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Microbes and their metabolites produced in fermented food have been considered

as critical contributors to the quality of the final products, but the comprehensive

understanding of the microbiomic and metabolomic dynamics in plant-based food

during solid-state fermentation remains unclear. Here, the probiotics of Bacillus

subtilis and Enterococcus faecalis were inoculated into corn and defatted soybean

to achieve the two-stage solid-state fermentation. A 16S sequencing and liquid

chromatography–tandemmass spectrometry were applied to investigate the dynamics of

microbiota, metabolites, and their integrated correlations during fermentation. The results

showed that the predominant bacteria changed from Streptophyta and Rickettsiales at

0 h to Bacillus and Pseudomonas in aerobic stage and then to Bacillus, Enterococcus,

and Pseudomonas in anaerobic stage. In total, 229 notably different metabolites

were identified at different fermentation times, and protein degradation, amino acid

synthesis, and carbohydrate metabolism were the main metabolic pathways during

the fermentation. Notably, phenylalanine metabolism was the most important metabolic

pathway in the fermentation process. Further analysis of the correlations among the

microbiota, metabolites, and physicochemical characteristics indicated that Bacillus spp.

was significantly correlated with amino acids and carbohydrate metabolism in aerobic

stage, and Enterococcus spp. was remarkably associated with amino acids metabolism

and lactic acid production in the anaerobic stage. The present study provides new

insights into the dynamic changes in the metabolism underlying the metabolic and

microbial profiles at different fermentation stages, and are expected to be useful for future

studies on the quality of fermented plant-based food.
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INTRODUCTION

Corn is one of the main grains produced worldwide, providing
30% of food calories for more than 4.5 billion people worldwide,
and is considered to be the main staple food in most countries
(1, 2).Whereas, compared with other cereal crops, the nutritional
value of corn is low, lacking essential amino acids and lysine (3).
Soy-derived foods have been consumed for centuries, especially
in Asian diets. But soy products contain isoflavones, antigen
proteins, and fiber substances that are not easy to be absorbed,
which affect their bioavailability (4, 5). Therefore, many
processing technologies like physical and chemical methods have
been applied to corn and soybean-based foods to enhance the
nutritional value of the final products. However, these processing
tools are un-environmental friendly and lose nutrients (6).

Fermentation is one of the traditional biotechnologies in
the food field because it makes a solid foundation for the
development of safe food with better nutrition and functions.
It is a natural way to preserve food, increase nutritional
value and digestibility, and reduce anti-nutritional factors.
Fermenting microbes like Bacillus and Aspergillus can degrade
anti-nutritional factors and improve food quality (7, 8). Lactic
acid bacteria can produce organic acids, improve food flavor,
and lengthen storage time (9, 10). In the past few years,
many studies have been conducted on fermentation to obtain
fermented corn-based products that are beneficial to human
health (11–13). In addition, fermentation has been used to
improve the bioavailability of protein, vitamins, minerals, and
isoflavones in soybeans, as well as to change their flavor,
improve stability, and even create novel foods (14–17). Natto,
fermented bean curd, Miso, and soy sauce have a long history
in the Asian diet. It has been reported that these traditional
fermented soybean-based foods can improve bone health,
reduce the risk of cancer, and prevent the progression of
diabetes (18).

Fermentation is conducted through the action of various
microorganisms under open or semi-open conditions, including
starters and local microorganisms, and plays important
roles in anti-nutritional factor degradation, nutrition
improvement, and flavor production (19, 20). At present,
high-throughput sequencing provides a reliable method for
the comprehensive description of microbial community
dynamics and expands our understanding of the microbial
community structure of fermented corn and soybean products.
The latest research showed that Lactococcus, Streptococcus,
Enterobacter, Acinetobacter, and fungi such as Trichosporon
and Aspergillus are common fermenting microbes in Sufu
flora (21). In addition, microbial abundance is mainly
related to nutritional characteristics. Besides, metabolomics
methods such as gas chromatography (GC), mass spectrometry
(MS), and high-performance liquid chromatography (HPLC)
have been applied to determine the metabolite profiles of
fermented foods (22, 23). However, the comprehensive dynamic
changes of microbes and metabolites during plant-based
food fermentation still lack understanding, especially in
corn and defatted soybean. Here, corn and defatted soybean
were carried out with a two-stage solid-state fermentation
inoculating with Bacillus subtilis and Enterococcus faecalis.

A 16S rRNA sequencing and liquid chromatography–mass
spectrometry (LC/MS) were used to explore the microbial and
metabolic dynamics during the fermentation. The evidence
will expand our knowledge of improving the quality of
fermented plant-based food from an integrated microbiomic and
metabolomic perspective.

