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Abstract
For examining the intricate biological processes concerned with colorectal cancer (CRC),

a systems biology approach integrating several biological components and other influenc-

ing factors is essential to understand. We performed a comprehensive system level analy-

sis for CRC which assisted in unravelling crucial network components and many regulatory

elements through a coordinated view. Using this integrative approach, the perceptive of

complexity hidden in a biological phenomenon is extensively simplified. The microarray

analyses facilitated differential expression of 631 significant genes employed in the progres-

sion of disease and supplied interesting associated up and down regulated genes like jun,
fos andmapk1. The transcriptional regulation of these genes was deliberated widely by

examining transcription factors such as hnf4, nr2f1, znf219 and dr1 which directly influence

the expression. Further, interactions of these genes/proteins were evaluated and crucial

network motifs were detected to associate with the pathophysiology of CRC. The available

standard statistical parameters such as z-score, p-value and significance profile were

explored for the identification of key signatures from CRC pathway whereas a few novel

parameters representing over-represented structures were also designed in the study. The

applied approach revealed 5 key genes i.e. kras, araf, pik3r5, ralgds and akt3 via our novel

designed parameters illustrating high statistical significance. These novel parameters can

assist in scrutinizing candidate markers for diseases having known biological pathways.

Further, investigating and targeting these proposed genes for experimental validations,

instead being spellbound by the complicated pathway will certainly endow valuable insight

in a well-timed systematic understanding of CRC.
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Introduction
Colorectal cancer (CRC) influences millions of people worldwide and exists as the most com-
monly diagnosed cancers after lung and breast cancer [1]. CRC contributes to second largest
cause of death in males and third highest in females, also prevalence of the disorder is observed
mostly in the economically developed regions [2, 3]probably due to lifestyle and dietary issues.
The incidence and mortality rate for CRC is approximately 35–40 percent higher in men as
compared to women [4]. As per the cancer status in United States for 2013, approximately
102,480 peoplesuffered and 50,830 died of CRC which governs the severity of disease [5]. CRC
mainly manifests as abnormal growth of cells occurring at the lining of colon or rectum and
the disease progression takes place by replacing a non-cancerous polyp to cancerous tumour.
Previous reports [6–8] suggest a variety of factors linked to the disease pattern such as inflam-
matory bowel disease, polyps, obesity, smoking and genetic history of cancer. The disease is
also characterized by rectal bleeding, obstruction, abdominal pain, lack of appetite and subse-
quent weight loss [7, 9]. None of the symptoms independently assures the incidence of CRC
and often there are no observable symptoms in early CRC. Therefore, appropriate screening
for the disease is required [10] to facilitate early detection and timely removal of polyps [11].

In order to identify biomarkers for early detection, the cancer pathway and disease progres-
sion has to be critically examined. Although, in recent decades, many studies have conceded on
screening, diagnosis and treatment for CRC [12, 13] but still the genetic and initiation factors
accountable for the disease are unknown [14]. There is a huge lack in understanding of mecha-
nisms underlying the progression of CRC from non-cancerous polyp to a tumor and their
responsible pathways [15]. Studies illustrate that CRC is mainly associated with chromosome
instability (CIN) [16] and microsatellite instability (MSI) pathways [17, 18].Genetic aberra-
tions in genes involved in CIN pathway leads to the activation of oncogenes like kras and inac-
tivate certain tumor suppressor genes such as smad4, p53, smad2, bax and apc [19]. Moreover,
previous reports [20] and a database on DNA repair genetic association studies [21] suggests
that mutations in DNA repair genes, i.e.mlh1,msh2,msh3 andmsh6of MSI pathway contrib-
utes to hereditary non-polyposis colorectal cancer (HNPCC) and CRC. Therefore, investigat-
ing important up and down regulated genes may deduce markers for CRC as observed in other
studies for different diseases [22]. Further, a comprehensive perceptive on the genes and related
pathways is required for designing specific and effective therapies for CRC [23].

There is already a massive accumulation of gene expression data for CRC in public domains
and several computational techniques have been applied for its analysis. But, the ultimate chal-
lenge lies in extracting vital biological information or markers from this amalgamation of data
[24]. The DNA microarray technique not only provides a valuable measure for estimating
expression of thousand genes at once but also offers vital molecular clues regarding mecha-
nisms underlying the pathophysiology of disease [22, 25]. Subsequently, the strategy we pur-
sued includes identification of biologically significant genes and elucidation of key patterns or
motifs formed by these candidate genes which governs the functional impact of various biolog-
ical processes in CRC. Each identified gene was then annotated focussing on the categorization
of genes by means of biological processes, molecular functions and cellular components for
their association and involvement in CRC [26].

Additionally, an attempt was made to identify vital network components (network motifs)
occurring in elevated frequencies than randomly expected in a pathway. These network motifs
provide statistically overrepresented sub-structures (sub-graphs) in a network and are recog-
nized as simple building blocks of a complicated network. These network motifs play a central
role in recognition and analysis of specific patterns in biological networks and yield significant
insights in better understanding of complex biological processes involved in intricate human
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diseases [27]. We applied computational and statistical criterion for the efficient detection of
biological network motifs in CRC and their functional evaluation measures were utilized to
reduce the complexity for recognizing best appropriate candidates in the proposed study.

