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Abstract

Recovery from disturbance in deep water is poorly understood, but as anthropogenic impacts increase in deeper water it is
important to quantify the process. Exploratory hydrocarbon drilling causes physical disturbance, smothering the seabed
near the well. Video transects obtained by remotely operated vehicles were used to assess the change in invertebrate
megafaunal density and diversity caused by drilling a well at 380 m depth in the Norwegian Sea in 2006. Transects were
carried out one day before drilling commenced and 27 days, 76 days, and three years later. A background survey, further
from the well, was also carried out in 2009. Porifera (45% of observations) and Cnidaria (40%) dominated the megafauna.
Porifera accounted for 94% of hard-substratum organisms and cnidarians (Pennatulacea) dominated on the soft sediment
(78%). Twenty seven and 76 days after drilling commenced, drill cuttings were visible, extending over 100 m from the well.
In this area there were low invertebrate megafaunal densities (0.08 and 0.10 individuals m22) in comparison to pre-drill
conditions (0.21 individuals m22). Three years later the visible extent of the cuttings had reduced, reaching 60 m from the
well. Within this area the megafaunal density (0.05 individuals m22) was lower than pre-drill and reference transects (0.23
individuals m22). There was a significant increase in total megafaunal invertebrate densities with both distance from drilling
and time since drilling although no significant interaction. Beyond the visible disturbance there were similar megafaunal
densities (0.14 individuals m22) to pre-drilling and background surveys. Species richness, Shannon-Weiner diversity and
multivariate techniques showed similar patterns to density. At this site the effects of exploratory drilling on megafaunal
invertebrate density and diversity seem confined to the extent of the visible cuttings pile. However, elevated Barium
concentration and reduced sediment grain size suggest persistence of disturbance for three years, with unclear
consequences for other components of the benthic fauna.
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Introduction

Exploratory hydrocarbon drilling activities are increasing in

deeper water [1,2] and in more environmentally sensitive areas

[3]. Environmental impacts associated with offshore exploration

drilling include the discharge of cuttings on to the seabed [4],

discharge of produced water [5] and the possibility of a major blow

out or oil spill [6]. By their nature blow outs and oil spills are

unpredictable events, but disturbance from cuttings is well

regulated and monitored, providing a useful opportunity to study

disturbance in inaccessible and normally quiescent deep waters.

In modern best-practice exploration drilling, disturbance to the

seabed at well locations results from the discharge of a mixture of

drill cuttings and water-based drilling mud (fluid used to lubricate

the drill bit and maintain the structural integrity of the well).This

occurs during the initial phase of drilling when the widest diameter

sections of the hole are drilled (the ‘‘top-hole’’), before the marine

riser and blow-out preventer (BOP), a large metal structure sitting

on top of the well, are deployed. This disturbance is characterized

by a combination of physical smothering of the seabed, associated

changes in sediment structure, and the potential toxic effects of

exposure to the chemical constituents of the mud used in the

drilling process [7,8,9]. Barite is often added as a weighting agent

in drilling mud so barium is a frequently used tracer for drilling

disturbance [10,11]. After deployment of the BOP the cuttings and

mud are re-circulated to the surface, cleaned and discarded from

the rig. In contrast to this practice, older methods of exploration

drilling discharged greater quantities of oil-based drilling mud and

cuttings to the seabed.

Exploration drilling disturbance initially results in reduced

abundance and diversity of the meiofaunal [12], macrofaunal

[13,14] and megafaunal [4,15] components of benthic communi-

ties. The deposition of cuttings will also affect sediment bacteria,

which can comprise up to 90% of benthic biomass [16]. Reduced

benthic diversity, in turn, may result in reduced ecosystem

functioning [17]. In addition, there is some experimental evidence

that drilling disturbance changes overall ecosystem functioning.

Biogeochemical fluxes from the sediment (leading to oxygen
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depletion in the sediment) were altered immediately after addition

of cuttings, and bioturbation inhibited by increased sedimentation

[8,18,19].

In the north-east Atlantic, where water-based drilling mud is

used, exploration drilling usually has an impact on the seabed,

visible in remote video survey, extending 100 to 200 m from the

well. This results in reduced sediment heterogeneity and

significant reductions in megafaunal abundance and diversity

shortly after the disturbance [4,20]. According to older studies,

which report on disturbance from oil-based drilling mud,

hydrocarbon drilling in shallower water leads to altered sediment

characteristics with resultant changes to macrobenthic communi-

ties over larger areas [11,20,21]. Even in more accessible shallower

areas it is unclear how long the effects of such disturbance persist

[22] and few studies of recovery from any form of anthropogenic

disturbance have been carried out in deep water [23,24].

Recovery typically implies the return of an ecosystem to pre-

disturbance conditions as a result of the operation of homeostatic

ecological control mechanisms [25]. Recovery is a complex

phenomenon involving various spatially and temporally dynamic

biotic and abiotic changes. The recovered ecosystem may be

altered in some way from its original state, for example in terms of

function, structure, species composition or diversity [25].

The benthic megafauna includes those organisms over 1 cm

that inhabit the sediment-water interface [26]. Benthic megafaunal

organisms play a key role in the functioning of deep-sea ecosystems

[27]. Through their actions such as burrowing and feeding they

redistribute sediment and influence local scale biogeochemistry

[28,29]. The presence of sessile forms may influence habitat

heterogeneity [30]. The megafauna may be affected in several

ways by drilling disturbance. For example, physical smothering

has been shown to induce increased stress protein expression in

motile forms [31] while sessile suspension feeding organisms may

also be negatively affected by sedimentation [32].

