testing 

or clinical approval of modulators. This is further supported by a 

tudy that assessed the use of nasal epithelial organoids [24] . A 

trong correlation between functional correction and clinical re- 

ponse was observed. However, the type of epithelial cells used 

or the culture of organoids seems important: two studies showed 

o correlation between intestinal organoid swelling and clinical re- 

ponse in different CFTR mutations [ 25 , 26 ]. 

More data has been published on elexacaftor-tezacaftor- 

vacaftor (ETI) therapy in younger PwCF and those with residual 

unction mutations. In children with CF aged 6–11 years, a 24 week 

hase 3 trial assessing the safety, pharmacokinetics and efficacy 

f ETI in 66 PwCF homozygous for Phe508del or Phe508del with 

 minimal function mutation showed that safety and pharmacoki- 

etic profile were comparable to older patients [27] . The efficacy 

s shown by the improvement of perecent predicted forced expira- 

ory volume in 1 s (ppFEV 1 ) with a mean of 10.2% in a group with

ean FEV1 at baseline of 88.8%. Furthermore, lung clearance index 

LCI) decreased by 1.7 units and there was a significant improve- 

ent of sweat chloride and CFQ-R respiratory domain response. 

hese results strongly support the use of ETI in this young patient 
192 
roup. A recent publication has described the effect of ETI as com- 

ared with ivacaftor (IVA) and TEZ-IVA (active controls) in patients 

 12 years with Phe508del gating and residual function genotypes 

n a 8 week trial [28] . Mean ppFEV 1 and sweat chloride improved 

y 3.5% and 23.1 mmol/l respectively in 132 patients receiving ETI 

ompared with 126 active controls. 

Open-label extension and real world studies in PwCF with 

umacaftor (LUM)-IVA aged 2–5 years and 6–11 years homozygous 

or Phe508del -CFTR mutation and TEZ-IVA aged > 12 years ho- 

ozygous or heterozygous for Phe508del mutation confirmed the 

verall safety of the modulators [29–32] . The efficacy on clinical 

utcome parameters were sustained over up to 120 weeks and re- 

ults of a real-world study was comparable to open label stud- 

es. The PROMISE study, a post-approval study investigating real 

orld experience of ETI, described six months into treatment of 

87 PwCF > 12 years and ≥ 1 Phe508del mutation [33] . Signif- 

cant improvements in ppFEV 1 (mean change 9.8%), sweat chlo- 

ide (mean change 41.7 mmol/l), BMI and, CFQ-R respiratory do- 

ain were observed. The largest improvements were seen in PwCF 

aïve for modulators and on dual-modulator therapy (LUM-IVA or 

EZ-IVA), compared to PwCF on IVA. The results of ongoing data 

ollection up to 30 months after the start of ETI and sub studies 

nvestigating the effect of ETI across a wide range of CF disease 

anifestations will be reported in future. 

Further studies have been published in PwCF and advanced 

ung disease (ALD) on ETI therapy [ 34 , 35 ]. Of note is the French

rospective observational study of PwCF ≥ 12 years with ALD 

ppFEV 1 < 40) who started ETI [35] . Data were collected before, 1 

nd 3 months after starting ETI. ETI was initiated in 245 PwCF with 

 median ppFEV 1 of 29%. Rapid clinical improvement was seen 

ith a mean increase of ppFEV 1 of 15%. There was a significant de- 

rease in need for long-term oxygen, non-invasive ventilation, and 

nteral tube feeding. Importantly, a twofold decrease of lung trans- 

lantations was observed compared to the two years previously, 

ith a stable number of deaths without transplantation. Although 

hese data need to be confirmed over a longer period, they sug- 

est that ETI can have a major impact on life expectancy, even in 

atients with ALD. 

With the widespread roll out of CFTR modulators, real world 

ata has provided insight into extrapulmonary manifestations of 

hese therapies. These include increases in weight, improvements 

n sinus symptoms, lower insulin requirements in CF related dia- 

etes and higher conception rates [36–40] . We are improving our 

nderstanding of the impact of CFTR modulators on gastrointesti- 

al symptoms, gut physiology and the lung and gut axis but there 

s still much to learn [41–47] . Furthermore, there are reports of un- 

ntended extrapulmonary consequences of CFTR therapies. These 

nclude transfer across the placenta and into breast milk [48] . 

here are limited data on the safety of these therapies in preg- 

ancy or when breast feeding. Whilst early data on 45 pregnan- 

ies reports no serious adverse events, we eagerly await the results 

rom the MAYFLOWER study to aid informed treatment decisions 

n pregnancy [49] . 

. Extrapulmonary complications 

As the disease trajectory in CF improves and PwCF are living 

onger, attention shifts towards emerging co-morbidities and aging 

ith CF. As PwCF age, they are at increased risk of cancers, par- 

icularly of the gastrointestinal (GI) tract [50] . Organ transplanta- 

ion and CF related diabetes are independent risk factors for lower 

I malignancy, suggesting that earlier screening may be benefi- 

ial in this population [50] . Furthermore, cardiovascular compli- 

ations, obstructive sleep apnea, osteopenia and skeletal fragility 

re all emerging problems [51–55] . Addressing mental health is- 

ues and promoting emotional wellness warrant ongoing attention, 
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articularly as those with depression are at increased risk of death 

56–61] . 