The main perspective of our study was system-component analyses for CRC with several
biological components comprising the expression of genes involved, their annotations, and
analyses in form of complex network motifs governing vital functions. The foremost objective
was to manually curate and annotate all genes, network components, processes, molecular
functions and pathways involved in CRC and then facilitate identification of a few key genes
that may serve as vital markers for CRC. On the whole, an integrative approach was practised
that includes various aspects of molecular data, biomarkers, networks and pathways for uncov-
ering the intricacy in CRC pathway and then confining the search to only a few genes or net-
work components that may answer diverse biological queries concerning CRC. Also, such in
silico approach could be applied to other diseases in quest for identifying biomarkers and the
study will not only assist experimental biologists, geneticists and other scientific community to
identify novel biomarkers for diseases but also has implications for the pharmaceutical industry
to target important molecules and design appropriate target-based drugs for medications.

Materials and Methods
An in silico approach with different forms of raw data, computational tools, software and data-
bases was applied for extensive understanding of mechanisms involved in CRC. A myriad of
in-house perl scripts and statistical techniques were employed for characterization of biomark-
ers for the disease. Entire workflow representing different parameters and biological aspects
considered for the study is presented in Fig 1.

Biological data
The DNA microarray analysis was performed on raw data retrieved from Gene Expression
Omnibus (GEO) [28] for the early onset of CRC [29]. The main priority for studying gene
expression at an early stage was to identify biomarkers for early detection of disease which con-
sequently could then be aptly managed. The ultimate goal of the study was to detect additional
differentially expressed genes in early onset CRC since the one’s involved in familial adenoma-
tous polyposis (FAP) [30] and HNPCC [31, 32] are already well illustrated. The extracted
dataset was then analyzed using GeneChip U133-Plus 2.0 Array. Furthermore, the network
motifs for CRC were detected by retrieving biological pathways from KEGG [33], Reactome
[34], BioGRID [35] and other pathway databases [36].

Pre-processing of data
First and the foremost step for DNAmicroarray analysis is pre-processing and normalization
of raw data which then is subjected to further analysis. This process minimizes the noise result-
ing from technical variations and subsequently permits data to be compared for determining
the actual biological changes. The implementation of data normalization assists in stabilizing
unequal quantities of starting RNA, differences in labelling or detection efficiencies between
the used fluorescent dyes and systematic biases in expression levels. Hence, the data congre-
gated from each available CRC disease chip has been normalized using the robust multi average
analysis (RMA) algorithm [37] fromMicroarray Data Analysis System (MIDAS) in TM4
microarray software suite.
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Identification of differentially expressed genes
Subsequent to microarray experiments, recognizing genes with altered expression profiles in
diseased state is an imperative and tedious task to perform. The multiple hypotheses testing
problem is generally observed due to the presence of a few conditions, many observations and
thousands of hypotheses to be explicitly tested. To overcome this issue, an appropriate statistic
has been chosen for testing each gene in the dataset and then computing its corresponding p-
value. An adjustment process is applied to the raw p-values in order to avoid errors from
hypotheses multiplicity [38] and finally a QQ plot is generated. This plot represents the values
of observed test statistics against the expected test statistics under a combination of null
hypotheses. Ultimately, the expressed genes for control and diseased states were considered for
significance analysis of microarrays (SAM) and volcano plot analyses to measure the substan-
tial gap leading to the identification of crucial regulatory genes [39, 40].

Cluster analysis for co-expressed genes
The clustering of differentially expressed genes was characterized using hierarchical clustering
algorithm. Genes sharing similar expression profiles and other biological features were clus-
tered together and vice-versa. In earlier studies, this kind of classification is achieved for diverse
forms of cancers but for CRC, a poor classification has been observed [41]. Moreover, hierar-
chical clustering was performed to deduce the significance of differential expression selection
step in classifying the co-regulated genes. Further, for the identification of important patterns
and components in multi-dimensional microarray data, principal component analysis (PCA)
was accomplished [42]. This technique facilitated the detection of major principal components
and aided in analyzing and visualizing genes with similar expression profiles.

Fig 1. Themethodology applied for recognizing biomarkers in colorectal cancer. Study initiated with the characterization of differentially expressed
genes in colorectal cancer dataset and their transcriptional regulation. Important interactions and network patterns were identified from the CRC pathway and
eventually functional enrichment was executed for key players in the disease progression.

doi:10.1371/journal.pone.0133901.g001
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Transcriptional regulation of CRC genes
Since, gene regulation plays crucial role at the level of transcription by employing a variety of
transcription factors (TFs) and their target genes; a broad knowledge of transcriptional regulatory
elements (REs) is necessary for thorough understanding of gene regulation and underlying com-
plex regulatory processes. Available, in silico tools such as DiRE (Distant Regulatory Elements)
[43] and oPOSSUM [44] were surveyed for the identification of REs among these differentially
expressed genes. Both the toolsassist in identification of TFs where DiRE has a unique feature of
recognizing REs outside of proximal promoter regions by considering full gene locus. The REs
including proximal promoters and distant REs like enhancers, repressors and silencers were
detected for a broader perspective on the concerned regulatory process of CRC.