The well-documented and relatively accessible nature of

exploration drilling disturbance provides a valuable opportunity

to investigate the process of recovery of benthic megafauna in

deeper water. Through the SERPENT project [33] a time-series

study of the benthic invertebrate megafauna was carried out

around an exploration well at the Morvin field in the Norwegian

Sea. Surveys were conducted before drilling, and 27 days, 76 days

and three years after drilling and addressed four objectives: 1) to

describe the megafaunal species diversity and abundance at the

Morvin location, 2) to identify the temporal change in the visible

extent of drill cuttings disturbance, 3) to carry out a local-scale,

time-series assessment of recovery of benthic megafaunal inverte-

brates from hydrocarbon drilling disturbance, 4) to use evidence of

bioturbation as an indicator of ecosystem function along a

disturbance gradient. These objectives are designed to test the

hypothesis that over a period of three years physical and biological

processes redistribute drill cuttings and water based mud to an

extent that megafaunal organism abundance and diversity can

recover after an initial physical disturbance from exploration

drilling in deeper water.

Methods

Ethics statement
No specific permits were required for the described field studies.

The site was part of Statoil’s production licence 134b and subject

to oil drilling activities. No invertebrate megafauna specimens

were collected as the work was carried out using video techniques.

Study location
The Morvin field is located on the continental slope of the

Norwegian Sea (Figure 1). On 24th March 2006 drilling

commenced on an exploration hydrocarbon well from the semi-

submersible drilling rig West Alpha in 380 m water depth; position

380172 E, 7224481 N. Positional information was recorded in

Universal Transverse Mercator (UTM) zone 32 N based on the

European Datum 1950 (ED50).

Data collection
Video surveys. Three video transect surveys were carried out

in 2006 using an Oceaneering Hydra Magnum 041 work-class

drill-support Remotely Operated Vehicle (ROV) launched directly

from the West Alpha. Each survey comprised eight transects,

approximately 100 m in length, limited by ROV tether length

(owing to launch from the stationary drilling rig). Surveys were

carried out one day before (23rd March 2006), 27 days after (21st

April 2006) and 76 days (9th July 2006) after drilling. The straight-

line transects radiated from the well location in 8 directions (0, 45,

90, 135, 180, 225, 270, 315u: Figure 1). Transects conducted

before drilling followed a set heading (using the ROV gyrocom-

pass) from a buoy marking the intended well position. Distance

from the well was estimated from the amount of ROV tether

unwound. After drilling ROV sonar was used to improve

navigational precision and transects were flown towards the

BOP (a clear sonar target). The ROV was flown at a speed of

approximately 0.2 m s21 with the standard-definition colour video

camera (Kongsberg OE1366) approximately 1 m above the

seabed. The camera was positioned at an angle of 18u from

horizontal (the maximum angle possible without viewing the ROV

frame) with the zoom set to maximum wide angle. Transect width

(mean of 1.0 m; max variation60.2 m) was calculated from the

camera acceptance angles and verified following Jones et al.

(2006). A digital stills camera (Kongsberg OE14-108) was used to

obtain high-resolution photographs of organisms for species

identification in separate, opportunistic surveys. The pre-drilling

SW transect was omitted from further analysis owing to poor

visibility.

Over the 3rd to 4th May 2009, more than three years after

drilling commenced, an additional video survey was carried out

from the vessel Acercy Petrel equipped with the Acergy Solo MKII

survey class ROV. Four video transects of 1 km length were

carried out, crossing the well at their mid point. For comparison,

ten reference transects were also taken (Figure 1). These were

100 m in length, between 1 and 3 km from the well. Starting

points and headings for the reference sites were randomly selected.

The Morvin area had been the subject of extensive deep-water

coral reef mapping and studies of seabed fluid flow [34,35]; thus

any reference transects located near possible reef features were

rejected and another random starting point and heading

generated.

Recording of the transects began and ended 20 m beyond the

planned positions to ensure that the correct altitude and speed

were attained before the intended start/finish point. The ROV

was flown at approximately 0.3 m s21 with the camera height of

approximately 2.5 m above the seabed. The colour video camera

(IMENCO Z 1051) was as close to vertical as possible at an angle

of 24u below the horizontal with the zoom set to maximum wide

angle (mean transect width of 2.6 m; max variation60.3 m).

UTM positional data (from Ultra-Short Baseline Navigation) were

continually recorded. The greater ROV altitude in this survey is

because of differences in equipment associated with the survey

carried out from a ship in contrast to the earlier surveys which

Recovery of Megafauna from Drilling Disturbance

PLOS ONE | www.plosone.org 2 October 2012 | Volume 7 | Issue 10 | e44114



were carried out from a drilling rig and may cause some variation

in both species density and diversity measurements.

The four surveys described above will be referred to as ‘‘Pre’’ (1

day before drilling), ‘‘Post 1’’ (27 days after drilling commenced),

‘‘Post 2’’ (76 days after drilling) and ‘‘Post 3’’ (three years after

drilling). Reference sites studied three years after drilling are

referred to as ‘‘R’’ sites.

Additional data collection. Sediment samples were col-

lected using ROV push corers before and after drilling. Before

drilling, single samples were collected from the well location at

approximately 50 and 100 m north of the well. After drilling (21st

April 2006) single samples were collected at 10 m and 100 m

north east and west of the well. The samples were retrieved to the

surface, the depth of an visible drill cuttings measured and the top

50 mm retained and frozen.

Five graduated marker buoys were deployed around the well

before drilling commenced. The marker buoys were placed at

eight metres north, east and west of the well and at 50 m and

100 m north east of the well. Observations of sediment

accumulation around the buoys were made using the ROV at

intervals during the drilling programme. The buoys were removed

from the seabed at the end of the drilling programme in 2006.

In 2009 three replicate sediment samples were collected using

ROV push corers at 25 and 50 m from the well on four headings

(N, NW & SW). On all headings the samples were divided into 0–

20, 20–40 and 40–60 mm sections and preserved by freezing. It

was not possible to collect the planned samples at 100 m from the

well because of time limitations.

Video data analysis
In all cases, video was replayed at half speed and every

individual animal was counted and its position recorded as it

passed the bottom of the screen. Colonial organisms were counted

as single individuals. Megafaunal organisms were identified to the

lowest possible taxonomic level. Where species identification was

not possible, operational taxonomic units (OTU) were used. Fish

were excluded from analysis of benthic abundance data because of

their motility and tendency of some species to follow the ROV.