MATERIALS AND METHODS

Experimental Design and Sampling
Bacillus subtilis (NCBI Accession No. MH885533, CGMCC
No:12825) and Enterococcus faecalis (NCBI Accession No.
MN038173, CGMCC 1.15424) were cultured, respectively, in
Luria broth and de Man, Rogosa, and Sharpe liquid medium
at 37◦C, as described in detail by Wang et al. (24). About
200 g of the substrates contained 40% of defatted soybean, 40%
of corn, and 20% of yellow wine lees were transferred into a
500mL Erlenmeyer flask. Sterilized water was added to achieve
a 40% moisture concentration. B. subtilis (1 × 107 CFU/g)
was inoculated in the mixed substrate at 37◦C for 24 h in
aerobic fermentation, and then E. faecalis (2 × 107 CFU/g)
was inoculated in the fermented substrate with an anaerobic
fermentation at 37◦C until 48 h. Samples were collected at 0,
12, 24, and 48 h. The nutrition determination of the fermented
matrix is shown in Supplementary Table S1.

The Measurement of Nutritional Content
Moist samples (∼100 g) at 0, 12, 24, and 48 h were collected
to determine the numbers of microorganisms and microbial
metabolites and for 16S rRNA gene sequencing, and the
remaining samples were dried at 60◦C for 24 h, cooled, ground,
and subjected to physicochemical analysis. Dried samples were
collected for further analysis of the crude protein (CP), neutral
detergent fiber (NDF), acid detergent fiber (ADF), and amylose
contents using AOAC International guidelines (25). The content
of phytate phosphorus was analyzed according to the method
described by Shi et al. (26). The pH of the fermented product
was determined with a pH meter (Mettler Toledo, Switzerland)
according to a previous study (27). Lactate was detected using a
lactic acid assay kit (Nanjing Jiancheng Bioengineering Institute,
Nanjing) following the manufacturer’s instructions. The contents
of antigenic protein were analyzed using a commercial kit
(Jiangsu Meibiao Biological Technology Co., Jiangsu, China).

Liquid Chromatography–Mass
Spectrometry Analysis and Data
Processing
A 50mg of the sample was weighted to an EP tube, and 1,000
µL extract solution (methanol:acetonitrile:water = 2:2:1, with
isotopically labeled internal standard mixture) was added. Then
the samples were homogenized at 35Hz for 4min and sonicated
for 5min in ice water bath. The homogenization and sonication
cycle was repeated 3 times. Then the samples were incubated
for 1 h at −40◦C and centrifuged at 12,000 rpm for 15min at
4◦C. The resulting supernatant was transferred to a fresh glass
vial for analysis. The quality control (QC) sample was prepared
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by mixing an equal aliquot of the supernatants from all of
the samples.

LC–MS/MS analyses were performed using a UHPLC system
(Vanquish, Thermo Fisher Scientific) with a UPLC BEH Amide
column (2.1mm× 100mm, 1.7µm) coupled to Q Exactive HFX
mass spectrometer (Orbitrap MS, Thermo). The mobile phase
consisted of 25 mmol/L ammonium acetate and 25 ammonia
hydroxide in water (pH = 9.75) (A) and acetonitrile (B). The
auto-sampler temperature was 4◦C, and the injection volume was
3 µL. The QE HFX mass spectrometer was used for its ability
to acquire MS/MS spectra on information-dependent acquisition
(IDA) mode in the control of the acquisition software (Xcalibur,
Thermo). In this mode, the acquisition software continuously
evaluates the full scan MS spectrum. The ESI source conditions
were set as follows: sheath gas flow rate as 30 Arb, Aux gas flow
rate as 25 Arb, capillary temperature 350◦C, full MS resolution as
60,000, MS/MS resolution as 7,500, collision energy as 10/30/60
in NCE mode, spray Voltage as 3.6 kV (positive) or −3.2 kV
(negative), respectively.

The raw data were converted to the mzXML format using
ProteoWizard and processed with an in-house program, which
was developed using R and based on XCMS, for peak detection,
extraction, alignment, and integration. Then an in-house MS2
database (BiotreeDB) was applied in metabolite annotation. The
cutoff for annotation was set at 0.3. The obtained data were
conducted to principal component analysis (PCA), Partial Least
Squares Discriminant Analysis (PLS-DA), and orthogonal partial
least squares discriminant analysis (OPLS-DA). The goodness-
of-fit parameter (R2) and the predictive ability parameter (Q2)
were used to evaluate the quality of PLS-DA and OPLS-
DA models. Variable importance projection (VIP) > 1.0 and
P < 0.05 were identified as the differential metabolites. To
further interpret the biological significance of metabolites,
metabolic pathway analyses were performed by an online analysis
platform in the MetaboAnalyst 5.0 (https://www.metaboanalyst.
ca/). KEGG analysis has been conducted by enrichment analysis
sections of MetaboAnalyst.