Functional enrichment for differentially expressed genes
The enrichment analysis focused on manual curation and annotation via WEB-based Gene
SeT AnaLysis Toolkit (WebGestalt) [45] and Gorilla tools. The former tool comprises of geno-
mics, proteomics and large-scale genetic studies generated data for functional annotation of
differentially expressed and co-expressed datasets. This toolkit integrates information from
several public resources and often provides accurate and sensitive results, aiding in identifica-
tion of biological processes, their cellular compartments and molecular functions associated
with the corresponding genes. Whereas, GOrilla tool [46] makes computation on the basis of
exact p-values without simulation analyses for detecting the functional characteristics of the
gene sets. Both the tools make use of same statistical approach i.e. hyper-geometric distribution
(HGD) for significance testing and functional enrichment of genes whereas WebGestalt fur-
thermore exploits Fisher’s exact test for the annotation analyses. Mathematically, for HGD if
there are ‘N’ number of genes in a group where ‘A’ genes are related to a particular GO term
and a sample of ‘n’ genes from ‘N’ is taken, then the probability of acquiring ‘a’ genes associated
with ‘a’ or more GO terms in a sample ‘n’ is deliberated using HGD:

p� value ¼ 1�
Xa�1

i¼0

f HGði;N;A; nÞ ¼ 1�
Xa�1

i¼0

A

i

 !
N � A

n� i

 !
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GOrilla displays the statistically significant and enriched genes at the top of ranked gene list
and uses a variant of regular HGD named mHG (minimum hypergeometric) for the enrich-
ment analyses of ranked gene lists [47]. In many cases, a fixed threshold (n) doesn’t work and
ranking of all the elements (genes) is required for finding the value of ‘n’ that further minimizes
HGD. For instance, consider a ranked gene list say g1,. . ., gN in place of a target set, and defined
label vector: λ = λ1,. . .,λN2 {0, 1}N as indicated by the association of ranked genes to a given
GO term, λi = 1 if gi is associated with the term [47]. Then, mHG score is given by:

mHGðlÞ ¼ min
1�n�N

ðHGTðN;K; n; knðlÞÞÞ

Where

knðlÞ ¼
Xn
i¼1

li

Here, the cut-off between top rated genes and rest of the genes is calibrated in a precise
manner to maximize the gene enrichment analyses.
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Detection of crucial patterns from CRC pathway
Examination of vital network motifs, an important aspect to recognize the modularity and to
solve large-scale structure of complicated biological networks was facilitated from complex
CRC disease pathway. A variety of motif detection tools like MFinder [48], MAVisto [49] and
FANMOD [50] were employed to identify motifs; where all these tools implement different
algorithms. MFinder uses a semi-dynamic programming algorithm in order to reduce the run
time in detecting network motifs and performs full enumeration of the sub-graphs whereas
MAVisto tool employs a flexible algorithm for the identification of network motifs and also
includes an advanced force-directed layout algorithm [51] for its analyses. Moreover, FAN-
MOD runs a much sophisticated algorithm named RAND-ESU [52] that works on both
directed as well as undirected networks for specification and sampling of sub-graphs. This
algorithm performs better than its counter algorithms [48] for the identification of network
motifs from complex biological networks.

The statistical implication of these generated motifs was then evaluated using available
standard constraints such as z-scores, p-values and significance profile (SP). The p-value and z-
score for each motif was estimated (via Fanmod’s output) and those having z-score>2 and p-
value<0.05 were classified as significant motifs and are demonstrated in S1 Table. Further, the
SP furnishes normalized z-score values for a particular network motif (mi) which is given by:

SPðmiÞ ¼
ZðmiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ZðmiÞ2

q

Where Z(mi) corresponds to the z-score value for each network motif.
All the generated 4–8 node sub-graphs with unique network motif IDs were then extensively

analysed for examining the genes and their complex interactions in CRC using our novel
designed parameters such as ‘FNi’, ‘FTNi’ and ‘FTi’ as represented in Table 1. The Network
Motif Image ID column presents the network motif IDs as the adjacency matrix created for
each interaction where 0 and 1 correspond to no connection and connection among nodes
respectively.

