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Abstract: In this work, we introduce and use an innovative approach for adaptive piecewise linear
interval approximation of sensor characteristics, which are differentiable functions. The aim is to
obtain a discreet type of inverse sensor characteristic, with a predefined maximum approximation
error, with minimization of the number of points defining the characteristic, which in turn is related to
the possibilities for using microcontrollers with limited energy and memory resources. In this context,
the results from the study indicate that to overcome the problems arising from the resource constraints
of smart devices, appropriate “lightweight” algorithms are needed that allow efficient connectivity
and intelligent management of the measurement processes. The method has two benefits: first, low-
cost microcontrollers could be used for hardware implementation of the industrial sensor devices;
second, the optimal subdivision of the measurement range reduces the space in the memory of the
microcontroller necessary for storage of the parameters of the linearized characteristic. Although the
discussed computational examples are aimed at building adaptive approximations for temperature
sensors, the algorithm can easily be extended to many other sensor types and can improve the
performance of resource-constrained devices. For prescribed maximum approximation error, the
inverse sensor characteristic is found directly in the linearized form. Further advantages of the
proposed approach are: (i) the maximum error under linearization of the inverse sensor characteristic
at all intervals, except in the general case of the last one, is the same; (ii) the approach allows non-
uniform distribution of maximum approximation error, i.e., different maximum approximation errors
could be assigned to particular intervals; (iii) the approach allows the application to the general type
of differentiable sensor characteristics with piecewise concave/convex properties.

Keywords: approximation; IoT; linearization techniques; piecewise approximation; recourse con-
strained devices; smart sensors

1. Introduction
1.1. Resource-Constrained Smart Sensor Devices—Definitions

In recent years, there has been a strong increase in the interest of scientists in smart,
energy-saving sensor technologies. Many promising developments have been made in
both sensor production and wireless communications. The implementation of complex
sensor systems is already possible due to the high degree of miniaturization of the series
of classical measurement methods. Research in the field of smart sensors and the Internet
of Things (IoT) has been growing. Unfortunately, there is still a lack of clarity in the
terminology used in the specialized literature [1].

1.1.1. Smart Sensors

It is often considered that the term ‘smart sensors’ was created along with the term
IoT. However, IEEE introduced a definition of smart transducers (sensors and actuators) in
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1997 in its IEEE 1451 standard [2,3]. For transducers to be smart, IEEE 1451 requires them to
be supplemented with specific hardware components (memory/processor) and additional
functionality. The Transducer Electronic Data Sheet (TEDS) stored in the memory, contains data
related to identification, calibration, and correction, as well as manufacturing information.

1.1.2. IoT Devices

The emergence of IoT and the advances in the field of microcontrollers and the Internet
allowed the industry to build smart devices integrating complex sensor and communication
functions as well as signal processing algorithms.

The definitions of xconventional sensors, smart sensors according to the IEEE 1451 stan-
dard, and smart IoT sensors can be summarized as follows.

According to NIST, a sensor is a device that transforms physical, chemical, and bi-
ological parameters into electrical signals and converts them into analog and/or digital
data. A smart sensor, according to the IEEE 1451 standard, adds functionality to the
NIST definition: the device can store data for sensor identification, calibration, correction,
manufacturer-related information, and serves as a communication interface or processor.

Additionally, at the next stage, the smart sensor/IoT includes additional computing
resources to process and interpret data and make decisions locally. Thus “smart” functions
are added successively to the conventional sensor [1,4].

1.2. Basic Resources of a Typical Smart Sensor/IoT Device and Their Limitations

Despite the nuances and differences in the definitions and characteristics of various
devices, their main distinguishing feature is their limited resources.

A typical autonomously powered smart sensor/IoT device includes two basic groups
of resources. Hardware resources: data storage, processing, and communication resources, as
well as power supply. Software resources: operating systems, system software, preloaded
applications, and lightweight services. The optimal distribution of these resources is crucial
in most applications [5,6].

1.2.1. Limitations Based on Hardware

(1) Energy and computational constraints:

Usually, IoT devices are battery-powered and typically use low-power processors.
Therefore, computationally extensive algorithms that require significant resources cannot
be transferred directly to such devices.

(2) Memory constraints: IoT devices are made with limited RAM and Flash memory
compared to conventional digital systems (e.g., desktop computers, laptops, etc.).
They usually use mobile lightweight software tools and operating systems. Therefore,
calculation schemes require approaches for efficient memory use. However, the
traditional computational algorithms are not specifically designed for this purpose
and that is why such algorithms cannot be used directly for IoT devices.

1.2.2. Limitations Based on Software

(1) Firmware constraints: The sensor–IoT operating systems that are embedded in the
devices have thin stacks of network protocols.

(2) Flexibility: Remote reprogramming may not always be possible for devices, as the
operating system may not be able to receive and integrate a new code.

1.3. Sensor Characteristics Linearization
1.3.1. Sensor Transfer Functions

A sensor device generates an output signal in response to a specific measurand/stimulus
(input) by activating one or more physical effects (ergo, Seebeck’s effect, piezoresistive ef-
fect, etc.). The output from a sensor is usually an electrical quantity (e.g., voltage, current,
frequency), denoted here by y, while the input, x, is some physical quantity of interest (e.g.,
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temperature, chemical concentration, pressure). If the input–output function is time-invariant,
it is commonly called a static transfer function/characteristic or simply a transfer function.