Megafaunal density was calculated from abundances divided by

the area of the transect section (transect section length multiplied

by image width). Features on the seabed such as rocks and burrows

were recorded and all data were plotted in a geographic

information system using the software ArcGIS (version 9.3).

The distribution of drill cuttings was assessed visually from the

video footage. Disturbed sediment was recognized on the basis of

its characteristically pale colour and absence of visible evidence of

bioturbation (Table S1). The boundaries of the disturbed area

were identified and mapped. Megafaunal datasets were extracted

from these zones in ArcGIS for comparison of the disturbed zones

with other areas.

Data for each well-site transect were split into 100 m distance

zones. In the post-drilling surveys part of the 0–100 m zone was

Figure 1. The Morvin survey design. The 2009 video transect survey is shown in red. Previous surveys were at the same location with 100 m
video transects radiating from the well and are shown in green. The location of the Morvin field in the Norwegian Sea is shown as an inset.
doi:10.1371/journal.pone.0044114.g001
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visibly disturbed, so this sample unit was split into two sections

‘‘Disturbed’’ and ‘‘Beyond Disturbance’’ in order to identify the

effects of disturbance at the highest resolution possible with video

observations. For statistical analysis the pre-disturbance transects

were split into the same sections as described above (based on the

disturbance extent in Post 1 in 2006) so that the densities of fauna

in the pre-drilling samples were properly compared in the

statistical model. Results were presented based on the disturbance

zones rather than consistent distance zones in order to identify the

impact after three years.

To describe abundance, both total density and density of

organisms associated with different substrata were calculated. A

range of diversity indices were calculated to assess both the

evenness and species richness elements of diversity [36]. Sampling

units were of variable area so species richness (S) was rarefied to 50

individuals (ES(50)). Evenness was calculated as Pielou Evenness

(J9). In addition, the widely-used Shannon-Wiener Index (H9) was

presented to allow comparison with other studies. These measures

were calculated using the software package PRIMER v.6 [37].

Three generalized linear (GLM) statistical models were inde-

pendently developed [38] to examine whether the density (no.

m22) of total, sessile and motile megafauna at Morvin could be

explained using the explanatory variables distance and year.

Random sites were coded with a distance of .1000 m from

drilling and included in all analysis. All explanatory variables were

treated as categorical data. The model was fitted with quasi-

Poisson errors using the R function GLM and the ANOVA

function of the R package CAR (companion to applied regression)

[39] in the R programming environment [40].

The megafaunal assemblage composition was investigated using

multivariate analyses. A fourth root transformation was applied to

buffer the influence of dominant taxa and similarities were

calculated using Bray-Curtis coefficients [41]. The similarity

values were subjected to both classification (hierarchical group-

average clustering) and ordination (non-metric multi-dimensional

scaling, MDS) using the PRIMER software. The difference in the

megafaunal assemblage composition was assessed using two-way

permutational multivariate analysis of variance (PERMANOVA)

[42] with distance zones and survey time as factors. PERMA-

NOVA was implemented using the R package Vegan [43].

In addition to the megafauna, structures on the seabed were

documented. Rocks were counted and used in later analysis to

document the background environment. Conspicuous burrows in

the sediment (likely decapods, Geryon sp. – Figure S1) were also

counted as an indicator of bioturbation activity along the

disturbance gradient.

Recovery
Response Y, which represents recovery of the benthic environ-

ment after disturbance [44], was calculated based on the

percentage change from mean ‘‘pre-drill’’ values of the following

indices of diversity: mean motile organism density, sessile organism

density, species richness, evenness, Shannon Wiener diversity and

Bray-Curtis similarity. Response Y is the percentage difference

between impacted and control sites. In order to prevent a right-

skewed distribution [44], it is presented transformed as follows

(where X is the percentage difference from the pre-drill survey):

y~ log e(1z½x=101�)

Variation in response Y was tested using two-way ANOVA on

ranks with the factors distance and year using the R package.

Environmental data
Chemical (heavy metals) and particle size distribution

analyses were conducted on the sediment samples. Heavy

metals analysis (Cd, Pb, As, Se, Sn) was carried out using atomic

absorption spectroscopy (Perkin Elmer SIMAA 6000). The

method applied was in accordance with Norwegian standard

NS4770 and consisted of a partial acidic extraction using 7

NHNO3 in an autoclave. Mercury was analysed according to

the same standard but using a different instrument (CETAC M-

6000A Hg Analyzer). Thirty other elements were analysed

according to the same standard using ICP-AES (Perkin Elmer

Optima 4300 Dual View). Particle size distributions were

determined using a Coulter LS200 instrument in the range

0.4–2000 mm.

During the surveys depth and temperature were measured using

a ROV-mounted sensor (Paroscientific DigiquartzH 8 series).

Results

The background environment
The well was located at 380 m depth. There was no

appreciable depth variation within 100 m of the well but beyond

this, in the 2009 survey area (well site and reference video

transects) depth varied between 362 m and 397 m. The

predominantly flat sediment was punctuated by small rocks

providing some hard substratum. Decapod burrows in the soft

sediment were an important feature of the environment. Seabed

water temperature was 7.4uC on both 20th April 2006 and 3rd

May 2009. Salinity was 35.5 on the same date in 2009, but was

not measured in 2006.

The invertebrate megafauna observed during the background

quantitative video surveys (Pre-drill and R transects) comprised 27

distinct taxa with a total density of 0.22 m22 (examples shown in

Figure 2 and listed in Table 1). Additional taxa were observed

across all the disturbance transects. The megafauna was domi-

nated by Porifera (44.5% of total fauna) and Cnidaria (40.6%).