Here, ‘FNi’ corresponds to the number of genes present in a given network motif ID; ‘FTNi’

is the sum of frequencies for all the genes occurring in a given network motif ID and ‘FTi’ is
defined as the ratio of number of genes for a particular network motif ID and the sum of fre-
quencies for all genes in a given network motif. For a given network motif ID say ‘ni’, where
i = 1,2,3,. . ..,n; ‘FTi’ is given by:

FTi ¼
FNi

FTNi

Each ‘FTi’ value for a particular network motif ID provides the magnitude of all genes
involved in a particular network motif. Thus, the applied methodology comprises of both top-
down and bottom-up approaches for detecting the key players in CRC pathway. Using the top-
down approach, first the entire CRC pathway was partitioned into smaller sub-graphs with
small functional modules and then the involved nodes were identified and annotated. On the
other hand, a bottom-up approach was applied for classifying the interactions and relation-
ships among the nodes. Ultimately, outcome from both the approaches was incorporated to
identify key nodes in CRC pathway in order to deduce the crucial genes employed in disease.
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Table 1. Values of the designed parameters for each particular network motif in order to deduce crucial network components.

Network Motif Image ID Abbreviations FTNi FNi FTi

'0000001000011000' 4a 76 25 0.329

'0000000000011100' 4b 48 16 0.333

'0000000000001110' 4c 16 16 1

'0000010000010000000101000' 5a 30 8 0.267

'0000000000000010000111000' 5b 15 6 0.4

'0000000000000100100010100' 5c 60 14 0.233

'000000000000000010000001000001110000' 6a 36 8 0.222

'000000000000000000000010001000110100' 6b 36 14 0.389

'000000000000010000000010100000001100' 6c 60 12 0.2

'000000000000000100000010000001110000' 6d 36 14 0.389

'000000000000000000000010011000100100' 6e 36 8 0.222

'000000100000000010000001010000010000' 6f 18 8 0.444

'000000100000010000000001010000000010' 6g 18 8 0.444

'000000000000000000000001000001111000' 6h 6 6 1

'0000000000000000000000000100000001000100001101000' 7a 49 18 0.367

'0000000000000000000000000000000001000110001100100' 7b 21 8 0.381

'0000000000000000010000000010000000100000011100000' 7c 21 8 0.381

'0000000000000000001000000010000000100000011100000' 7d 21 8 0.381

'0000000100000000000100000001010000001000000000100' 7e 21 9 0.429

'0000000100000001000000000010010000000000010000100' 7f 21 9 0.429

'0000000000000000000000000000000000100011001110000' 7g 14 8 0.571

'0000000000000000000000000001000001000010001110000' 7h 14 14 1

'0000000000000000000000000001000000100010001110000' 7i 14 8 0.571

'0000000000000000001000000010100000001000000011000' 7j 49 12 0.245

'0000000000000000010000000100010000000001001010000' 7k 42 10 0.238

'0000000000000000000000010000000001011000000001100' 7l 42 10 0.238

'0000000000000000001000100000000001010000000011000' 7m 56 13 0.232

'0000000000000000000000010000000001001000001001100' 7n 70 12 0.171

'0000000000000000010000000100000001001000001010000' 7o 50 13 0.26

'0000000000000000000000000000001000000010000100000110000010000100' 8a 48 10 0.208

'0000000000000000000000000000010000000010001000000100000010011000' 8b 56 12 0.214

'0000000000000000000000000000001010000000000010000110000000010100' 8c 48 12 0.25

'0000000000000000000000000000000000010000000000100110000010001100' 8d 48 10 0.208

'0000000000000000000000000010000000000010000010001100000000010100' 8e 48 11 0.229

'0000000000000000000000000000001000000001000100000110000010000100' 8f 48 10 0.208

'0000000000000000000100000000100001000000000000100000000110100000' 8g 48 11 0.229

'0000000000000000000000000000010000100000000000100100000010011000' 8h 64 13 0.203

'0000000000000000000100000000100000000100000000100100000010100000' 8i 48 11 0.229

'0000000000000000000100000000100001000000000000100000100010100000' 8j 48 11 0.229

'0000000000000000000000000000001000100000010000001000000000011100' 8k 40 12 0.3

'0000000000000000000000000010000000000010100000000100010000011000' 8l 32 11 0.344

'0000000000000000000000000000100000000100000000100010000011010000' 8m 29 13 0.448

'0000000000000000000000000000100000000100001000000000000111010000' 8n 24 10 0.417

'0000000000000000000010000000001000000100000000010000000111000000' 8o 24 9 0.375

'0000000010000000010000000000010001000000000000100000000100001000' 8p 24 10 0.417

'0000000000000000000010000000001000010000000000010000000111000000' 8q 24 9 0.375

'0000000000000000000010000000001000000100000100000000000111000000' 8r 24 9 0.375

(Continued)
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Results
In this study, a comprehensive analysis for differentially expressed genes, TFs, interacting pro-
teins, putative network motifs and their implications in diverse pathways related to CRC has
been extensively carried out. Selected CRC dataset for DNA microarray was considered for the
process of normalization for removal of errors and noise from the dataset as depicted in Fig 2.
The figure illustrates the box plot for all four Affymetrix chips before and after normalization
using quantile normalization and clearly demonstrates the impact of normalization step by rec-
tifying the signal of genes across all chips.