The sensors are parts of a measuring system. The main function of these systems is to
derive the unknown value x from the measured value y. Thus, the measurement system
shall employ an inverse sensor transfer function x = x(y) to obtain (calculate) the value of
the stimulus x [7].

In the context of the system (control) theory, the dependence y = y(x) represents the
nonlinear scalar-valued characteristic of the sensor while its inverse x = x(y) represents
the inverse transfer function of the sensor (Figure 1a).

Figure 1. Graphical representation of inverse sensor transfer functions: (a) inverse sensor transfer
function x = x(y) and its linear approximation x = ky + x0; (b) inverse sensor transfer function
x = x(y) and its piecewise linear approximation x = PLA(y).

1.3.2. Approaches for Sensor Characteristics Linearization

Linearization is a major step in sensor signal processing. It can be considered as a
nonlinearity correction between the output signal of the sensor and the associated measured
quantity. The nonlinearity of the sensor can be reduced by using linearization schemes or a
linearization algorithm [8]. Linearization methods can be grouped into three main classes:

• analog hardware linearization circuits;
• software-based algorithms for linearization;
• analog–digital mixed approaches [9].

An analog hardware method of linearization is performed by connecting a nonlinear
analog circuit between the sensor and the ADC [10].

Software-based methods require the use of PCs or DSPs with significant computing
resources [11]. Using these methods on low-cost controllers that support only simple
mathematical operations is a major challenge due to the limited resources of the controller.
Various software-based linearization methods are discussed in the literature. The most
applied method is linearization based on the traditional look-up table (LUT), which can be
implemented on any microcontroller [12]. In this method, the result of digital processing is
used as an index in an array that stores the corrected data points [9,13].

The linearized sensor characteristics can greatly simplify the design, calibration, and
measurement accuracy. This work elaborates further on the method presented in [14], used
for the adaptive linear approximation of sensor characteristics.

In general, a scalar-valued inverse sensor transfer function is mathematically rep-
resented by a nonlinear regression model (e.g., exponential, power-law, or polynomial)
constructed through least-squares error minimization (fit) of a statistically representative ex-
perimental data set. The identification of the inverse transfer function is often complicated
and unreliable due to uncertainty in the choice of the analytic form of the function and
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reductions in its parametrization. This of course leads to unwanted errors in the calibrated
sensor response and hence should be avoided [15].

A way to avoid the uncertainty issues emerging from nonlinear regression-based iden-
tification of the inverse sensor response is provided by piecewise linearization (segmenta-
tion) of its transfer function. The latter is essentially a (simplified) polygonal approximation
of x = x(y) with algorithmic control of the approximation error (Figure 1b).

1.3.3. Piecewise Linear Approximation of Sensor Transfer Functions

Analog methods for linear approximation are still popular in engineering practice.
However, thanks to advances in digital technology, the implementation of software methods
can be completed easily, fast, at a low cost, and with a guarantee of high accuracy. Therefore,
digital methods combined with software technologies solve linearization problems with
better flexibility and efficiency.

Over the last two decades, different piecewise linear approximation (PLA) techniques
have been proposed for the representation of sensor transfer functions. These techniques
are reported in various application areas of sensor technology, such as data mining [16],
data collection in wireless sensor networks [17,18], and activity recognition applications
with wearable sensor nodes [19–21].

PLA algorithms for data volume reduction by approximating the signals collected in
wireless sensor networks (WSN) are presented in [16,17]. These algorithms use buffers,
and the calculation time depends on the length of the buffer. In [22], a fast alternative
for time series segmentation is considered, in which the reduction in the calculation time
significantly increases at the expense of the used memory. This is not an appropriate
approach for resource-constrained architectures such as mobile sensor nodes. In contrast,
the proposed approach has constant computation and memory complexity.

The SWAB (Sliding Window and Bottom-Up) algorithm is proposed in [16]. The
approach is a combination of two steps, the first of which is offline segmentation. Based on
this segmentation, in the second step, an online algorithm is created. An optimization of
this algorithm, called mSWAB, is presented in [19]. A further improved implementation
(called emSWAB) for limited resources, especially suitable for mobile sensor systems is
presented in [20]. These approaches are based on linear interpolation, while the approach
proposed in the paper is based on linear regression and can also be performed in offline
and online modes.

In [23] another segmentation approach was introduced, based on polynomial least-
squares approximation with polynomials of arbitrary order. From the presented experi-
ments with this approach when first-order polynomials are used, results like the Sliding
Window (SW) method are obtained in terms of the approximation error and the degree of
data compression.

Another buffer-based PLA algorithm is presented in [24]. The proposed approach is
a combination of either connected or disconnected segments. In contrast, the proposed
algorithm for approximating the sensor characteristics uses connected segments, which is a
more appropriate solution to be implemented in architectures with constraint memory and
processing resources.