The Echinodermata (11.6%) were also important. Of the

Cnidaria, soft-sediment dwelling pennatulid octocorals were most

abundant and were represented by four distinct taxa, of which

Kophobelemnon stelliferum was the most common (24.5% of all

observations). There were nine distinct poriferan taxa, which were

predominantly attached to hard substrates; Phakellia sp. (13.5%)

and the unidentified ‘‘tiny white sponge’’ (9.2%) were the most

abundant. The echinoderms were dominated by the deposit-

feeding holothurian Parastichopus tremulus (8.3%).

Species diversity and community composition at
background sites

Univariate analysis showed no significant difference in diversity

(density, S, H9, J) between the R sites and Pre sites (assessing

temporal variation between 2006 and 2009). There was also no

significant difference in multivariate community composition

among the background (Pre and R) transects (PERMANOVA,

F(1) = 1.405, p = 0.171). However, assessing fine-scale spatial

heterogeneity, there was a positive relationship between the

number of rocks in the background transects and species richness

and diversity (linear regression; Rarefied species richness:

R2 = 0.51, ANOVA, F(1, 15) = 15.58, p,0.001, Shannon Wiener

species diversity: R2 = 0.60, ANOVA, F(1, 15) = 22.47, p,0.001;

Figure 3). Rocks were unevenly distributed throughout the survey

area and their presence increased the between-transect variation

in measures of total density and diversity.

Recovery of Megafauna from Drilling Disturbance
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Physical disturbance
The well was drilled in April 2006, resulting in the discharge of

192000 kg of barite drilling mud to the seabed. Discharge to the

seabed was only from the top-hole (420 and 360 diameter sections).

In addition, 77000 kg of barite were discharged to the sea surface

from the 17.50 section (Aas 2008, unpublished report). This

resulted in a disturbance to the seabed with visible cuttings

extending beyond 100 m in some directions in the two post-

drilling surveys in 2006 (Figure 4). The visible extent of this

disturbance decreased from .26600 m2 in 2006 to 3500 m2 by

2009. Seventy-six days after drilling, the cuttings reached 400 mm

in thickness close to the well. At 50 m distance the thickness of the

deposit was considerably less (,50 mm) but still evident as a layer

at the surface of the push cores (Table 2). In Post drill 2 the mean

sediment barium (Ba) concentration (5450 mg kg21) was elevated

above the pre-drilling concentration (150 mg kg21) and Norwe-

gian Continental Shelf background levels (4.6–554 mg kg21)

(SINTEF unpublished report). Three years later (Post 3), the

mean sediment surface Ba concentration remained high at 25 and

50 m from the well (6133 and 6291 mg kg21 in the top 20 mm)

but decreased with depth in the sediment (3283 and 547 mg kg21

at 40–60 mm). There were significant differences in the Ba

concentration of the sections taken from different depths in the

sediment at both 25 m (ANOVA, F(2, 21) = 4.02, p,0.05) and

50 m (Kruskal-Wallis H(2) = 15.97, p,0.001). Sediment particle

size was affected by the deposition of drilling mud and cuttings.

The percentage of particles under 69 mm (% fines) increased in the

near-well samples taken in Post 2 in comparison to the Pre samples

and those taken further from the disturbance in Post 2. In Post 3,

the % fines remained high in the surface sediment at both 25 and

50 m from the well. There was a reduction in % fines with depth

in the sediment, reaching values similar to Pre-drill at 20–40 and

40–60 mm depth at 50 m from the well.

Effects of disturbance on megafaunal assemblage
composition

There was variation in mean density of soft-substrate, hard-

substrate and generalist megafauna between the sampling units

(Figure 5). There was a significant main effect of distance (L-

ratio(d.f. = 5) = 27.703, p,0.001) and time (L-ratio(3) = 25.362,

p,0.001) on total density of benthic invertebrate megafauna at

Morvin. There was, however, no significant interaction (L-

ratio(3) = 0.634, p = 0.889). Soft sediment invertebrate megafaunal

density showed an effect of distance (L-ratio(5) = 15.6, p,0.01) but

no significant effect of time (L-ratio(3) = 6.195, p = 0.1). There was

no significant interaction (L-ratio(3) = 0.785, p = 0.85). For the

density of hard substrate invertebrates there was a significant main

effect of time (L-ratio(3) = 13.467, p = 0.004), but no significant

effect of distance (L-ratio(5) = 3.985, p = 0.552) or interaction

between distance and time (L-ratio(3) = 4.03, p = 0.258).

PERMANOVA showed a significant effect of time (F(3) = 0.163,

p,0.001) but no significant effect of distance (F(5) = 0.055,

p = 0.163) or interaction (F(3) = 0.021, p = 0.761). The multidi-

mensional scaling plot (Figure 6) of the combined data for each

transect disturbance/distance zone grouped the R and Pre sites

and the sites beyond disturbance at the 80% similarity level.

It should be noted that the two-way design used here was

limited by the lack of samples from distance zones greater than

100 m in all years except Post 3. There were only two distance

zones for samples at most times, both within 100 m from the

drilling activity. This limited replcation will reduce the ability to

detect a main effect of distance or an interaction between distance

and time in the statistical tests.

Recovery
For each of the indices tested, the transformed percentage

difference from Pre-drill (Response Y) varied across the distance and

time scales considered (Figure 7), but was generally more negative

close to the disturbance event in both space and time. Response Y

for the density of motile organisms showed no main effects of

distance (ANOVA on ranks F(5,70) = 2.135, p = 0.071), time

(F(2,70) = 1.253, p = 0.292) or the interaction (F(2,70) = 1.297,

p = 0.280). Response Y for the density of sessile organisms showed

significant main effects of distance (F(5,70) = 3.967, p,0.01), but no

significant effect of time (F(2,70) = 1.928, p = 0.153) or the interaction

(F(2,70) = 0.702, p = 0.499). Response Y for the Shannon-Wiener

diversity and estimated richness (ES50) of megafauna revealled

significant main effects of distance (H9: F(5,70) = 14.116; ES50:

F(5,70) = 16.530; p,0.001 for both) and time (H9: F(2,70) = 4.947,

p,0.01; ES50: F(2,70) = 4.027, p,0.05) and the interaction (H9:

F(2,70) = 3.349, p,0.05; ES50: F(2,70) = 3.280, p,0.05). Response Y

for the evenness of megafauna (J) had a significant main effect of

distance (F(5,70) = 4.275, p,0.05) but no significant main effect of

time (F(2,70) = 0.640, p = 0.530) or the interaction (F(2,70) = 0.700,

p = 0.502). Response Y for the Bray-Curtis similarity between

megafaunal assemblages did not reveal any significant effects of

distance (F(5,70) = 2.068, p = 0.080), time (F(2,70) = 2.551, p = 0.085)

or the interaction (F(2,70) = 0.310, p = 0.734).