The microarray dataset was examined for the identification of specific patterns or markers
that may differentiate normal vs. diseased state for signifying the susceptibility and facilitate
early diagnosis of CRC. After preliminary pre-processing and manual inspection based on the
proportional analysis, final set subjected to SAM composed of only the robust candidates (see
S2 Table). SAM revealed a total of 631 genes (Fig 3A) from the microarray dataset which were
differentially expressed among the tested conditions since data points lie aside the diagonal line
in a substantial manner. The volcano plot between control and the diseased state for CRC
clearly elucidated the difference between genes that were differentially expressed in the two

Table 1. (Continued)

Network Motif Image ID Abbreviations FTNi FNi FTi

'0000000000000000000000000000100000000100001000000000010011010000' 8s 24 10 0.417

'0000000010000000000010000000000101000000010000000000010000000010' 8t 24 10 0.417

'0000000000000000000100000000100000000100010000000100000010100000' 8u 16 9 0.563

'0000000000000000000100000100000000000001010000000000100010100000' 8v 16 9 0.563

'0000000000000000000000000000000000000001000100000000110011100000' 8w 16 10 0.625

'0000000000000000000000000000000000000000000000100011100011000100' 8x 8 8 1

'0000000000000000000000000000010000000010000000010000000111100000' 8y 8 8 1

'0000000000000000000000000000100000000010000000010000000111100000' 8z 8 8 1

doi:10.1371/journal.pone.0133901.t001

Fig 2. Pre-processing and normalization of DNAmicroarray data. 2a shows the distribution of microarray files before normalization and 2b explains the
uniform distribution obtained after implementing normalization i.e. removal of noise from data.

doi:10.1371/journal.pone.0133901.g002
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groups as shown in Fig 3B. Here, the spots represented in black are the genes showing normal
expression whereas the red ones with signal log ratio (SLR)>2 are over expressed and those
with SLR<-2 are under expressed genes in the diseased state. Moreover, SOM significant clus-
ters are depicted in S1 Fig and PCA (well described in S2 and S3 Figs) revealed the projections
for 3 different conditions, i.e. over-expressed genes, under-expressed genes and genes showing
normal expression.

After characterizing the differential expression pattern of crucial genes implicated in early
CRC progression, role of RE and transcriptional regulation was essential to recognize. We
identified a total of 108 TFs in the gene expression dataset for CRC (S3 Table), represented in
descending order of their occurrence in the frequency column. Additionally, importance of
these TFs were estimated using an optimization procedure that considers a weight ‘wi’ for each
ithTF, as a measure of its association with the input gene set and further calculates the impor-
tance value as the product of TF occurrence (frequency) and TF weight. We also classified TFs
(see S4 Table) found in each differentially expressed gene from CRC dataset, providing total
number of TFs for each gene, locus, their names, position and their associated types. Moreover,
families for all the important TFs have been recognized and illustrated in S5 Table. We also
compiled a list for top 10 TFs implicated in genes responsible for differential expression in
early CRC with their frequencies of occurrence, importance and other essential details as
depicted in Table 2. A few experimental validations complementing to the association of these
transcription factors in CRC are also referred in the table.

The majority of identified TFs belonged to zinc-coordinating class and hormone-nuclear
receptor family of transcriptional regulatory system. Hepatocyte nuclear factor 4 (hnf4),
nuclear receptor subfamily 2 group F member 1 (nr2f1) and down-regulator of transcription
1 (dr1) are the most recurrent TFs regulating genes in early CRC dataset and are the members
of same class as well as family of TFs. All these TFs either bind directly or in the form of a com-
plex to control the rate of transcription. This kind of information is primarily required to
understand the gene regulation in a comprehensive manner. It is anticipated that for the

Fig 3. Identification of differential expression. Significance analysis of microarrays (SAM) and volcano plot were generated for detecting the differentially
expressed genes in the early colorectal cancer dataset. In SAM, 631 significant genes were identified for their over or under expression in the diseased state
whereas the volcano plot evidently elucidates the differentially expressed genes with red spots having signal log ratio (SLR)>2 or SLR<2.

doi:10.1371/journal.pone.0133901.g003
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regulation of genes involved in CRC, manipulation of regulatory region of genes specifically for
the identified TFs such as hnf4, nr2f1, dr1 and their classes could provide biological insight to
experimental biologists and geneticists. Further, an attempt was made to manually curate and
annotate the genes for their biological roles, functions, cellular components and their implica-
tion in diverse complex biological pathways. Out of 631 differentially expressed genes, func-
tional enrichment for 509 genes was aggravated. Maximum genes had their roles in biological
regulation, protein binding and were present at membranes of the cell (Fig 4). This particular
section of the manuscript provides an insight to diverse mechanisms and pathways elucidated
by the regulation of genes involved in CRC pathway.