In addition to providing a reliable representation of transfer function, PLA approaches
have two more attractive features:

a. They create a simple and fast-to-identify characteristic shape of the transfer function
(see [19,21,25]) that could be used for just-in-time classification purposes in large-scale
control systems.

b. They require a reduced amount of memory for data storage of the signal from the
sensor device and hence possess significant economic potential for realization in
smart sensors with reliable, low-cost microcontrollers. This is a crucial issue for two
application domains: data mining when huge amounts of sensor data should be
preprocessed under the constraint of short system-response times; and acquisition
followed by wireless transmission of long-term sensor data.
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1.4. Main Error Components of the Smart Sensor/IoT Device

As already mentioned, the goal of this study is to limit the memory footprint without
violating system accuracy requirements. The basic structure of the smart sensor and its
main components are shown in Figure 2. To achieve the required accuracy levels for a
smart sensor, the main components of the compound must be considered. They can be
divided into error components from the analog part δAS and components from the digital
part δDP. Details are given in [26].

Figure 2. The basic structure and main error components of the smart sensor/IoT (after piecewise
linear approximation and analog–digital conversion; x*—microcontroller output value).

Here δAS—relative compound analog sensor error; δDP—relative compound digital
processing error caused by the digital domain signal; δAPR = ∆x

xFS
—relative approximation

error; ∆x—predefined absolute approximation error; xFS—full scale of microcontroller output
value x*; δADC—relative analog–digital conversion error. Based on the considered serial
structure, the total system error budget can be determined as:

δSS =
√

δ2
AS + δ2

DP.

The main components of the digital processing error δDP can also be attributed to δADC
and δAPR. When an analog sensor and ADC are selected, the error levels δAS and δADC
cannot be affected. High-resolution ADCs are most often used in smart sensors and IoT
implementation and therefore the δADC the component is negligibly small which proves
δAPR to be a key component through which the total error levels can be managed, which
will be discussed below.

To achieve typical goals in system design, where δSS ≈ δAS, the aim is to have:
δAS > (3÷ 10)δDP.

Published look-up tables, which are used in several applications, are often limited in
the number of digits and this can be an additional source of rounding errors [26].

1.5. Proposed Approach

The proposed approach can be used for piecewise adaptive linearization of piecewise
convex/concave sensor characteristics. As the name suggests, a typical piecewise con-
vex/concave sensor response is characterized by a function consisting of a finite number of
linked convex/concave segments with a strictly monotonous slope and hence a constant
sign of the second derivative. Within the full measurement range of the sensor, the bounds
of these segments can be identified from the condition of removing the second derivative,
i.e., as the inflection points of the sensor characteristics.

The specificity of the proposed approach in comparison with the approach presented
in [11] is illustrated in Figure 3.



Sensors 2022, 22, 949 6 of 19

Figure 3. Graphical illustration of (a) the method in [11] and (b) the proposed approach.

An example of such a sensor characteristic is the relationship between resistance and
temperature in the platinum temperature sensors set by the Callendar–van Dusen equation.

In [11,27,28], a linearization approach to sensor characteristics was developed in cases
where the characteristic is a differentiable function. Its inverse feature is determined in a
discrete form (freeform) based on an iterative algorithm with defined sensor characteristics
and maximum approximation error. After that, based on the developed adaptive approach
with a defined maximum approximation error, the discrete inverse sensor characteristic is
replaced by a new discrete characteristic (also freeform), aimed at minimizing the number
of points defining the characteristic, which in turn is related to the possibilities of using
cheaper microcontrollers.

With the specified sensor, the transfer characteristic is of the type y = y(x) and the
first task is to determine the inverse transfer sensor characteristic x = x(y). In cases where
the inverse function cannot be obtained in an explicit form, due to the nonlinear relation
between y(x) and x, using a discrete linear change of x, the corresponding values of y(x)
are obtained, which upon receipt of the inverse function results in a discrete relationship
between y(x) and x, but with a nonlinear discrete change of argument s. This problem can
be solved by the splitting method [3], the Newton method [29], as well as by the iterative
algorithm proposed in [11,30]. As a result, given a maximum approximation error, the
inverse sensor characteristic is obtained in a discrete form xi = xi(yi), i = 1, n, with a
uniform changing step of the argument s.

The second task is related to the approximation of the obtained discrete inverse sensor
characteristic in the form of xi = xi(yi), i = 1, n, a new characteristic xj = xj

(
yj
)
, j = 1, k

with a specified maximum approximation error and minimization of k. One approach for
solving the problem was developed in [2,11].

The purpose of the present work is to develop a new approach for solving the task
of linearization of sensor characteristics (differentiable functions with a non-changing
sign of curvature), which simultaneously solves the tasks of finding the inverse sensor
characteristic and its linearization.

2. The Analytical Framework of the Proposed Approach for Linearization of
Sensor Characteristics

Let a differentiable sensor characteristic of the type y = y(x), x ∈
[
xAi , xB

]
, i = 1, n− 1,

be given. For each such sensor, the characteristic is fulfilled y′(x) 6= 0, as the function
y = y(x) is strictly monotonous (y′(x) > 0 or y′(x) < 0).
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In the case considered here, if the sign of curvature remains unchanged, one of the
following two conditions should be satisfied: sign(y′′ (x)) > 0 or sign(y′′ (x)) < 0.

Under linear approximation of the function within the specified range, the error ∆y
i (x)

is determined by

∆y
i (x) = y(x)−

(
yAi +

yB − yAi

xB − xAi

(
x− xAi

))
= y(x)− yAi − ki

(
x− xAi

)
, (1)

where ki =
yB−yAi
xB−xAi

is the slope of the straight line AiB (Figure 4).

Figure 4. Graphical representation of the proposed approach.