Bioinformatics Analysis of Sequencing
Data
Total DNA was extracted from 16 samples using the E.Z.N.A.
soil DNA kit (Omega Bio-Tek, Norcross, GA, United States).
A NanoDrop 2,000 UV–vis spectrophotometer (Thermo
Scientific, Wilmington, DE, United States) and 1% agarose gel
electrophoresis were used to analyze DNA content and quality.

The MiSeq platform (Personal Biotechnology Co.,
Ltd, Shanghai, China) was used to describe the bacterial
community based on the gene segment from the the V3-
V4 gene regions of the bacterial 16S rRNA gene primers

338F (5
′

-ACTCCTACGGGAGGCAGCAG-3
′

) and 806R (5
′

-
GGACTACHVGGGTWTCTAAT-3

′

). PCR was conducted as
follows: 3min of denaturation at 95◦C; 27 cycles of 30 s at
95◦C, 30 s for annealing at 55◦C, and 45 s for elongation at
72◦C; and a final extension at 72◦C for 10min. The AxyPrep
DNA gel extraction kit (Axygen Biosciences, Union City, CA,
United States) and QuantiFluor-ST instrument (Promega,
United States) were used to further extract, purify, and quantify

the PCR products. Subsequently, raw Illumina FASTQ files were
demultiplexed, quality filtered, and analyzed using Quantitative
Insights into Microbial Ecology (QIIME v1.9.1). Raw fastq files
were quality filtered by Trichromatic and merged by FLASH.
OTUs were clustered with a 97% similarity cutoff using UPARSE
(version 7.1). The taxonomy of each 16S rRNA gene sequence
was analyzed using the RDP Classifier algorithm (http://rdp.
cme.msu.edu/) against the Silvia 16S rRNA database using a
confidence threshold of 70%. The assembled MiSeq sequences
were submitted to the NCBI’s Sequence Read Archive (SRA
BioProject no. PRJNA552228) for open access. Estimates of
diversity values for these samples using the Chao1, Shannon,
and Simpson indexes for diversity estimation were calculated
by rarefaction analysis. Nonmetric Multidimensional Scaling
(NMDS) and cluster analysis with the ANOSIM method were
conducted using the Web server tool METAGENassist based on
unweighted UniFrac distances.

The main differentially abundant genera were selected by the
LEfSe method (https://huttenhower.sph.harvard.edu/galaxy/).
To predict metabolic genes during the process, PICRUSt (https://
huttenhower.sph.harvard.edu/galaxy/) was applied to obtain a
functional profile from the 16S rRNA data. Before metagenome
prediction, the OTUs of 16S rRNA sequences were analyzed using
PICRUSt. PICRUSt and KEGG were used to obtain functions for
the genes that were predicted to be present in the samples and to
assign the genes into metabolic pathways.

Spearman’s rank correlation coefficient was calculated with R
version 3.6.3 to evaluate the relationship among physicochemical
characteristics, microbiota, and metabolites.

Statistical Analysis
All the data were presented as means± SEM (N= 4 for chemical
and microbial analysis, N = 6 for metabolic analysis). The data
were analyzed applying the SPSS software (version 26.0, SPSS
Inc. Chicago, IL, United States). Statistical differences between
different fermentation stages were determined by Student’s t-
tests and one-way ANOVA followed by Duncan’s multiple-range
test. The P-values of the metabolomics and microbiome data
were corrected using Welch’s test and the Benjamini–Hochberg
false-discovery rate (FDR). P-values < 0.05 indicate statistically
significant differences. Bar plots were generated in GraphPad
Prism 8 (San Diego, CA, United States).

RESULTS

The Change of Physicochemical
Parameters and Microbial Community
The nutrients are presented in Supplementary Table S1. The pH
value showed a dramatic decrease from aerobic to anaerobic
fermentation stage while the content of lactic acid increased
approximately three-fold range at 48 h. The crude protein (CP)
content significantly increased from 28.21 to 31.54%, and a sharp
increase was observed in small peptides (SP). Notably, similar
significantly downward trends were observed for the levels of
amylose, NDF, phytate phosphorus, glycinin, and β-conglycinin
during the whole process of fermentation.