Evidence of biological activity
Decapod burrows were common in the soft sediment at Morvin

with mean densities of 3.5 m22 in the Reference sites. Mean

decapod burrow density differed significantly along the disturbance

Figure 2. Examples of the megafaunal taxa observed at
Morvin. A: Mycale sp., B: Hymedesmia sp., C: Alcyonium sp., D:
Cerianthus sp., E: Pennatula phosphorea, F: Kophobelemnon stelliferum,
G: Funiculina sp., H: Bolocera sp., I: Porania sp., J: Asterias rubens, K:
Henricia sp., L: Echinus sp., M: Parastichopus tremulus, N: Munida sp., O:
Lithodes sp., P: Geryon sp., Q: Molva molva, R: Sebastidae, S:
Glyptocephalus cynologus. Scale bar on images represents 50 mm.
doi:10.1371/journal.pone.0044114.g002
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gradient in the 2009 surveys (Figure 8; ANOVA F(6, 51) = 4.77,

p,0.001). Pairwise comparisons (Holm-Sidak method) showed

significant differences between the 2009 disturbed zone and all the

other zones with the exception of the undisturbed area within

100 m of the well. The closest burrow was 5 m from the well and

the numbers began to increase after 20 m distance.

Discussion

Background environment
At Morvin the rocks on the seabed provided heterogeneity in an

otherwise soft-sediment environment. This is a typical situation for

the northern North Atlantic [45]. The increase in habitat

Table 1. Mean megafaunal taxon density (per 100 m22) from video observations before, during and after the drilling operations at
increasing distance from the well.

Background Post drill 1 Post drill 2 Post drill 3

likely species/morphotype Substratum Pre R Dist Beyond Dist. Beyond Dist. Beyond
100–
200 m

200–
300 m

300–
400 m

400–
500 m

Phakellia sp. 1 { H 3.18 2.97 0.37 0.00 3.67 1.99 0.16 1.09 1.30 1.32 0.61 0.62

small spherical white sponges H 2.32 2.04 0.24 0.16 0.09 1.50 0.52 1.20 1.97 1.57 1.48 1.55

Mycale sp.{ H 0.42 2.51 0.12 0.16 0.09 0.99 0.35 0.59 1.01 1.49 0.86 0.84

Haliclona sp. H 1.23 0.94 0.12 0.37 0.81 0.49 0.16 0.69 0.71 1.01 0.69 0.92

Encrusting white sponge H 1.60 0.65 0.24 0.00 0.09 0.27 0.47 0.48 0.45 0.51 0.10 0.20

Stylocordyla borealis S 0.49 0.51 0.00 0.00 0.00 0.12 0.00 0.41 1.01 0.79 0.55 0.68

Hymedesmia sp.{ H 0.42 0.04 0.00 0.00 0.00 0.27 0.00 0.20 0.20 0.20 0.00 0.05

Axinella sp.{ H 0.26 0.36 0.00 0.00 0.09 0.27 0.00 0.00 0.00 0.00 0.00 0.00

Phakellia sp. 2 H 0.00 0.08 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.00

Kophobelemnon stelliferum { S 5.12 5.63 4.01 6.91 1.93 8.52 0.87 3.99 3.85 3.65 2.92 2.90

small straight pennatulid S 0.83 1.39 0.18 0.48 1.39 1.80 0.63 1.08 1.25 1.30 1.57 0.90

Funiculina sp.{ S 0.14 1.74 0.00 0.37 0.09 0.63 0.00 0.42 0.51 0.36 0.28 0.78

Cerianthus sp.{ S 0.00 0.39 0.35 0.21 0.19 0.43 0.00 0.53 0.14 0.10 0.29 0.50

Bolocera sp.{ H 0.53 0.31 0.21 0.48 0.20 0.47 0.00 0.24 0.00 0.20 0.15 0.14

Pennatula phosphorea{ S 0.39 0.36 0.12 0.43 0.09 0.52 0.00 0.08 0.15 0.16 0.14 0.00

Alcyonium sp.{ H 0.00 0.36 0.00 0.00 0.09 0.27 0.19 0.08 0.05 0.10 0.05 0.00

red cnidarian H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.05 0.05 0.00

Lophelia pertusa H 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.10

Colus sp. G 0.14 0.08 0.00 0.00 0.00 0.36 0.00 0.00 0.05 0.00 0.00 0.00

Geryon sp.{ S 0.28 0.08 1.31 2.14 0.00 1.30 0.00 0.25 0.05 0.05 0.04 0.00

Pandalus sp.{ G 0.42 0.11 0.00 0.00 0.37 0.88 0.13 0.33 0.35 0.15 0.05 0.14

Lithodes sp.{ G 0.00 0.00 0.00 0.00 1.18 0.35 0.00 0.00 0.00 0.05 0.00 0.00

Munida sp.{ G 0.14 0.04 0.00 0.00 0.00 0.18 0.74 0.12 0.05 0.11 0.05 0.05

Bryozoan H 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.16 0.21 0.11 0.10 0.19

Nipponemertes sp. S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.05 0.05 0.00

echiuran* S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Parastichopus tremulus{ S 2.62 1.68 0.00 0.46 0.00 0.52 0.69 1.18 1.80 1.25 1.39 1.82