From the necessary condition for extremum, [∆y
i
(
xEi

)
]
′
= 0 the following is obtained:

y′
(
xEi

)
− ki = 0, (2)

as the condition is also sufficient, y′′ (x) 6= 0.
The extremum always exists (Role Theorem [31]—∆y

i
(
xAi

)
= ∆y

i (xB) = 0), as at the
same time it is unique—the function (y′(x)− ki) is monotonous and has different signs at
the ends of the range.

With Equation (1), when x = xEi , the extremum value is obtained

∆y
i
(

xEi

)
= y

(
xEi

)
− yAi − ki

(
xEi − xAi

)
.

The extremum of the error ∆x
i (y) at a linear approximation of the inverse function

x(y) in the given range is determined by

∆y
i
(
xEi

)
∆x

i
(

xEi

) = −tanαi = −ki,

under which

∆x
i
(
xEi

)
=

∆y
i
(
xEi

)
−ki

= xEi − xAi −
y
(
xEi

)
− yAi

ki
. (3)

In the context of this work, of practical interest is the following problem case—the
maximum approximation error ∆x is specified, the absolute value of which is less than the
absolute value of the defined by Equation (3) error in the given range

[
xAi , xB

]
. The goal is

to find a subrange
[
xAi , xAi+1

]
, where ∆x

i
(
xEi

)
= ∆x is fulfilled.
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From Equations (2) and (3) it follows that

∆x
i
(

xEi

)
= ∆x = xEi − xAi −

y
(

xEi

)
− yAi

ki
= xEi − xAi −

y
(
xEi

)
− yAi

y′
(
xEi

) ,

respectively,

y′
(
xEi

)
−

y
(
xEi

)
− yAi

xEi − xAi − ∆x = 0. (4)

The last equation defines xEi , then the right end xAi+1 of the range is determined by
the equation

y
(
xAi+1

)
= yAi + y′

(
xEi

)(
xAi+1 − xAi

)
. (5)

3. Essence of the Proposed Approach for Linearization of Sensor Characteristics

Let a differentiable sensor characteristic in the form y = y(x), x ∈
[
xAi , xB

]
, i = 1, n− 1

be given as the sign of curvature does not change (sign(y′′ (x)) > 0 or sign(y′′ (x)) < 0). The
aim is to obtain the inverse sensor characteristic x(y) in the linearized form at a specified
maximum approximation error ∆x.

The approach is realized in the following way. With Equation (3) the extremum value
of the ∆x

1 in the range x ∈
[
xA1 , xB

]
is determined. If |∆x

1 | < |∆x| then the function is
approximated throughout the range with segment A1B and the procedure ends. In the
opposite case with Equations (4) and (5), the subrange x ∈

[
xA1 , xA2

]
, where ∆x

1 = ∆x

is determined.
Then, through Equation (3), the extremum value of ∆x

2 in the range x ∈
[
xA2 , xB

]
is

determined. If |∆x
2 | < |∆x|, then the function is approximated throughout the range with

the segment A2B and the procedure ends, or otherwise through Equations (4) and (5) the
subrange x ∈

[
xA2 , xA3

]
, where ∆x

2 = ∆x, is determined, etc.
The inverse sensor characteristic x(y) is approximated by the broken line

A1 A2 A3 . . . An−1B ≡ An , Ai
(
yAi , xAi

)
, i = 1, n− 1, An(yB, xB), as

x(y) = xAi +
(
y− yAi

) xAi+1 − xAi

yAi+1 − yAi

, y ∈
[
yAi , yAi+1

]
, i = 1, n− 1. (6)

Generally, in all intervals, except for the last one, the maximum approximation errors
are equal and equal to the maximum specified approximation error ∆x. The error ∆x

i (x) in
each of the intervals is determined by the following equation:

∆x
i (x) = x− xAi −

(
y(x)− yAi

) xAi+1 − xAi

yAi+1 − yAi

, x ∈
[
xAi , xAi+1

]
, i = 1, n− 1. (7)

Considering the next equation

∆x
i [y(x)] = ∆x

i (x), x ∈
[
xAi , xAi+1

]
, i = 1, n− 1, (8)

and Equation (7) the error ∆x
i (y) can be found.

Illustrative example: At a specified maximum approximation error ∆x, find the lin-
earized inverse characteristic of the characteristic y(x) = a1 + a2(x− a3)

2, x ∈ [xA, xB],
when ∆x = 2, a1 = 2, a2 = 0.02, a3 = 2, xA = 3, xB = 51.

Then y(x) = 2 + 0.02(3− 2)2 = 2.02, and y′(x) = 0.04(x− 2), y′′ (x) = 0.04. So
y
(

xAi

)
= 2 + 0.02.

From (4) follows

0.04
(
xEi − 2

)
−

2 + 0.02(xEi − 2)2 − 2.02
xEi − 3− 2

= 0,

respectively, x2
Ei
− 10xEi + 17 = 0



Sensors 2022, 22, 949 9 of 19

The first of the two solutions 2.171572875 does not belong to the considered interval
(2.171572875 < xAi = 3). Only the second solution 7.828427125 belongs to the considered
interval. Therefore, xEi = 7.828427125.

From (5) follows

2 + 0.02(xAi+1 − 2)2 = 2.02 + 0.04(7.828427125− 2)
(
xAi+1 − 3

)
,

Respectively,
x2

Ai+1
− 15.65685425xAi+1 + 37.97056275 = 0.