The composition of the bacterial community during corn
and defatted soybean fermentation is shown in Figure 1.
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FIGURE 1 | Changes of microbial community during fermentation. (A) OTU rank curve during fermentation. (B) β-diversity was performed using the ordination-based

Nonmetric Multidimensional Scaling (NMDS) based on the Jaccard index distance method and analysis of group similarities (ANOSIM) at the species level. (C)

Genus-level compositions of the bacterial community during fermentation. (D) Cladogram plot of significant genera based on LEfSe analysis (LDA scores >3.0).

α-Diversity is used to measure the diversity within a sample
or an ecosystem. The two most commonly used alpha-
diversity measurements are Richness (count) and Evenness
(distribution). The rank-curve generated by OTU ranks and their
relative abundance illustrated that α-diversity reduced during

the initial 24 h after B. subtilis treatment, whereas increased
at the anaerobic fermentation stage (Figure 1A). β-Diversity
represents the explicit comparison of microbial communities (in-
between) based on their composition and provides a measure
of the distance or dissimilarity between each sample pair. The
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result showed that microbial β-diversity based on NMDS and
Jaccard index distance method was distinct at different time
points since the structures of microbial communities were
separated into four clusters (Figure 1B). The results showed
that the predominant bacteria changed from Streptophyta and
Rickettsiales at 0 h to Bacillus and Pseudomonas in the aerobic
stage and then to Bacillus, Enterococcus, and Pseudomonas in the
anaerobic stage (Figure 1C). Significantly different bacteria from
order to genus level among different fermentation time points
were identified by the linear discriminant analysis effect size
(LEfSe) (Figure 1D). The abundance of Bacillus, Staphylococcus,
and Aerococcus increased significantly at 24 h. Enterococcus,
Pseudomonas, Pediococcus, and Facklamia were the predominant
genus at 48 h.

Cluster Analysis of Metabolites at Different
Fermentation Time Points
Unsupervised mode of the PCA can reveal the variation
between and within groups, and reflect the tendency of
distribution as well as possible discrete points. The first
principal component (PC1 = 67.0%) and the second principal
component (PC2 = 16.5%) directly showed the similarities
and differences between groups (Supplementary Figure S1A).
The result showed that fermentation samples at 0, 12, 24,
and 48 h were separated, especially by the first principal
component, and all samples fell within a 95% confidence
ellipse. The accurate differences between samples could not
be completely interpreted according to the visual distinctions
generated by the PCA plot, because PCA is an unsupervised
model and belongs to exploratory analysis. Therefore, supervised
classification models of Partial Least Squares Discriminant
Analysis (PLS-DA) and Orthogonal Partial Least Squares
Discriminant Analysis (OPLS-DA) were implemented to confirm
the transformation degree of metabolites with fermentation
time. The results showed obvious separation between different
fermentation groups indicating that it could be used to identify
the metabolic differences in the fermentation process of the
substrates (Supplementary Figures S1B,C). A further cluster
analysis was to determine whether metabolites differences
existed during the fermentation. The chart showed that
all the samples were clustered into four groups, and each
cluster with samples belonged to the same time points
(Supplementary Figure S1D). These results suggested that good
stability and reproducibility were obtained, and the change of
metabolites during fermentation was time dependent.

The Changes of Metabolic Composition at
Different Levels
Metabolome analysis revealed that nucleosides, nucleotides,
and analogs; lipids and lipid-like molecules; carbohydrates;
amino acids, peptides, and proteins were the main abundant
metabolites during the whole fermentation stage (Figure 2A).
The relative abundance of amino acids, peptides, and proteins
in the process of fermentation constantly increased (P <

0.05), whereas the abundance of nucleosides, nucleotides,
and analogs and lipids and lipid-like molecules maintained
decreasing (P < 0.05). Carbohydrates decreased from 0
to 12 h and then remained in a relatively stable state. To

find the specific change of the related metabolites, we
explored the next level of top 20 metabolites (Figure 2B).
At 0 h, daidzin, lysoPC(16:0), glycerophosphocholine,
lysoPC[18:2(9Z,12Z)], and 5-aminopentanoic acid were the
main metabolites. The top 5 metabolites at 12 h were daidzin,
norvaline, lysoPC[18:2(9Z,12Z)], 2′-O-methyladenosine,
and 5-aminopentanoic acid. Norvaline, 3,3,5-triiodo-L-
thyronine-beta-D-glucuronoside, 5-aminopentanoic acid,
imidazole-4-acetaldehyde, lysoPC[18:2(9Z,12Z)], and 2′-O-
methyladenosine were the dominant substances at 24 h. Notably,
the concentration of metabolites was sharply elevated in the
anaerobic stage. Phenylacetaldehyde dramatically raised in
the anaerobic stage and became the predominant metabolites.
3,3,5-Triiodo-L-thyronine-beta-D-glucuronoside and norvaline
in samples at 48 h were higher relative to that in 24 h. During
the whole fermentation stage, daidzin continued to reduce while
5-aminopentanoic acid persistently increased.