Henricia sp.{ G 0.00 0.20 0.34 0.00 0.09 0.53 0.27 0.08 0.14 0.15 0.10 0.05

Ceramaster sp. G 0.26 0.23 0.00 0.00 0.00 0.28 0.00 0.11 0.14 0.21 0.30 0.36

Asterias rubens{ G 0.00 0.00 0.00 0.00 0.00 0.76 0.00 0.00 0.00 0.00 0.00 0.00

Porania sp.{ G 0.00 0.20 0.00 0.00 0.00 0.16 0.00 0.00 0.14 0.00 0.05 0.05

Hippasteria sp. G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00

Crossaster sp.* G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cidaris cidaris G 0.14 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00

Echinus sp.{ G 0.14 0.08 0.00 0.00 0.09 0.37 0.00 0.12 0.10 0.15 0.26 0.21

Indet 2 H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00

Total density 21.05 23.11 7.63 12.18 10.57 24.68 5.19 13.52 15.86 15.17 12.25 13.05

* = species that were observed but not recorded, either outside of survey area or large motile organisms intentionally excluded to prevent over estimation of
abundance.
{ = higher resolution still photograph collected, otherwise only recorded from video footage. H = hard-substratum organisms, S = soft-substratum organisms,
G = generalists, organisms seen on both hard and soft substrata.
doi:10.1371/journal.pone.0044114.t001
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heterogeneity enhanced benthic diversity at Morvin, as has been

shown elsewhere at global [46] and local scales [47]. The

composition of the soft-sediment megafaunal assemblage was

comparable to that found in areas of similar depth in the

Porcupine Seabight (Table 3), southwest of Ireland, with species

densities also similar [48,49,50,51]. The available hard substratum

at Morvin increased habitat heterogeneity with a resultant increase

in density and species richness, most notably in the Porifera. In this

respect there are direct similarities between Morvin and the

megafauna from the Faroe-Shetland Channel to the south [52]

and Le Danois Bank at equivalent depth in the Cantabrian Sea

(Table 3) where exposed rock on an otherwise sandy seabed

formed a distinct habitat with high abundances of the sponge

Phakellia ventilabrum [53]. Of the demersal fish at Morvin, the

presence of Lophius piscatorius, Sebastes sp. and Chimera monstrosa were

consistent with results from previous studies of Norwegian shelf-

edge Atlantic water [54].

It is important to evaluate disturbance-related changes at

Morvin within the context of the broader temporally-dynamic

ecosystem. Temporal change in the deep sea is receiving

increasing attention [55] and recent studies have shown seasonal

and interannual changes in benthic megafaunal communities in

the deep north-east Atlantic [29,56,57,58]. Shallow-water studies

of recovery trajectories have identified seasonal recruitment as an

important factor [59]. At Morvin the megafauna in the Pre-drill

(23rd March 2006) and R site surveys (3–4th May 2009) showed no

significant differences in density, diversity or assemblage compo-

sition. This suggests that there was limited natural temporal

change at the time-scale analysed, thus supporting comparisons

between pre- and post-drilling surveys.

Initial disturbance
Recent studies in the north-east Atlantic have revealed drill

cuttings extending to approximately 200 m from the well with

reduced megafaunal density and diversity within the disturbed

area [4,15]. In the present case, the visible extent of the cuttings

reached beyond 100 m from the BOP to the north-west but were

generally less than 100 m. This equates to an area of at least

26601 m2. This is considerably smaller than reported in older

studies of exploration wells in the north-east Atlantic in which oil

based drilling mud was used and there was less regulation for

discharges to the seabed [20,60]. The extent was also smaller than

reported in more recent studies at a similar depth in the Faroe-

Shetland Channel (.66800 m2) [4], albeit at a site with multiple

Figure 3. Habitat heterogeneity and species diversity at background sites. The relationship between the number of rocks observed in
video transects and two indices of megafaunal invertebrate species diversity for the 2006 Pre-drill video survey and 2009 Reference sites (randomly
selected undisturbed locations) (left; rarefied species richness ES(50), right; Shannon-Weiner Index H9).
doi:10.1371/journal.pone.0044114.g003

Figure 4. Physical disturbance at Morvin. Representation of the visible horizontal extent of drilling disturbance at Morvin: a) Post 1, b) Post 2, c)
Post 3. The filled black circles in the centre represent well position, dark grey = complete coverage of sea bed with drill cuttings; light grey = partial
coverage.
doi:10.1371/journal.pone.0044114.g004
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wells drilled. The persistance of the effects of water based mud and

drill cuttings on megafauna is unknown and the increasing number

of wells in a field could result in larger areas being affected, with

potential accumulating or synergistic long-term effects.

The drill cuttings deposited at Morvin caused an initial physical

disturbance, which resulted in smothering of the benthic fauna.

The longer-term impacts associated with such an event include the

possible chemical effects of the drilling mud, hypoxia related to

chemicals in the drilling mud or to smothering, and reduced

habitat heterogeneity caused by the rapid creation of a smooth,

soft-sediment environment. In terms of the physical nature of the

disturbance caused by exploration drilling, there are similarities

with the disposal of dredged material [61] and bottom trawling

[62,63].

Persistence of the disturbance
Although there was still visible evidence of disturbance

surrounding the well in 2009, the total area visibly disturbed by

cuttings deposition had decreased considerably since 2006. Then,

the cuttings pile was over 400 mm deep at 10 m distance from the

well and at 50 m there was a thin covering of unevenly distributed

drill cuttings, estimated to be less than 50 mm. Although the area

of deeper cuttings coverage was the most impacted area in this

study, the area with the thinner layer of cuttings can not be

discounted as even a thin layer of cuttings may affect the sediment

bacteria and smaller size fractions of benthic fauna. These

organisms were not visible in the video methods used in this

study but have important roles in the functioning of benthic

ecosystems as well as providing food source to some megafaunal

organisms. An elevated ‘‘crater’’ remained at the exact well

location which attracted increased abundance of the fish Sebastes

sp. (excluded from the quantitative analysis). The increased

quantity of cuttings deposited close to the well, and the cement

used to secure the structure of the well in the plug and abandon

phase [64], may consolidate the cuttings pile in the immediate

vicinity of the well. It has been suggested that, unless disturbed,

cuttings piles remain relatively unchanged over time [10] and that

the cuttings further from the well may be stable [65]. As a result,

the obscurring of the disturbed sediment by the natural settlement

of material from the water column may be a more important

factor in reducing the visible extent of the cuttings than the erosion

and lateral transport of the deposited drill cuttings by the currents.