. Diagnosis 

At the other end of the age spectrum, updated guidance on the 

anagement of children with CFTR-related metabolic syndrome 

CRMS)/ CF screen positive inconclusive diagnosis (CFSPID) has 

een published [62] . The major change is the advice to have de- 

ailed assessment at age 6 years of those newborns with initial 

weat chloride concentration above 50 mmol/L and one CFTR mu- 

ation; these should be monitored with repeated sweat tests and 

ombined with genetic and functional investigations [63] . 

. Early lung disease 

The availability of CFTR modulators has further increased the 

nterest in detecting and monitoring early lung disease, and sev- 

ral modalities are currently being evaluated. These include multi- 

le breath washout (MBW), computer tomography (CT) and mag- 

etic resonance imaging (MRI). MBW has proven to be more sen- 

itive than spirometry to detect early CF lung disease and can be 

sed to track disease progression and treatment response in young 

wCF [ 27 , 64–66 ]. The most widely used technique is the nitrogen

ashout (MBNW), which was used to assess the efficacy of modu- 

ators in phase 3 trials in children [ 27 , 67 , 68 ]. Concerns have been

aised about the accuracy of commercially available MBNW de- 

ices because their primary outcome parameters, functional resid- 

al capacity (FRC) and LCI, show significant differences between 

ach other and compared to body plethysmography [ 69 , 70 ]. One of

hese devices (Eco Medics AG, Duernten, Switzerland) had signif- 

cant sensor errors leading to a mean overestimation of FRC and 

CI of 8.9% and 11.9%, respectively [71] . A software update, in- 

luding a correction algorithm, for this device was released. The 

mpact of this correction on existing clinical trial data has been 

escribed [72] . Across intervention studies treatment effects re- 

ained statistically significant, although the magnitude of the dif- 

erence was smaller. Observed treatment effects and interpretation 

id not change after the correction, which is reassuring for past 

nd future trials. 

MBW, CT and MRI have all been used to monitor the treat- 

ent effect of CFTR modulators [73–75] . MRI and MBW again have 

een shown to be more sensitive than FEV 1 , especially when the 

reatment effect is of modest size [ 74 , 76 ]. In a study of MBNW in

LD during treatment with ETI, MBW outcome parameters showed 

arger improvements than ppFEV 1 , suggesting the main treatment 

ffect takes place in the peripheral airways [77] . Longitudinal stud- 

es confirm that MBNW, CT, and hyperpolarized (129) xenon MRI 

re all able to detect disease progression in preschool children and 

hildren and adolescents with CF [78–80] . A study implementing 

eep learning scoring of CT scan reported promising results to im- 

rove reproducibility and could lead to a significant decrease in the 

ime consuming manual scoring of CT scans in future [81] . 

. Pulmonary exacerbations 

The diagnosis and management of pulmonary exacerbations 

PExs) remain a major topic of interest. STOP2 reported that 

horter duration of antibiotic therapy for PExs is not inferior to 

onger courses [82] . Almost 10 0 0 adult PwCF were enrolled and 

andomized based on their clinical response after 7–10 days of in- 

ravenous antibiotic treatment. The study assessed ppFEV 1 change 

rom baseline to 2 weeks after antibiotic cessation. For those who 

ad an early robust response to treatment, 10 days was not inferior 

o 14 days of antibiotic treatment. For those who did not have an 
193 
arly robust response, 21 days was not superior to 14 days of treat- 

ent. In addition, no differences were observed across the antibi- 

tic durations and time to next PEx. This suggests that treatment 

urations may be reduced safely in PwCF, which may reduce treat- 

ent side effects, decrease treatment burden, and reduce treat- 

ent costs. PwCF who did not have an early robust response of- 

en showed no drop in ppFEV 1 at the time of diagnosis suggesting 

EV 1 may not be the best marker to diagnose PExs and to moni- 

or treatment response for all. LCI appears to be a more sensitive 

arker of PExs for preschool children and for those with early lung 

isease [ 83 , 84 ]. 