The first of the two solutions (3 and 12.65685425) corresponds to the starting point.
Therefore, xAi = 3 and xAi = 12.65685425.

As a result of this approach, the inverse sensor characteristic x(y) is approximated
by the broken line A1 A2 A3B, as shown in Table 1, where the coordinates of the points
are given, also the corresponding intervals of the argument variation, the values of the
argument in the extrema in the corresponding interval (as a result of the properties of the
square parabola they are always in the middle of the interval) and the corresponding error
∆x

i . The illustrative example is selected to enable good graphical visualization of the results
shown in Figure 5.

Table 1. Results of the solution of the illustrative example.

A1A2 A2A3 A3B

A1(3.000, 2.020) A2(12.657, 4.271) A3(30.314, 18.033)

A2(12.657, 4.271) A3(30.314, 18.033) B(51.000, 50.020)

x ∈ [3.000, 12.657] x ∈ [12.657, 30.314] x ∈ [30.314, 51.000]

xE1 = 7.828 xE2 = 21.485 xE3 = 43.142

∆x
1 = 2 ∆x

2 = 2 ∆x
3 = 1.384

Figure 5. Graphical results of the solution of the illustrative example.

4. Linearization of the Inverse Sensor Characteristics of Temperature Sensors

The relation between the resistance and the temperature in the platinum temperature
sensors is set by the equation of Callendar–van Dusen [32,33]. Using the proposed approach,
the task of interval linearization of the inverse characteristic will be solved.
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4.1. Linearization of the Inverse Sensor Characteristics of the Platinum Temperature Sensors in the
Range T ∈ [0 , 661 ] ◦C

The Callendar–van Dusen equation in the case under consideration is given by

RT = R0

(
1 + AT + BT2

)
, (9)

where

T, ◦C—temperature;
RT—measured resistance at temperature T;
R0—measured resistance at temperature T = 0 ◦C;
A = 3.908310−3; B = −5.77510−7—coefficients according to ITS 90/IEC 60751 [34,35].

Under the denotations R(T) = RT
R0

and a3 = −A
(2B) , Equation (9) takes the form

R(T) = 1− A2

4B
+ B

[
T +

A
2B

]2
= 1− A2

4B
+ B(T − a3)

2. (10)

Differentiating (10) twice, concerning temperature T, leads to the first and second
derivatives, respectively,

R′(T) = 2B(T − a3), (11)

R′′ (T) = 2B. (12)

The graphs of function R(T), its first derivative R′(T), and its second derivative R′′ (T)
in the range T ∈ [0, 661] ◦C defined by Equations (10)–(12), respectively, are shown in
Figure 6.

Figure 6. Graphs of the functions R(T), R′(T), and R′′ (T) in the range T ∈ [0, 661] ◦C.

Since R′′ (T) does not change its sign (the curve is concave in the considered range),
the proposed approach for linear interval linearization can be applied because the function
T(R) can be found in the linearized form.

Equations (2)–(5) and (7), required for the approach, accordingly take the form:

R′
(
TEi

)
− ki = 2B

(
TEi − a3

)
−

RB − RAi

TB − TAi

= 0 or TEi =
TAi + TB

2
; (13)

∆T
i
(
TEi

)
=

∆R
i (TEi )
−ki

= TEi − TAi −
R(TEi )−RAi

ki
= TEi − TAi −

(R(TEi )−RAi )(TB−TAi )
RB−RAi

=
(
TB − TAi

)( 1
2 −

1
4

TB+3TAi
−4a3

TB+TAi
−2a3

)
;

(14)

TEi = ∆T + TAi +

√
(∆T + TAi )

2 − TAi
2 − 2a3∆T ; (15)

TAi+1 = 2TEi − TAi . (16)
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∆T
i (T) = T − TAi −

(
R(T)− RAi

) TAi+1 − TAi

RAi+1 − RAi

, x ∈
[
TAi , TAi+1

]
, i = 1, n− 1. (17)

The numerical results from the application of the approach, when ∆T = −0.375 ◦C
in the given temperature range TA1 = 0 ◦C, TB = 661 ◦C, are shown in Table 2 and in
graphical form in Figure 7. The graph of the function ∆T(T) from (17) is shown in Figure 8.

Table 2. Results in the range T ∈ [0, 661] ◦C.

A1A2 A2A3 A3A4 A4A5

A1(0, 1) A2(100.007, 1.385) A3(198.514, 1.753) A4(295.521, 2.105)

A2(100.007, 1.385) A3(198.514, 1.753) A4(295.521, 2.105) A5(391.028, 2.440)

T ∈ [0, 100.007] T ∈ [100.007, 198.514] T ∈ [198.514, 295.521] T ∈ [295.521, 391.028]

TE1 = 50.0035 TE2 = 149.261 TE3 = 247.018 TE4 = 343.275

∆T
1 = −0.375 ∆T

2 = −0.375 ∆T
3 = −0.375 ∆T

4 = −0.375

A5A6 A6A7 A7A8

A5(391.028, 2.440) A6(485.035, 2.760) A7(577.543, 3.065)

A6(485.035, 2.760) A7(577.543, 3.065) A8 ≡ B(661, 3.331)

T ∈ [391.028, 485.035] T ∈ [485.035, 577.543] T ∈ [577.543, 661]

TE5 = 438.032 TE6 = 531.289 TE7 = 619.271

∆T
5 = −0.375 ∆T

6 = −0.375 ∆T
7 = −0.315

Figure 7. Graphical results of the solution in the range T ∈ [0, 661] ◦C.
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Figure 8. Graph of the function ∆T(T) in the range T ∈ [0, 661] ◦C.