Different Metabolites in the Process of
Fermentation
The main metabolites based on the variable importance
for the projection (VIP) were selected and sorted to better
understand the changes of the primary different metabolites.
Totally 229 metabolites were identified after annotation,
and these metabolites have individual metabolic features at
different time points after fermentation. Top 35 significantly
different metabolites during fermentation were selected
(Figure 3A), and the VIP values of these 35 metabolites
based on the PLS-DA model were shown (Figure 3B). The
main significantly different metabolites enriched in 0 h
were trimethylamine N–oxide, 1,3,5–trihydroxybenzene,
cytidine 2′,3′–cyclic phosphate, isoferulic acid 3-sulfate, N’–
hydroxyneosaxitoxin, kojibiose, cyclic AMP, and apigenin
7–O–(6′′–O-acetylglucoside). These eight metabolites slightly
reduced from 0 to 12 h while remarkably decreased in 24
and 48 h (P < 0.05). Fumigaclavine, deterrol stearate, and
fumitremorgin B were the metabolic biomarkers at 24 h. A
total of 24 metabolites were significantly up-regulated at 48 h,
in particular, nnal-N-oxide, 4-(nitrosoamino)-1-(3-pyridinyl)-
1-butanone, and 9,10-epoxyoctadecanoic acid were the top
3 substrates, which had the high VIP scores. Phenylalanyl–
asparagine, (E)−4–[5–(4–hydroxyphenoxy)-3-penten-1-ynyl]
phenol, 9,10–epoxyoctadecanoic acid, cinnzeylanine [10]–
dehydrogingerdione, (x)−2–heptanol glucoside, and blumenol
C glucoside were the most abundant compounds identified at
48 h.

Prediction of Metabolic Pathways by
Identifying Significantly Different
Metabolites
KEGG databases were used to explore the metabolism pathway
and elucidate the mechanism of metabolic changes during
fermentation. Thus, enrichment analysis and topological analysis
were performed to find the key pathways that were most
relevant to the metabolites. A total of 22 metabolic pathways
involving 229 different metabolites were sorted out throughout
the fermentation process (Supplementary Tables S2, S3).
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FIGURE 2 | The changes of metabolic composition at different levels in the process of fermentation. (A) Relative compositions of the main metabolites. (B) Top 20

metabolites at different fermentation times.

To more intuitively and directly compare the differences of
metabolic pathways at different fermentation time points,
the first 20 metabolic pathways were retained (Figure 4).
Metabolites mapped to phenylalanine metabolism, starch and
sucrose metabolism, taurine and hypotaurine metabolism, biotin
metabolism, and cysteine and methionine metabolism were the
main metabolism pathways in the whole fermentation process.
Starch and sucrose metabolism and purine metabolism enriched

in 0 h and decreased until the end of fermentation. Taurine
and hypotaurine metabolism, glycerolipid metabolism, and
glycerophospholipid metabolism were significantly upregulated
in 24 h. A total of 15 significantly different metabolic pathways
were remarkably increased in 48 h, including phenylalanine
metabolism, biotin metabolism, cysteine and methionine
metabolism, arginine biosynthesis, and glutathione metabolism
etc. These findings suggested the succession of different
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FIGURE 3 | Significantly different metabolites during fermentation. (A) Top 35 significantly different metabolites. (B) A scatter plot of the top 35 distinct metabolites

was identified by applying variable importance projection (VIP).
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FIGURE 4 | Prediction of metabolic pathways by identifying significantly different metabolites. The significantly different metabolites are based on the variable

importance for the projection (VIP) >1 and P < 0.05.

metabolic pathways during the process of fermentation,
especially the transformation of related metabolism caused by
the change of fermentation condition.

Correlations Among the Significantly
Different Microbiota, Nutritional Value,
Metabolites, and Metabolic Pathways
During Fermentation
To further investigate the observations regarding the impact
of the changes in the bacteria, nutritional indexes, metabolites,
and metabolic pathways, correlation analyses were performed.
Bacillus, Staphylococcus, and Aerococcus which increased at
24 h had the opposite relations with nutritional value and
metabolites, compared with that of 0 h enriched microbes.
Bacillus, Staphylococcus, and Aerococcus were positively related
with amino acids and nitrogen compounds and negatively
correlated with lipids and nucleosides, and contributed to the
nutritional value of the substrates (Figure 5A). Notably, Bacillus
was negatively related to carbohydrates. Correlations among the
metabolites, microbiota, and nutrients in the anaerobic stage are
shown in Figure 5B. Enterococcus and Facklamia had positive
correlations with crude protein, small peptides, and lactic acids,
and were negatively correlated with most of the metabolites.
The correlations between microbes and metabolic pathways were

further conducted. Bacillus was negatively related to starch and
sucrose metabolism and positively correlated with most of the
amino acid metabolism in the aerobic stage (Figure 5C). In the
anaerobic stage, Enterococcuswas positively related to amino acid
metabolism (Figure 5D).