Indeed, large accumulations of sediment on coral reefs in the

Morvin area [34] suggest relatively high sedimentation rates.

However, lateral transport and the resulting breakdown of cuttings

piles has been suggested by the presence of barite particles

incorporated into the skeletons of corals located 4 km away from a

20 year old exploration well elsewhere in the Norwegian Sea [66].

Barium levels at Morvin were elevated, indicating persistance of

the drill cuttings after three years. Although Ba is considered non-

toxic, there remains debate in relation to the use of barite as a

weighting agent in drilling mud. A variety of sublethal effects have

been reported from laboratory studies such as reduced condition

(gill damage) in benthic bivalves [67] and lower colonization by

macrofauna of sediment treated with barite [68]. Other studies

suggest the deposition of barite results in changed physical

properties of the sediment [8], which in turn may alter habitat

heterogeneity and increase meiofaunal density, as shown in a

laboratory study [69]. The most abundant motile organism at

Morvin, the holothurian Parastichopus tremulus, was completely

absent from the disturbed areas of the post-drilling surveys in

2006. Seasonal variations in the density of P. tremulus are known

[70] but owing to the relatively short time period between the Pre-

drill survey and the first Post-drill survey, and consistent

abundance of P. tremulus at the same time of year in 2009 outside

the disturbed zone, it is likely that this species was absent because

of the disturbance. This could be either because holothurian

distribution is determined by food particle availability [51], which

may be reduced on the newly deposited cuttings, or because

holothurians ingest food particles selectively [71] and may

therefore avoid consuming the cuttings which consist of differing

physical properties [8] to the background sediment.

Megafaunal recovery
There does not appear to be differential recovery between the

visible disturbance zones within 100 m of the well (an interaction

between distance and time factors), although these tests were

limited by low replication. However, at a finer scale abundance

was still reduced in the immediate vicinity of the well in the Post 3

survey.

Within 100 m of the drilling there were detectable differences in

total megafauna between the visibly disturbed and not visibly

Table 2. Measurements of the depth of drill cuttings from graduated marker buoys and Barium concentration and sediment
particle size from push core samples taken at the Morvin site during the Pre, Post 2 and Post 3 surveys.

Survey Section (mm)
Distance (m) from
well

Depth of cuttings
(mm) Ba (mg kg21)

Sediment particle size; % fines
(,69 mm)

Pre 0–50 0 0 150 53.6

Pre 0–50 50 0 n/a 37.9

Pre 0–50 100 0 n/a 38.4

Post 2 0–50 0–10 400 5450 (61202) 80.2 (63.4)

Post 2 0–50 100 ,50 230 45.4 (64.3)

Post 3 0–20 25 6133(61332) 76.9 (615.6)

Post 3 20–40 25 4791(61998) 63.8 (626.9)

Post 3 40–60 25 3283(62525) 60.3 (627.9)

Post 3 0–20 50 6291(61505) 58.1 (619.7)

Post 3 20–40 50 1991(62438) 41.3 (69.6)

Post 3 40–60 50 547(6454) 37.1 (66.0)

Figures in parentheses are standard deviation. For Post 2 samples n = 3 and for Post 3 samples n = 8.
doi:10.1371/journal.pone.0044114.t002
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disturbed areas. Most of this variation appeared to be within the

sessile fauna. In comparison to the sites further from disturbance in

2009 there was increased variability in the samples close to the

source of disturbance both spatially and temporally. Increased

variability has been discussed as an indication of stress in marine

communities [72]. In terms of the benthic megafauna, the most

notable difference in the community structure between the 2009

disturbed zone and the reference sites was the reduction in sessile

organisms. After the drilling operations, the dominant sponges on

the hard substrata (Phakellia sp. and Mycale sp.) were rare, primarily

because of burial of their habitat. Further research is required to

determine how sponges respond to lower degrees of sedimentation

leading to partial burial. Throughout the study pennatulids were

the most common organisms on the soft sediment. Their numbers

were low in the visibly disturbed area in 2009. Pennatulids are

slow growing and may therefore take considerable time to recover

from disturbance [73]. The larval recruitment and settlement rates

for these organisms are unknown. Studies on the reproduction of

Kophobelemnon stelliferum, Pennatula phosphorea and Funiculina quad-

rangularis suggest these species have lecithotrophic larvae, which

may remain in the water column until suitable habitat is located

[49,74,75] and could possibly avoid settlement on sediment

disturbed by drilling mud and cuttings.

Bioturbation rates are poorly understood in deep water but are

important indicators of ecosystem function. This process is

evidently important in the recovery of soft sediments after physical

disturbance. In the Post 3 survey, large burrows were present on

the disturbed seabed, indicating activity of the decapod Geryon sp.

in this area. These crabs were observed entering and leaving these

burrows, the structure of which was very similar to Geryon trispinosus

burrows on the seafloor of the Porcupine Seabight [48]. This

activity is likely to be important in the re-distribution of the

sediment and gradual breakdown of the cuttings pile. The nearest

burrow was 5 m from the well indicating activity in this area in the

three years since disturbance. The presence of new burrows and

the apparent longevity of some Lebenspuren [76] implies that

reduced burrow density may not necessarily indicate long-term

reduction in bioturbation activity. The holothurian Parastichopus

tremulus is important in horizontal dispersal of sediment [51] and

therefore, potentially, in the re-distribution of cuttings and drilling

mud. However, the Morvin data suggest P. tremulus avoids feeding

on the cuttings and thus probably does not contribute much to the

re-distribution of sediments. Although not considered in this study,

the inclusion of the macrofauna, which may be more abundant

than the megafauna both numerically and in terms of biomass and

which include important bioturbators, would benefit future studies

of recovery. Indeed, experimental data suggest that macrofaunal

assembalges may colonize water based drilling mud rapidly [77].