4.2. Linearization of the Inverse Sensor Characteristics of the Platinum Temperature Sensors in the
Range T ∈ [−200, 0] ◦C

The Callendar–van Dusen equation when considering the case is given by

RT = R0

(
1 + AT + BT2 − 100CT3 + CT4

)
, (18)

where

T, ◦C—temperature;
RT—measured resistance at temperature T;
R0—measured resistance at temperature T = 0 ◦C;
A = 3.908310−3; B = −5.77510−7; C = −4.18310−12—coefficients according to ITS 90/IEC
60751 [34].

Under the denotation, R(T) = RT
R0

, the Equation (18) takes the form

R(T) = 1 + AT + BT2 − 100CT3 + CT4. (19)

Differentiating (19) twice, concerning the temperature T, leads to the first and second
derivatives, respectively,

R′(T) = A + 2BT − 300CT2 + 4CT3; (20)

R′′ (T) = 2B− 600CT + 12CT2. (21)

The graphs of R(T), R′(T), and R′′ (T) are shown in Figure 9.
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Figure 9. Graphs of the functions R(T), R′(T), and R′′ (T) in the range T ∈ [−200, 0] ◦C.

Since R′′ (T) does not change its sign (the curve is concave in the range considered),
the proposed approach for linear interval linearization can be applied because function
T(R) can be found in the linearized form.

Equations (2)–(5) needed for the implementation of the approach take the form, respectively,

A + 2BTEi − 300CTEi
2 + 4CTEi

3 −
RB − RAi

TB − TAi

= 0, (22)

∆T
i
(
TEi

)
=

∆R
i

(
TEi

)
−ki

= TEi − TAi −
R
(

TEi

)
−RAi

ki
=

TEi − TAi −
(

A
(
TEi − TAi

)
+ B

(
TEi

2 − TAi
2)− 100C

(
TEi

3 − TAi
3)+ C

(
TEi

4 − TAi
4)) TB−TAi

RB−RAi
.

(23)

R′
(
TEi

)
− R(TEi )−RAi

TEi
−TAi

−∆T = A + 2BTEi − 300CTEi
2 + 4CTEi

3

− A(TEi
−TAi )+B(TEi

2−TAi
2)−100C(TEi

3−TAi
3)+C(TEi

4−TAi
4)

TEi
−TAi

−∆T = 0.
(24)

1 + ATAi+1 + BTAi+1
2 − 100CTAi+1

3 + CTAi+1
4 = 1 + ATAi + BTAi

2 − 100CTAi
3+

+CTAi
4 +

(
A + 2BTEi − 300CTEi

2 + 4CTEi
3)(TAi+1 − TAi

)
.

(25)

The proposed approach will be applied when ∆T = −0.375 ◦C in the temperature
range TA1 = 0 ◦C, TB = −200 ◦C.

Using Equation (22), the value of the argument T′E1
is determined, under which the

function ∆T
1 (RE) (23) has an extremum in the range TB = −200 ◦C < T < TA1 = 0 ◦C.

The third power Equation (22) has two complex and one real root TE1 = −110.583 ◦C.

When TE1 = −110.583 ◦C, ∆T
1 = −2.472 ◦C is obtained through Equation (23). As

∣∣∣∆T
1

∣∣∣ > ∣∣∣∆T
∣∣∣,

Equations (24) and (25) determine the subrange T ∈
[
TA2 , TA1

]
where ∆T

1 = ∆T. The fourth
power Equation (24) has two real and two complex roots as the real root TE1 = −47.977 ◦C be-
longs to the range

[
TB, TA1

]
. The Equation (25) is also a fourth power equation and has two real

and two complex roots as one of the real roots is TA1 and the other one is TA2 = −92.292 ◦C.
Then the same steps are applied to the range TB = −200 ◦C < T < TA2 = −92.292 ◦C.

The Equation (22) has two complex and one real root TE2 = −149.314 ◦C. When TE2 =

−149.314 ◦C, ∆T
2 = −0.915 ◦C is obtained by Equation (23). As

∣∣∣∆T
2

∣∣∣ > ∣∣∣∆T
∣∣∣, Equations

(24) and (25) define the subrange T ∈
[
TA3 , TA2

]
where ∆T

2 = ∆T . Equation (24) has
two real and two complex roots as one of the real roots belongs to the range

[
TB, TA2

]
is

TE2 = −130.207 ◦C. Equation (25) has two real and two complex roots as one of the real
roots is TA2 and the other one is TA3 = −165.17 ◦C.
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Then, the same consecution is applied to the range TB = −200 ◦C < T < TA3 =
−165.178 ◦C. The real root of Equation (22) is TE3 = −182.909 ◦C. When TE3 = −182.909 ◦C,

Equation (23) ∆T3 = −0.117 ◦C is obtained. As |∆T | <
∣∣∣∆T

∣∣∣, the procedure ends.