Integrated Microbiomic and Metabolomic
Changes of Functional Pathways During
Fermentation
The integrated metabolic pathways are shown in the metabolome
viewmap (Figure 6). A total of 6 microbial metabolism pathways
based on KEGG database at level 1 were identified, including
carbohydrate metabolism, lipid metabolism, amino acid
metabolism, metabolism of cofactors and vitamins, metabolism
of other amino acids, and glycan biosynthesis and metabolism.
Carbohydrates metabolism consistently increased from the
aerobic to anaerobic stages, while the metabolism of cofactors
and vitamins, glycan biosynthesis, and metabolism decreased
from 0 to 48 h. Lipid metabolism and metabolism of other
amino acids were enriched at 12 h, amino acid metabolism
increased to a high level at 24 h. At level 2, starch and sucrose
metabolism and glyoxylate and dicarboxylate metabolism
showed an opposite expression trend of change. Primary bile
acid biosynthesis and glycerolipid metabolism consistently
increased, but glycerophospholipid metabolism decreased
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FIGURE 5 | Relationships among the microbiota, metabolites, nutritional value, and KEGG pathways. Relationships among the microbiota, metabolites, and

nutritional value in aerobic stage (A) and anaerobic stage (B). Relationships between the microbiota and metabolite predicted KEGG pathways in the aerobic stage

(C) and the anaerobic stage (D). ***P < 0.001, **0.001 < P < 0.01, *0.01 < P < 0.05, respectively.

from 0 to 48 h. C-lysine was the product of three major
metabolic pathways involving carbohydrate metabolism, lipid
metabolism, and amino acid metabolism, and then could be
converted into 5-amino-levulinate in porphyrin and chlorophyll
metabolism. Phosphatidyl-ethanolamine was produced by
glycerophospholipid metabolism, and further generaterd
ethanolamonephosphate which was higher at 12 h. The content
of L-cysteine and taurocholate was down-regulated, and L-
cysteine was the precursor of taurine which can be converted
into taurocholate.

DISCUSSION

In recent years, fermented plant-based foods have gained
attention due to their potential health benefits (28, 29).

Fermented corn and soy-based foods such as fermented corn
flour, Natto, Sufu, Miso, Douchi, and soy sauce are popular
because they are important plant-derived food for humans
and have a huge global consumption. Many research studies
have reported that fermentation is capable of reducing anti-
nutritional factors, making the original substrate more flavorful
and nutritional. However, few studies spotlight the dynamics of
fermented corn and soybean by-products by appling microbiome
and matebolome. The present study indicated the temporal
changes during microbial fermentation of fermented corn and
defatted soybean based on using a multi-omics approach.
Bacillus, Enterococcus, and Pseudomonas were mainly involved
in the maturation of the fermented corn and defatted soybean.
Importantly, phenylalanine metabolism was the main and
vital metabolism pathway in the anaerobic fermentation stage.

Frontiers in Nutrition | www.frontiersin.org 9 February 2022 | Volume 9 | Article 831243

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Wang et al. Fermented Corn and Soybean

FIGURE 6 | Integrated microbiomic and metabolomic changes of functional pathways. The KEGG level2 was selected based on significantly different metabolic data.

The abundance of KEGG level2 and 3 were predicted by 16S data.

Correlation analysis suggested a strong relationship between
Bacillus and amino acids in the aerobic stage, and Enterococcus
mainly acted as an acid and amino acids producer at the
anaerobic stage of fermentation.

The changes of metabolites were found to be time dependent
during fermentation by adapting a two-step fermentation
method. PLS-DA analysis and the structure of metabolites
showed that metabolic profiles were significantly different among
the groups. The microbial analysis also revealed that the dynamic
changes of microbial community occurred during this two-stage
solid-state fermentation process. These findings suggest that the
change of metabolites during fermentation may be caused by
the change of microbial niche at different stages. A recent study
reported that different fermented soy foods had various soluble
and volatile metabolites (30). Besides, fermenting microbes and
metabolites contributes to the taste and flavor of Sufu (31). These
findings have implications for considering the metabolites as a
way to assess the fermented plant-based food and the metabolites
can be used to understand the fermentation stages.

