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ABSTRACT Genome analysis of Bacillus safensis RP10, a strain from the soil of Ata-
cama Desert in northern Chile, reflects a bacterium adapted to live in soil con-
taining high levels of heavy metals, high salt conditions, and low carbon and en-
ergy sources.

The Atacama Desert of Chile is the driest desert in the world (1, 2) and has soils
naturally enriched in heavy metals and salts, which affects local agricultural activ-

ities (3). These soils also harbor species of the genus Bacillus (4, 5). This genus is adapted
to live in many different environments (6, 7), and it has been used for biocontrol of
agricultural plagues (8), for phytoremediation (9, 10), and as a probiotic (11). With the
aim of understanding how Bacillus species have adapted to conditions in the Atacama
Desert, we isolated Bacillus strains by mixing 1 g of soil with 9 ml of NaCl 0.8% and
incubating at 50°C for 1 h. The solution was decanted, and 1 ml of the supernatant was
spread on Luria broth (LB) agar and incubated at 37°C for 4 days under aerobic
conditions. One of the colonies recovered was named RP10, and its genome was
sequenced. The genomic DNA was purified using a QuickExtract bacterial DNA extrac-
tion kit (Epibio), and the library was constructed using a Nextera XT kit (Illumina).
Whole-genome shotgun sequencing was performed using 2 � 250- bp (paired-end)
reads on an Illumina MiSeq platform. A total of 14.2 million reads was obtained. Reads
were filtered for a Phred quality score of at least 20 and assembled using the A5
pipeline (2015 Linux, default parameters) (12). Open reading frame prediction and
annotation were performed using Prokka software version 1.11 (13).

Bacillus species identification was achieved by using the JSpeciesWS server online
with BLAST (14) average nucleotide identity (ANIb) and MUMmer average nucleotide
identity (ANIm) analysis (15–17). The RP10 strain was identified as a member of the
species Bacillus safensis, and the highest identities were with B. safensis FO-36b (16S
rRNA, 99.2%; ANIb, 98.83%; ANIm, 99.07%) and B. safensis JPL-MERTA-8-2 (ANIb, 98.7%;
ANIm, 99.00%). Both strains were isolated from clean rooms at the Jet Propulsion
Laboratory at NASA (Pasadena, CA). (18–19). A genome comparison between these
three strains by Mauve software (20) and the Rapid Annotation using Subsystem
Technology (RAST)-National Microbial Pathogen Database Resource (NMPDR) server
with SEED view indicated that the RP10 genome contained an island enriched in
phage-related genes (60 kb), an arsenic resistance operon, and other uncharacterized
metabolic operons not found in the other two genomes.

The draft genome of Bacillus safensis RP10 consists of 3,813,379 bp distributed in 102
contigs, with an average GC content of 41.7%. The draft genome comprises 75 tRNAs
and 20 T box leader sequences that are probably involved in a riboswitch mechanism
described for Gram-positive bacteria (21). The RAST-NMPDR server with SEED view
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indicates that this strain carries genes and operons for resistance to arsenic (arsRRBC),
lead (epsABCDEFFHIKLMN and cadA), copper (copZA), and manganese (mntP, mnH,
and mntABC) and an operon with potential antimicrobial activity and 34% identity with
the bacteriocin operon AS-48 of Enterococcus faecalis. Finally, the genome encodes
diverse capabilities for synthesizing several vitamins, siderophores, and aromatic com-
pounds, including tryptophan (trpEDCFBA) and several multidrug efflux pumps,
which are potentially associated with the ability to survive under saline soil conditions
with a low content of energy and carbon sources.

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number MKXN00000000 with contigs under
accession numbers MKXN01000001 to MKXN01000102, and the raw reads are available
in the SRA under the accession number PRJNA345377.
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