The numerical results of the application of the approach when ∆T = −0.375 ◦C are
shown in Table 3 and in graphical form in Figure 10. The graph of the function ∆T(T) (17)
is shown in Figure 11.

Table 3. Results in the range T ∈ [−200, 0] ◦C.

A1A2 A2A3 A3A4

A1(0, 1) A2(−92.292, 0.634) A3(−165.178, 0.334)

A2(−92.292, 0.634) A3(−165.178, 0.334) A4 ≡ B(−200, 0.185)

T ∈ [−92.292, 0] T ∈ [−165.178,−92.292] T ∈ [−200,− 165.178]

TE1 = −47.977 TE2 = −130.207 TE3 = −182.909

∆T1 = −0.375 ∆T2 = −0.375 ∆T3 = −0.117

Figure 10. Graphical results of the solution in the range T ∈ [−200, 0] ◦C.

Figure 11. Graph of the function ∆T(T) in the range T ∈ [−200, 0] ◦C.
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4.3. Microcontroller Implementation of the Inverse Sensor Characteristics Linearization of
Platinum Temperature Sensors in the Range T ∈ [0, 661] ◦C

This design uses a Lolin 32 development board based on Espressif Systems’ ESP32
microcontroller. Its main features include integrated Wi-Fi, flash memory, and USB com-
munication, and is often used for IoT designs [36].

The linearization is performed by segmentation, in which the range is divided into the
corresponding number of segments (from 1 to End) to guarantee the requirement for the
maximum approximation error. The linearization algorithm for low-cost microcontrollers
is presented in a pseudo-code form below (see Algorithm 1).

Algorithm 1 Linearization

Input: Measured RTD resistance, R_T, floating-point type
Output: Calculated temperature, Temperature, floating-point type
Initialization: defining the coordinates of the points bounding each interval Ra_1, Ra_2... Ra_End and
Ta_1, Ta_2... Ta_End
1: Determine the interval (n) in which the measured resistance is located, and whether it is in the
respective temperature range

If ((R_T > Ra_n) and (R_T ≤ Ra_(n + 1)))
2: Calculate the temperature according to the formula

Temperature = (R_T − Ra_n) ∗ ((Ta_(n + 1) − Ta_n)/(Ra_(n + 1) − Ra_n)) + Ta_n;
3: Return Temperature

The algorithm is implemented as a function in the Lolin D32 development system for
the ESP32 microcontroller. When variables and constants are represented with a floating-
point data type, the memory footprint of the function is 36 bytes of flash and 8 bytes of the
system’s RAM. The function is compiled with both Os and g3 optimizations—for size and
debug information, respectively.

For comparison, in an implementation based on an optimized lookup table using an
unsigned integer, the occupied program memory is about 3k bytes and 8 bytes of RAM [37].

4.4. An Illustrative Example of Linearization of the Inverse Sensor Characteristics of K-Type
Thermocouples in the Temperature Range T ∈ [−200, 0] ◦C and Maximum Approximation Error
∆T = 0.04 ◦C

The thermoelectric voltage E in microvolts, as a function of temperature T in degrees
Celsius, is defined by:

E(t) =
10

∑
1

ci Ti , (26)

where the coefficients ci are specified in NIST ITS-90 [38].
The graphs of function E(T), its first derivative E′(T), and its second derivative E′′ (T)

in the range, T ∈ [−270, 0] ◦C, are shown in Figure 12.

Figure 12. Graphs of the functions E(T), E′(T), and E′′ (T) in the range T ∈ [−270, 0] ◦C.
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Since E′′ (T) does not change sign (the curve is convex in the considered range),
the proposed approach for linear interval linearization can be applied and the sensor
characteristic can be determined in linearized form.

The numerical results from the application of the approach, when ∆T = 0.04 ◦C in the
given temperature range TA1 = 0 ◦C, TB = TA48 = −200 ◦C, are shown in Table 4 and in
graphical form in Figure 13. The graph of the function ∆T(T) is shown in Figure 14.

Table 4. Results in the range T ∈ [−200, 0] ◦C.

A1A2 A2A3 A3A4 A4A5

A1(0, 0) A2(−14.596,−569.9626) A3(−27.626,−1066.926) A4(−39.819,−1520.303)

A2(−14.596,−569.9626) A3(−27.626,−1066.926) A4(−39.819,−1520.303) A5(−51.342,−1937.358)

T ∈ [−14.596, 0] T ∈ [−27.626, − 14.596] T ∈ [−39.819, − 27.626] T ∈ [−51.342, − 39.819]

TE1 = −7.494 TE2 = −21.181929 TE3 = −33.769 TE4 = −45.620

∆T = 0.04 ∆T = 0.04 ∆T = 0.04 ∆T = 0.04

A5A6 A6A7 A7A8 A8A9

A5(−51.342,−1937.358) A6(−62.267,−2321.642) A7(−72.653,−2676.126) A8(−82.554,−3003.567)

A6(−62.267,−2321.642) A7(−72.653,−2676.126) A8(−82.554,−3003.567) A9(−92.019,−3306.423)

T ∈ [−62.267, − 51.342] T ∈ [−72.653, − 62.267] T ∈ [−82.554, − 72.653] T ∈ [−92.019, − 82.554]