In addition to functional testing, work on biomarkers and symp- 

om scores continues into the diagnosis of PExs and monitoring 

reatment response. Conflicting data on the effectiveness of CRP as 

 biomarker have been published. In the STOP2 study, CRP was not 

 good predictor for a PEx diagnosis, whereas others have proposed 

 step wise algorithm using CRP thresholds and fold-change from 

table may be used to diagnose a PEx when there are conflict- 

ng data between changes in lung function and symptoms [ 82 , 85 ].

hilst this review does not permit us to examine all potential 

iomarkers in detail, the Biomarker Special Interest Working Group 

ublished a review highlighting neutrophil elastase, IL-8, TNF- α
nd IL-1 β as valid biomarkers of lung inflammation. Other poten- 

ial biomarkers such as Il-6, calprotectin, SPLUNC1 and calprotectin 

n serum, and HMGB-1 and YKL-40 in sputum require further eval- 

ation [86–89] . The STOP-OB study showed that the Chronic Res- 

iratory Infection Symptom Score (CRISS) in PwCF treated for PExs 

mproved and exceeded the minimal important difference in al- 

ost 94% of the included patients, suggesting this could be a very 

seful tool in the evaluation of PExs [90] . Thus, selection and vali- 

ation of combination scores is of great importance to be clinically 

seful in routine practice. 

. Microbiology 

New data show that genetic variants located in other CFTR 

enes are associated to earlier first acquisition of P. aeruginosa [91] . 

ome single nucleotide polymorphisms in DCTN4, TNF and SLC9A3 

ppear as risk factors for P. aeruginosa infection [91] . This may be a 

tep towards predictive and preventive medicine with better iden- 

ification of PwCF at high risk of early infection and chronic colo- 

ization. 

Work has continued on understanding the complex polymicro- 

ial communities in the CF lung, the impact of treatments on the 

icrobiome and its relationship with disease severity [ 92 , 93 ]. Pre- 

iminary studies show that CFTR modulators are associated with 

odest changes in the CF microbiome [ 94 , 95 ]. ETI treatment is as-

ociated with increased population diversity and a reduction in the 

atio of pathogens to anaerobes [94] . IVA treatment is associated 

ith a higher density of strict anaerobic bacteria and an increase 

n richness and diversity [95] . However, more data are needed to 

nderstand the longer-term impact of CFTR therapies on commu- 

ity structure. 

In future, the integration of functional or “omics” technology 

ay improve our understanding of host and microbiome interac- 

ions [96] . The functional response of the community dictates re- 

ponse to therapy, affects clinical outcomes and provides potential 

ovel therapeutic targets and potential novel biomarkers [96] . For 

xample, specific virulence factors produced by P. aeruginosa , the 

lkyl quinolones, are promising biomarkers for pulmonary P. aerug- 

nosa and are also potential therapeutic targets [97–99] . As more 

tudies confirm that P. aeruginosa persists in airways of ‘eradicated’ 

atients, we anticipate that focus may switch from attempting to 

radicate infection , towards manipulating the functional response 

f the microbiome [100] . 
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. Novel therapies 

Bacteriophage therapy has evolved such that it could be a 

romising tool against antibiotic-resistant bacteria [ 101 , 102 ]. Due 

o potential phage-resistance in the bacterial host, strategies in- 

luding phage cocktails, which combine multiple phage isolates 

argeting different phage receptors, and combining phages with se- 

ected antibiotics are being explored [103–105] . 

Advances are underway for those without a commercially avail- 

ble CFTR modulator therapy. The HIT-CF initiative is evaluating 

FTR modulators in populations with rarer genotypes [106] . Other 

herapeutic strategies being explored include RNA therapy, gene 

diting and gene therapy for those with rarer mutations, including 

onsense and missense mutations [107] . Most of these approaches 

re in pre-clinical development or early clinical phases. There are 

any challenges to be overcome before these can be safely used 

n clinical practice [107] . 

Work is needed to identify the most accurate in vitro and in vivo 

ests to predict CFTR function and clinical response to help guide 

ndividual personalized therapies. This may include a combination 

f organoid technology, sweat chloride concentration, nasal poten- 

ial difference and intestinal current measurement [ 24 , 76 , 108–111 ].

t is anticipated that by investigating genetic and non-genetic mod- 

fiers, we may improve our understanding of phenotypical varia- 

ion in response to CFTR therapy [ 112 , 113 ]. 

These advances may also help with evaluation of those on the 

ilder end of the spectrum, like the children with CFSPID [62] . 

his leads to the question of where do we draw the line with 

FTR dysfunction and the clinical need for CFTR modulator ther- 

py? Should we be prescribing CFTR modulators to treat extra- 

ulmonary manifestations, such as in post lung transplant recip- 

ents, when the evidence base is so small? It is important that 

e use evidence-based medicine to justify expensive treatment 

egimes, particularly when finite resources are available in nation- 

lized health care systems. 

Finally, a combination of the SARS-2-CoV pandemic and the 

orldwide roll out of CFTR modulators has shown the CF commu- 

ities ability to adapt to a fast-paced change in the CF landscape. 

t has highlighted our ability to use international collaborations 

nd registry data to understand the impact of these changes in the 

eal world. We are working closer with the CF community to de- 

elop novel patient reported outcomes for clinical trials [ 114 , 115 ].

e need to continue to listen to what is important to PwCF and 

ngage them in shared decision making, including balancing their 

reatment burden. Given the pace of change, it is vitally important 

e work together to consider innovative approaches to clinical trial 

esigns to ensure we can continue to optimize CF care in future 

116–118] . 
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