Metabolites annotation further indicated that metabolic
activities of carbohydrates, amino acids, and lipid metabolism
were dominant during fermentation, which is in agreement
with previous studies about fermented soybean paste (32, 33).
Amino acids, peptides, and proteins increased, whereas lipids
and lipid-like molecules, and carbohydrates decreased during
fermentation in our study. These results were consistent with
the changes in nutrients as the content of antigenic protein,
NDF, ADF, amylose, and crude fat reduced, and the level of
crude protein raised during the anaerobic fermentation stage.
For individual metabolites, daidzin, a natural organic compound
in soybean (34), is elementary for the oxidation of acetaldehyde

derived from ethanol metabolism and can be converted by
resident bacteria for secondary metabolism (35). Soybean and
soybean-based products are rich in daidzin, which is poorly
absorbed in the human gut (36). The decrease of daidzin
during the fermentation process in our study indicates that
fermentation improves the bioavailability of isoflavones and
assists in the digestion of protein. 5-Aminopentanoic acid is a
lysine degradation product, which could be produced by bacterial
catabolism of lysine (37). Nontargeted urine metabolomics
analysis showed that 5-aminopentanoic acid was a biomarker,
which played a role in protective and therapeutic effects on high-
fat feed-induced hyperlipidemia in rats (38). The increase of 5-
aminopentanoic acid suggests that the fermentation up-regulates
potential benefit of the substrates. Notably, the dramatic increase
in phenylacetaldehyde was observed at 48 h. Phenylacetaldehyde
is a typical fragrant compound in traditional Chinese-type soy
sauce and alcohol-free beers (39, 40). These results provide an
evidence that important contribution of these flavor compounds
to the value of fermented corn and defatted soybean.

The identification of significantly different metabolites further
confirmed that fermentation caused significant changes in
various metabolites. Previous studies reported that several
bacterial species (Bacillus and Pseudomonas) metabolically
degraded trimethylamine oxide (TMAO) in food fermentation
(41). Clinical evidence supported that there is a strong
association between elevated TMAO levels with increased risk
of developing diseases such as atherosclerosis and thrombosis
(42). The present study demonstrated that the level of TMAO
continued to decrease, and Bacillus and Pseudomonas were
rich in the fermentation stage. These findings are consistent
with previous reports and suggested that fermentation reduces
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harmful substances. The source of dipeptides and free amino
acids is mainly caused by protease secreted by microorganisms
that decompose the protein components of a Thai fermented
soybean (43). Jin et al. (44) found that L-theanine, glutamine, and
glutamic acid enriched in the fermented corn, defatted soybean,
and bran incubated with a combination of probiotics. Studies
showed that the concentrations of most amino compounds
gradually increased during fermentation with soybean as
substrate (32, 45). The concentration of phenylalanyl-asparagine,
protein serine, and isoleucyl-histidine showed a steady increase
over time, which supports the notion of a previous study.
Phenylalanyl-asparagine and isoleucyl-histidine are incomplete
breakdown products of protein digestion or protein catabolism.
Phenylalanine, isoleucine, and histidine are essential amino-
acids. Serine, a health-promoting compound, is functionally
important in many proteins which are involved in the
metabolism of fats, fatty acids, cell membranes, and a healthy
immune system. Thesemetabolites outcomes directly implied the
degradation of protein during fermentation and the production
of amino acids, peptides, and analogs occurred and may play
essential roles in quality improvement of the fermented corn and
defatted soybean.

To reveal the specific effect of the significantly different
metabolites during fermentation, KEGG databases were
used to characterize the most influential pathways. The level
of phenylalanine and glutamine was improved during the
fermentation of soybean (46, 47). Tyrosine is considered
to be an indispensable dietary amino acid in humans and
animals, and a diet supplemented with phenylalanine is a
common way of compensating it (48). Glutathione is a major
antioxidant, which is metabolized in multiple ways leading
to the biosynthesis of glutamate, glycine, cysteine, and other
amino acids (49). The present study showed that phenylalanine
metabolism, glutathione metabolism, cysteine, and methionine
metabolism were the top 3 important metabolism pathways
during fermentation. Our previous study also demonstrated
that the content of amino acid metabolism gradually increased
as fermentation progressed in terms of the predicted microbial
function (24). These results indicated that the metabolism of
amino acids was active and the number of amino acids increased
in the fermentation of corn and defatted soybean. In addition,
phenylalanine metabolism is a major pathway for anthocyanin
biosynthesis (50). Anthocyanin aroused a wide public concern
as a potent beneficial metabolite due to its antioxidant activity,
antimicrobial, antiviral, and antithrombotic characteristics
(51, 52). Anthocyanin was detected after fermentation as well,
suggesting that fermentation may improve the nutritional value
of the fermented substances. Therefore, these affected metabolic
pathways are closely related to the fermented corn and defatted
soybean and provide clues for further study on the effect of
two-stage fermentation on its metabolites.