In addition, the chemical disturbance and altered sediment

characteristics may also affect meiofaunal assemblage composition

[78,79] and the microbial assemblage, which could influence food

availability and therefore the recovery of the larger benthic fauna.

Studies on the Georges Bank, Gulf of Maine (60–100 m depth)

suggest limited effects of oil and gas exploration activities on

megafauna (at finer-scale resolution than Morvin) and evidence of

recovery by the macrofauna [80]. The Georges Bank is subject to

high energy storms that redistribute sediments. In contrast, at a

lower energy abyssal site experimental disturbances designed to

predict the effects of nodule mining [23] showed limited evidence

for recovery of the megafauna after seven years with no

Figure 5. Mean (±sd) megafaunal invertebrate density (individuals m22) at Morvin. (a) soft sediment, (b) hard substrate and (c) generalist
megafauna. Background sites are shown in white, visibly disturbed areas in dark grey and areas beyond disturbance are shown in light grey. Filled
circles in hard substratum chart present show the density of rocks in the transects.
doi:10.1371/journal.pone.0044114.g005

Figure 6. Multidimensional scaling ordination of megafaunal assemblages under different disturbance conditions. Based on Bray
Curtis similarity of pooled invertebrate megafaunal density data for the disturbance zones in 2006 (Pre, Post 1 and Post 2) and 2009 (Post 3, R). For
each survey the transects have been divided into Background, Visible Disturbance and Beyond Disturbance according to the coverage of the
sediment by drill cuttings, notable groups are labelled. Similarity levels from cluster analysis.
doi:10.1371/journal.pone.0044114.g006
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subsequent disturbance. It has been suggested that recovery is

complicated and influenced by factors including the scale of the

disturbance [81], the type and frequency of disturbance and the

local environmental conditions [62,82]. These factors complicate

the assessment of recovery in studies such as this one, limited by

operational contraints (access to a deep site, spatial reach of the

ROV in the earlier surveys) and highlight the importance of

suitable spatial and temporal replication. To address this issue,

bioequivalence methods have been used to assess ecological

impacts [83] but have not been universally adopted in ecological

studies [84].

The limited and ambiguous data on benthic recovery in deeper

water highlight the need for more studies. At present, differences

in the physical and biological environments at different study sites

and the individual nature of each cuttings pile make it impossible

to draw general conclusions. A similar study of a drilling site in the

Faroe-Shetland Channel [85] has also revealed a small area of

reduced faunal density and diversity close to the well after three

years. We suggest that the significant decrease in megafaunal

Figure 7. Response Y recovery index in comparison to pre-drill. Shown for Rarefied species richness (ES(50)), Species evenness (J), Shannon-
Wiener Index (H9), Bray Curtis similarity, total sessile organism density and total motile organism density. Unfilled circles indicate disturbed zones and
filled circles indicate distance from disturbance. Dashed lines indicate zero. Error bars = standard deviation.
doi:10.1371/journal.pone.0044114.g007
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Figure 8. Mean density of decapod burrows (±sd) in the Post 3 survey at Morvin. White = Background, dark grey = Visible Disturbance,
light grey = Beyond Disturbance.
doi:10.1371/journal.pone.0044114.g008

Table 3. Mean taxon densities (numbers 100 m22) of species shared between Morvin and other Atlantic sites at similar depth.

Taxon Morvin Le Danois Bank Porcupine Seabight West of Shetland

Hymedesmia sp. 0.42 5.67 0.73

Phakellia sp. 0.08 1.02

Kophobelemnon stelliferum 5.63 260

Funiculina sp. 1.74 0.04 (T)

Cerianthus sp. 0.39 0.638

Colus sp. 0.14 0.22 (T) X

Geryon sp. 0.28 0.03(T) X 0.72

Pandalus sp. 0.42 X 1.65

Munida sp. 0.14 0.829 X 7.91

Parastichopus tremulus 2.62 0.191 X 7.69

Henricia sp. 0.2 X 1.61

Ceramaster sp. 0.26 1.32

Echinus sp. 0.14 0.04 (T) 2.93

Asterias rubens X X 0.29

Porania sp. 0.2 0.32 0.55

Cidaris cidaris 0.14 0.01 11.43

No of taxa in common with Morvin 11 8 11

Morvin (this study) the highest of pre and R densities are presented. Le Danois Bank, northern Spain (425–550 m depth); data from photographic study by [53]
augmented, if additional species were encountered, with trawl data (marked with (T); [70]). Porcupine Seabight, SW Ireland (150–550 m depth) data from [49] and
unpublished data (Brian Bett, NOC). West of Shetland, UK (420 to 508 m depth); data from [52]. If species were found, but not enumerated, presence was marked with X.
The final row represents the total number of taxa common to Morvin and the relevant literature study.
doi:10.1371/journal.pone.0044114.t003
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density, which appears to persist for at least 3 years at both sites

will occur at all deep-water drilling sites, with the severity of the

impact likely to be correlated with the amount of material

deposited on the seabed and the local environmental conditions. It

is anticipated that the effect will be greater in deeper, colder areas,

where the rate of metabolism and growth are expected to be

considerably lower [76], thereby reducing the rate of recovery.

The change in sediment particle size may also retard recovery, as

demonstrated in shallower water [86]. With increasing anthropo-

genic activity in deeper waters it is essential to understand the

initial effects on benthic fauna and their recovery to such impacts.

Hydrocarbon exploration disturbance provides a valuable tool to

study disturbance and recovery trajectories in remote deep-water

habitats, which are generally difficult to access.
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