After acquiring the differential expression pattern, we intended to identify chief sub-net-
works configured by these genes; facilitating annotation of intricate biological network impli-
cated in CRC. Based on the rationale, detection of crucial network motifs and network patterns
was made; providing essential clues concerning the hierarchical decomposition of CRC net-
work. Here the patterns being referred are small connected sub-networks occurring in signifi-
cantly higher frequencies in a network than would be expected for a given random network.
These patterns or motifs are considerably overrepresented and characterize certain essential
functional aspects associated with CRC related pathways and its progression. Several motifs
ranging from 4–8 sub-graph nodes were generated and annotated for the CRC pathway which
is available as supplementary data (available at: http://www.bioinfoindia.org/CRCData), and a
few have been depicted in Fig 5. The applied bottom-up approach is clearly demonstrated
in Fig 6 starting from 4-node sub-graphs and then proceeding one by one till 8-node sub-
graphs were generated; all the interacting genes were annotated along with their functional
relationships.

Table 2. Identified major transcription factors in early colorectal cancer progression.

Transcription
Factor

Frequency Importance JASPAR ID1 Class Family Pubmed IDs/ Experimental
Databases2

HNF4 31.80% 0.31802 MA0114.1 Zinc-
coordinating

Hormone-nuclear
Receptor

19048623, 22731903, 22308320

NR2F1 19.43% 0.50044 MA0017.1 Zinc-
coordinating

Hormone-nuclear
Receptor

The Human Protein Atlas

DR1 17.31% 0.04112 - Zinc-
coordinating

Hormone-nuclear
Receptor

The Human Protein Atlas, 10690519,
19251712

PPARG 14.49% 0.03622 MA0066.1 Zinc-
coordinating

Hormone-nuclear
Receptor

19186181, 16489531

HNF1 14.13% 0.36064 MA0046.1,
MA0153.1

Helix-Turn-
Helix

Homeo 12730871, 20096102

HNF4_DR1 13.78% 0.16882 - Zinc-
coordinating

Hormone-nuclear
Receptor

22383578, 18180275

PPAR_DR1 13.43% 0.13428 - Zinc-
coordinating

Hormone-nuclear
Receptor

11840453,25961905

HNF4ALPHA 12.01% 0.29848 MA0114.1 Zinc-
coordinating

Hormone-nuclear
Receptor

25961905, The Human Protein Atlas,
22731903

PAX4 12.01% 0.18322 MA0068.1 Helix-Turn-
Helix

Homeo 12970747, The Human Protein Atlas,
19395656

ER 10.60% 0.08216 MA0112.2,
MA0258.1

Zinc-
coordinating

Hormone-nuclear
Receptor

20663982

1The JASPAR IDs correspond to the transcription factors from JASPAR database
2The Pubmed IDs/ Experimental Databases column contains the information for literature references and databases created on experimentally validated

data for their association with colorectal cancer.

doi:10.1371/journal.pone.0133901.t002
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The network motifs thus obtained from CRC pathway contained 4-chain motifs, single
input module (SIM), multiple input module (MIM), bifan motifs and other important biologi-
cal signatures that were supported by significant z-scores and p-values for their statistical rele-
vance. These network motifs were further subjected to annotation and disease-specific analyses
since, they have important functions to execute; as in case of SIM motif, several genes are con-
trolled by a single master gene and the master gene is known to be autoregulatory. Whereas, in

Fig 4. Functional enrichment and annotation analyses. The 631 differentially expressed genes were subjected to manual curation and annotation
analyses for their involvement in diverse biological pathways, molecular functions and cellular components.

doi:10.1371/journal.pone.0133901.g004

Fig 5. Identified network motifs from colorectal cancer pathway. Some 4 and 5 node sub-graphs have been symbolized with gene names and their
interactions if any. If the given interaction in the pathway was found to be missing, it is depicted as unknown (black coloured arrow).

doi:10.1371/journal.pone.0133901.g005
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MIMmotif (a generalization of SIM), a single gene is being controlled by multiple genes [22].
Other regular 4-node motifs confirmed the presence of diamond, biparallel and bifan motifs
(often built by two regulatory and two regulated genes). Further, these nodes were annotated
for identifying genes involved in these patterns for their biological significance using in house
Perl scripts. Similar type of motif graphs were generated for sub-networks of other network
sizes and annotation of these graphs were based on statistical criterion via mean-frequencies,
standard deviation, z-scores and p-values.

The calculated SP was then superlatively plotted on a graph against the different motifs as
illustrated in Fig 7. The motif SP graph clearly depicts that as the number of nodes in a motif
increase, the complexity increases and further the trend declines representing smaller normal-
ized z-score values towards large motif sizes. Based upon this SP profile analysis we suggest
that network motifs with smaller node size (3 or 4) are more functionally allied towards their
role in pathways while motifs of larger size (> = 5 nodes) are less functional (Fig 7). It is
believed that the observed trend might be similar in many such biological networks if analyzed.