TE5 = −56.839 TE6 = −67.489 TE7 = −77.628 TE8 = −87.308

∆T = 0.04 ∆T = 0.04 ∆T = 0.04 ∆T = 0.04

A9A10 A10A11 A11A12 A12A13

A9(−92.019,−3306.423) A10(−101.091,−3586.812) A11(−109.801,−3846.531) A12(−118.178,−4087.117)

A10(−101.091,−3586.812) A11(−109.801,−3846.531) A12(−118.178,−4087.117) A13(−126.243,−4309.902)

T ∈ [−101.091, − 92.019] T ∈ [−109.801,− 101.091] T ∈ [−118.178, − 109.801] T ∈ [−126.243, − 118.178]

TE9 = −96.573 TE10 = −105.461 TE11 = −114.003 TE12 = −122.223

∆T = 0.04 ∆T = 0.04 ∆T = 0.04 ∆T = 0.04

A13A14 A14A15 A15A16 A16A17

A13(−126.243,−4309.902) A14(−134.015,−4516.065) A15(−141.507,−4706.668) A16(−148.733,−4882.674)

A14(−134.015,−4516.065) A15(−141.507,−4706.668) A16(−148.733,−4882.674) A17(−155.704,−5044.969)

T ∈ [−134.015, − 126.243] T ∈ [−141.507,− 134.015] T ∈ [−148.733, − 141.507] T ∈ [−155.704, − 148.733]

TE13 = −130.140 TE14 = −137.770 TE15 = −145.129 TE16 = −152.227

∆T = 0.04 ∆T = 0.04 ∆T = 0.04 ∆T = 0.04

A17A18 A18A19 A19A20 A20A21

A17(−155.704,−5044.969) A18(−162.428,−5194.366) A19(−168.912,−5331.618) A20(−175.162,−5457.422)

A18(−162.428,−5194.366) A19(−168.912,−5331.618) A20(−175.162,−5457.422) A21(−181.181,−5572.431)

T ∈ [−162.428, − 155.704] T ∈ [−168.912,− 162.428] T ∈ [−− 175.162, − 168.912] T ∈ [−181.181, − 175.162]

TE17 = −159.073 TE18 = −165.677 TE19 = −172.043 TE20 = −178.177

∆T = 0.04 ∆T = 0.04 ∆T = 0.04 ∆T = 0.04

A21A22 A22A23 A23A24 A24A25

A21(−181.181,−5572.431) A22(−186.973,−5677.260) A23(−192.540,−5772.495) A24(−197.884,−5858.704)

A22(−186.973,−5677.260) A23(−192.540,−5772.495) A24(−197.884,−5858.704) A25 ≡ B(−200,−5891.404)

T ∈ [−186.973,− 181.181] T ∈ [−192.540,− 186.973] T ∈ [−197.884, − 192.540] T ∈ [−200, − 197.884]

TE21 = −184.083 TE22 = −189.762 TE23 = −195.217 TE24 = −198.943

∆T = 0.04 ∆T = 0.04 ∆T = 0.04 ∆T = 0.00666
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Figure 13. Graphical results of the solution in the range T ∈ [−200, 0] ◦C.

Figure 14. Graph of the function ∆T(T) in the range T ∈ [−200, 0] ◦C.

The linearization of the k-type thermocouple in the range [−200, 0] ◦C is implemented
in the Lolin D32 development system for the ESP32 microcontroller. Variables and constants
are represented by floating-point data type, the memory footprint of the function is about
145.3 kB, with activated size optimization “−Os”. This is about 10% of the system’s resources.

5. Conclusions

This paper presented an approach for linear interval approximation of sensor charac-
teristics y = y(x) where the characteristics are differentiable functions in which the sign
of curvature does not change, i.e., they are either “concave” or “convex” functions. The
aim is to obtain a discreet type of inverse sensor characteristic xi = xi(yi), i = 1, n, with a
predefined maximum approximation error ∆x, with minimization of the number of points
defining the characteristic, which in turn is related to the possibilities for using cheaper
microcontrollers. The approach is characterized by the fact that when the maximum ap-
proximation error ∆x under the linearization of the inverse sensor characteristic is given,
the inverse sensor characteristic xi = xi(yi), i = 1, n is found directly in the linearized form.
The advantages of the developed approach are as follows:

• the approach is applied at intervals, with each subsequent step (each successive
interval) resulting in a similar solution of the problem under the new initial conditions
to obtain the directly sought solution, which in turn contains the initial conditions for
the next step;

• the maximum error under linearization of the inverse sensor characteristic at all
intervals, except in the general case of the last one, is the same;

• the approach allows that different maximum approximation errors are set at each
subsequent interval;

• the approach allows the application to general types of differentiable sensor character-
istics with piecewise concave/convex properties.
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The proposed approach is verified through linearization of the inverse sensory charac-
teristics of the Pt100 sensor and k-type thermocouple. The proposed approach to linear
interval approximation of sensor characteristics y = y(x), which are differentiable func-
tions, can be also extended to sensor characteristics with inflection points (characteristics
where the sign of curvature changes, in some subintervals they are “concave”, and in others,
they are “convex” functions). A typical example of such a sensor characteristic is the Type
K Thermocouple.

To overcome the problems arising from resource constraints, appropriate algorithms
are needed that allow efficient connectivity and intelligent management of the measurement
processes. Although the discussed computational examples are aimed at building adaptive
approximations for temperature sensors, the algorithm can be applied easily to many other
sensor types.
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