Complex microbial–ecological interactions influence the
production ofmetabolites. In the first-stage aerobic fermentation,
Bacillus rapidly proliferated. Relevant studies reported that
Bacillus was the predominant fermentative bacteria responsible
for the natural fermentation of protein-rich food, production
of flavor substances, conversion of complex food compounds

in small components in the fermentation of west African seed
condiments (53). In a Nigerian fermented soybean condiment,
Bacillus was the dominant species occurring throughout the
fermentation (54). Bacillus was positively related to amino
acids and nitrogen compounds revealing that the proteolysis
of Bacillus results in the increase of peptides, amino acids,
and ammonia from proteins. In addition, the degradation of
complex carbohydrates from the enzymes secreted by Bacillus,
such as amylase, galactanase, galactosidase, glucosidase, and
fructofuranosidase, interpreted the positive correlation between
Bacillus and carbohydrates in the aerobic stage. Enterococcus,
a lactate-producing bacteria as well as an acid-tolerant bacteria
(55, 56), plays important roles in food production, particularly
they can accelerate the ripening of food and improve the taste and
flavor through proteolysis, lipolysis, carbohydrates breakdown,
and the production of aromatic compounds (57). Enterococcus
was the most dominant genus in the anaerobic fermentation
stage. The enzyme secreted by Enterococcus and Bacillus played
important roles in hydrolyzing proteins, and the accumulation
of amino acids and related substances occurred in the whole
process, resulting in a positive correlation between Enterococcus
and amino acids. Small peptides in foods are generally easy to be
absorbed and utilized by the gut, and most of them have specific
biological functions (58–60), such as improving gut health and
immunity. The relationships ofmicrobes andmetabolic pathways
further confirmed the effects on protein and carbohydrates
breakdown of Bacillus and amino acid synthesis of Enterococcus.
A detailed understanding of the fermentation microbiota
and their unique functional characteristics is fundamental
to developing high-quality and safe fermented products and
enhancing specifically adapted starter cultures. These results
implied that Bacillus and Enterococcus were critical bacteria
in corn and defatted soybean fermentation and suggested
that they may be the optimized selective strains used in the
two-stage fermentation.

The overview of the metabolic pathways map will help to
further explain the causes of the differences in these metabolites
and to explore the metabolic mechanism. Interestingly, the
content of amino acid metabolism increased at the aerobic phase
but declined abruptly at 48 h, and the consistent increase of
carbohydrates was observed according to the predicted microbial
functions. These findings were distinct from the metabolomics
analysis, suggesting the limitation and deviation of the analysis of
the dynamics during the fermentation based solely on microbial
data. In the first stage, bacteria like Bacillus which directly
participated in amino acid metabolism resulted in increased
metabolic capacity. With the proliferation of carbohydrate-
degrading bacteria and the increased acidification in the second
stage, the main metabolism of fermentation gradually changes
to carbohydrate metabolism. Therefore, the distinctive dominant
metabolic functions at different fermentation stages were further
interpreted. The physicochemical features were consistent with
the change of metabolites, verified the metabolism differences
caused by the significantly different bacteria in the two-stage
fermentation. The metabolic process of fermented plant-based
food is complex, and the specific metabolic mechanisms of
these metabolites identified in our study are still not fully
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understood. Thus, future studies should focus on the secondary
metabolites and establish standardized metabolic fingerprints for
the fermentation.

CONCLUSIONS

In summary, the dynamic changes in the nutritional properties,
microbial composition, and metabolites during the corn and
defatted soybean fermentation were systematically studied.
Phenylalanine metabolism, glutathione metabolism, and cysteine
and methionine metabolism were considered to be the important
metabolic pathways affecting the quality of fermented corn and
defatted soybean. The results further unraveled that Bacillus spp.
was the predominant genera that mainly participated in the
breakdown of protein and carbohydrates in the aerobic stage, and
Enterococcus spp. was associated with amino acid metabolism
and lactic acid production toward the end of fermentation.
This study potentially serves as a foundation for increasing the
nutrition of corn and defatted soybean food and guides the
underlying fermenting mechanism of solid-state fermentation of
plant-based food.
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