The novel deliberated parameters revealed that the lower ‘FTi’ value proves to be more sta-
tistically significant. As it signifies greater involvement of a few genes that explains complex
interactions among different nodes in a given motif. Further, the motif showing least ‘FTi’

value i.e. 0.171 for motif ID ‘7n’ was chosen for identifying key players in the given motif. This
information was attained by mapping all genes from the complex CRC pathway onto the net-
work motifs and then frequency of each gene for each network motif was calculated (see S6
Table). This analysis was performed to understand the involvement of different genes on the
basis of their occurrence (frequency) in each motif. For instance, consider 4a motif in S6 Table
(detail for motif images at http://www.bioinfoindia.org/CRCData), the involvement of pik3r5,
kras and araf genes were found4, 5 and 4 times in the same pattern (motif). Finally, a sum of all
these frequencies for each gene was calculated to comprehend a cumulative impact and in par-
allel the frequencies for all genes in the above mentioned motif (with least ‘FTi’ value) were cal-
culated and presented in Table 3. In general when this approach was applied for 13 DNA
repair associated diseases, the least FTi value was usually reported for smaller motifs having

Fig 6. Bottom-up approach for classifying the network motifs. From the 4 to 8 node sub-graphs, each node has been recognized and annotated in order
to deduce certain vital interactions.

doi:10.1371/journal.pone.0133901.g006
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high SP scores (results unpublished) with exception to results in CRC dataset where least FTi
value is observed in 7-node motif (i.e. 7n). Therefore, our approach of reducing the entire CRC
pathway complexity into smaller sub-graphs and subsequently identifying key players is quite
promising as confirmed from Fig 7.

Discussion
Analyzing complex biological pathway of CRC is a convoluted process and requires an integra-
tive approach for identifying biomarkers for the disease. Thus, the approach we applied not
only performs enrichment analyses but also presents observations from many different meth-
ods, applications and tools existing for gene expression and network data analyses. The current
study intended for identification of vital components in pursuit of reducing the complexity
hidden in intricate CRC pathway and their associated biological processes. Identification of
crucial network motifs will help systems biologists to find key components from whole path-
ways and analyze their behaviour against different experimental conditions. Although genes
involved in MMR system likemlh1,msh2,msh6, pms2 and other genes such as apc andmutyh
have already shown their influence on CRC but still cause and progression of the disease
remains unrequited. Consequently, we made an effort to identify certain other genes that may
potentially impact meticulous understanding of CRC. Many important genes as revealed in
Table 3 like kirsten rat sarcoma viral oncogene homolog (kras), v-raf murine sarcoma 3611
viral oncogene homolog (araf), phosphoinositide-3-kinase, regulatory subunit 5 (pik3r5), ral
guanine nucleotide dissociation stimulator (ralgds) and v-akt murine thymoma viral oncogene
homolog 3 (akt3) were observed to contribute maximum complexity in the CRC pathway.
These genes illustrate higher frequencies and numerous interactions among nodes and are pro-
posed to be vital for CRC disease progression. Here, the CRC pathway complexity has been
reduced to a few key genes that may be explored further for their putative roles in the disease.

Previous reports suggest that the mutational analyses of kras and braf are highly correlated
with the development of colorectal cancer by activating MAP kinase pathway [53]. The braf

Fig 7. Significance profile for all 4–8 node generated sub-graphs based on normalized z-scores. The motif significance profile evidently exemplifies
that when the complexity in CRC pathway increases, the interactions among the nodes and intricacy in recognition of genes amplifies immensely. Lesser the
node size, it becomes easy to annotate the nodes (genes) and their associations with stronger statistical significance (greater normalized z-scores).

doi:10.1371/journal.pone.0133901.g007
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gene, an isoform of araf (suggested from the pathway level analysis) also has its influence on a
number of tumors especially in colorectal and gastric cancer whereas role of araf still remains a
mystery [54]. Although there have been contradictory reports earlier [55] stating that muta-
tions in araf gene may not be associated with pathogenesis of various human cancers. But we
found 97% similarity among the two protein sequences (araf and braf) and the two isoforms
share several domains such as Raf_RBD, Pkinase, SPS1, TyrKc and biological properties
including binding sites; so intending araf as one of the key genes in CRC for its association in
disease may prove vital for understanding cancer genetics.

FBJ murine osteosarcoma viral oncogene homolog (fos) and jun proto-oncogene (jun) with
ample frequencies were identified in network motifs as well as in the differential expression

Table 3. Putative over-represented genes from CRC pathway as indicated by the most recurrent networkmotif.

S.
No.

Genes Gene Details Gene Size Gene
Frequency

Molecular Functions Pubmed IDs1

1 KRAS Kirsten rat sarcoma viral
oncogene homolog

21656 Da,
189 amino
acids

10 GTPase activity, LRR domain binding, protein
binding

19515263,
15069679,
10545700,
19832985

2 ARAF V-raf murine sarcoma
3611 viral oncogene
homolog

67585 Da,
606 amino
acids

10 Protein kinase activity, protein binding, ATP binding,
transferase activity, metal ion binding

20145135

3 PIK3R5 Phosphoinositide-
3-kinase, regulatory
subunit 5

97348 Da,
880 amino
acids

10 G-protein beta/gamma-subunit complex binding,
1-phosphatidylinositol-3-kinase regulator activity

-

4 RALGDS Ral guanine nucleotide
dissociation stimulator

100607 Da,
914 amino
acids

10 small GTPase regulator activity, protein binding,
guanyl-nucleotide exchange factor activity

15766656,
17568777

5 AKT3 V-akt murine thymoma
viral oncogene homolog 3

55775 Da,
479 amino
acids

8 protein kinase activity, ATP binding, protein binding,
transferase activity

18813315

6 RHOA Ras homolog family
member A

21768 Da,
193 amino
acids

6 GTPase activity, protein binding, myosin binding,
protein domain specific binding

19374769,
11844789,
11953197,
19499974

7 MAP2K1 Mitogen-activated protein
kinase kinase 1

43439 Da,
393 amino
acids

6 protein kinase activity, ATP binding, protein binding,
transferase activity, RAS GTPase binding

17667937

8 MAPK1 Mitogen-activated protein
kinase 1

41390 Da,
360 amino
acids

2 phosphotyrosine binding, DNA binding, protein
kinase activity, transferase activity, ATP binding,
transcription factor binding

9690379,
11992399

9 GSK3B Glycogen synthase
kinase 3 beta

46744 Da,
420 amino
acids

2 protein kinase activity, beta-catenin binding, tau
protein binding, transferase activity, p53 binding, NF-
kappaB binding

17640304

10 BAD BCL2-associated agonist
of cell death

18392 Da,
168 amino
acids

2 protein binding, phospholipid binding, protein
heterodimerization activity, protein kinase binding,
protein phosphatase binding

17583570,
17393317

11 CASP9 Caspase 9, apoptosis-
related cysteine
peptidase

46281 Da,
416 amino
acids

2 cysteine-type endopeptidase activity, enzyme
activator activity, protein binding, peptidase activity,
SH3 domain binding, protein kinase binding

11912124,
23303631

12 MAPK8 Mitogen-activated protein
kinase 8

48296 Da,
427 amino
acids

2 catalytic activity, JUN kinase activity, MAP kinase
activity, protein kinase activity, ATP binding,
phosphotransferase activity,transferase activity,
histone deacetylase binding

19352384,
12819185

1Pubmed IDs correspond to the published literature illustrating role of these genes in colorectal cancer, whereas for some genes, experimental evidences

were not found and a few depicted in bold explains their occurrence in colon cancer and further their role in colorectal cancer may be confirmed.

doi:10.1371/journal.pone.0133901.t003
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dataset depicting their putative roles in forming the convoluted CRC pathway (Figs 5 and 6).
As deciphered in the Figures, these genes demonstrate vital interactions among themselves and
other genes focussing on activating certain genes, phosphorylating and affecting expression of
genes. This study reveals some important markers and a few novel genes and its variants that
are believed to associate with CRC and its progression. The 5 genes reported in the study
namely, kras, araf, pik3r5, ralgds and akt3 along with 2 other genes jun and fos can be studied
broadly for its association in CRC since, the former genes illustrated complex associations and
latter signified high differential expression in diseased state. Moreover, the anticipated genes,
jun, fos,mapk1and their REs znf219, hnf4, pparg and dr1could be utilized further to control the
transcriptional regulation and other regulatory actions executed by these genes. All major
responsible candidates were subjected to functional enrichment for their classification in bio-
logical processes, pathways and molecular functions they perform. The earlier studies were
based on the differential gene expression obtained in early colorectal cancer dataset whereas
our approach not only signifies the importance of differentially expressed genes but also helps
understand the interactions among these genes/proteins at pathway level. The previous
approach revealed seven genes, cyr61, uchl1, fos, fosb, egr1, vip, and krt24 which were signifi-
cantly over expressed in diseased as compared to normal. In our study, we propose 5 additional
genes kras, araf, pik3r5, ralgds and akt3 along with jun and fos (also stated by earlier study)
which could be explored further for their role in CRC progression.

Conclusion
The study proposes novel parameters which depicts the dependence of an entire system on a
few key genes, proteins and metabolites for examining the statistical significance. Hence, the
5 genes proposed from comprehensive theoretical and computational analysis implicated in
CRC may serve as imperative therapeutic targets for CRC. Proposed set of putative TFs will
also assist experimental biologists and geneticists to manipulate regulatory processes associated
with the genes. There is an imperative need to apply this approach on other perilous diseases as
well to identify crucial network components and biomarkers. It is believed that besides key
genes proposed in this study, we provide novel methodology to analyze small components of
large and complex biological networks. The identified genes from early progression dataset and
network analyses for CRC may be explored further and experimentally tested to reveal crucial
insights in understanding the disease in an extensive mode.

Supporting Information
S1 Fig. The Self Organizing Map for differentially expressed dataset in colorectal cancer.
The darker shades of orange explain clusters having similar expression profiles which then
vary to yellow and white for clusters having larger deviations among them.
(TIF)

S2 Fig. Sample representations through PCA for control and diseases states for the.cel files
of experiments. Clusters represent various conditions. Principal components 1 and 2 are being
related through dimensions 1 and 2 respectively.
(TIF)

S3 Fig. Sample representations through PCA for control and diseases states for the.cel files
of experiments. Clusters represent various conditions. Principal components 1 and 3 are being
related through dimensions 1 and 3 respectively.
(TIF)
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