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and concentration�dependent manner. Treatment of cultured cells

with a low concentration of hydrogen peroxide induces neurite

degeneration, but not cell death. Neurites (axons and dendrites)

are vulnerable to ROS. Neurite degeneration (shrinkage, accumu�

lation, and fragmentation) has been found in neurodegenerative

disorders, such as Alzheimer’s disease, Parkinson’s disease, and

Huntington’s disease. However, the mechanism of ROS�related

neurite degeneration is not fully understood. Many studies have

demonstrated the relationship between mitochondrial dysfunc�

tion and microtubule destabilization. These dysfunctions are deeply

related to changes in calcium homeostasis and ROS production in

neurites. Treatment with antioxidant substances, such as vitamin

E, prevents neurite degeneration in cultured cells. This review

describes the possibility that ROS induces neurite degeneration

before the induction of cell death.
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Reactive Oxygen Species Induce Neurite Degeneration

Many organs are susceptible to damage by reactive oxygen
species (ROS).(1,2) Cellular dysfunction is induced by the accumu-
lation of the products of oxidative damage, such as proteins,(3)

phospholipids and DNA.(4,5) Neurons are particularly well known
to be vulnerable to ROS-induced damage. There are five main
reasons for this. Firstly, the ratio of total oxygen consumption in
the brain is about 20%, which is higher than most other organs.(6)

Secondary, polyunsaturated fatty acids (PUFAs), such as docosa-
hexaenoic acid and eicosapentaenoic acid are present in cell mem-
branes of the brain.(7,8) These PUFAs are easily oxidized compared
to other fatty acids.(9) Thirdly, there are a lot of mitochondria in the
brain, as the brain requires large amounts of adenosine triphos-
phates. Cells that have high energy requirements, such as liver
cells, cardiomyocytes, and sperms cells, typically contain many
mitochondria. Fourthly, it has been demonstrated that there is a
relationship between transition elements and ROS production.(10)

Notably, the substantia nigra contains relatively large amounts of
transition elements compared to other tissues, including other
brain regions. Aluminum, mercury, and iron are catalysts for ROS
generation, and the Fenton reaction is a typical example of this.
Finally, antioxidant enzyme activities such as those for super
oxide dismutase (SOD), catalase and glutathione peroxidase, are
relatively low in the brain compared to other organs.(11)

The consequence of severe oxidative damage in neurons is cell
death.(12–14) Treatment of cultured cells with hydrogen peroxide
induces cell death in a concentration- and time-dependent
manner.(12,14) Therefore, hydrogen peroxide is used commonly in
experiments to model oxidative stress in vitro. Due to differences
in experimental conditions, it is often difficult to accurately deter-

mine the effects of hydrogen peroxide-induced oxidative damage
on cells. Some researchers have used very high concentration of
hydrogen peroxide, often in excess of high micromolar and low
millimolar concentrations. In these cases, hydrogen peroxide may
produce acute toxicity in cultured neurons. In order to determine
the more subtle effects of hydrogen peroxide-induced oxidative
damage in cultured cells, treatment with low hydrogen peroxide
concentrations may be more effective. Hydrogen peroxide is
usually produced at low levels by the SOD reaction in vivo.(10)

Interestingly, hydrogen peroxide and other kinds of ROS can act
as second messengers in cells.(15–17) Treatment of cells with low
concentrations of hydrogen peroxide reflects normal in vivo
condition.
Several lines of evidence have demonstrated that treatment

with low concentrations of hydrogen peroxide induces neuronal
dysfunction, but not cell death.(18–20) Gardner and colleagues
reported that treatment with high concentrations of hydrogen
peroxide (>10 mM) induced apoptosis which is characterized by
DNA laddering.(18) However, treatment with a low concentration
of hydrogen peroxide (0.1 mM) induced delayed cytotoxicity, but
did not induce DNA ladder formation. These authors highlighted
the possible protective effects of bcl-2. Chen and Ames reported
that treatment with less than 100 μM hydrogen peroxide did not
affect protein synthesis in human diploid foreskin fibroblast (F65)
cells.(19) Although treatment with 100 μM hydrogen peroxide led
to an 80% depletion of nicotinamide adenine dinucleotide (NAD),
less than 50 μM hydrogen peroxide inhibited NAD depletion in
murine macrophage (P388D1) cells.(20) In our previous study,
treatment of neuro2a and granule cells with low concentrations of
hydrogen peroxide induced neurite degeneration, but not cell
death.(12,21,22) We found morphological neurite alterations, described
as bead formation,(12,22,23) and the number and density of dendrites
significantly decreased in hydrogen peroxide-treated granule cells
(Fig. 1).(21) Several lines of evidence have demonstrated the induc-
tion of neurite alterations by endogenous and exogenous of
hydrogen peroxide.(24–26) These studies indicate the possibility that
low concentrations of hydrogen peroxide can induce neurite
degeneration prior to the induction of cell death. The next section
describes the cause of ROS-induced neurite degeneration.

ROS Treatment Induces Membrane Oxidation, Micro�
tubule Destabilization and Mitochondria Dysfunction in
Axons

There are three possible mechanisms of ROS-induced neurite
degeneration (Fig. 2). First, ROS can easily oxidize PUFAs in
neuronal cell membranes, and enhancement of the ratio of
oxidized PUFAs induces membrane curing.(9) Many studies have
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focused on ROS-induced membrane oxidation.(1,4,27,28) In our
previous study, treatment with 2,2'-azobis(2-amidinopropane)
dihydrochloride, which is a water-soluble free radical initiator,
induced neurite beading in neuro2a cells.(22) Treatment of granule
cells with a low concentration of hydrogen peroxide also induced
neurite degeneration, and significantly increased lipid hydro-
peroxide.(21) Treatment with tocotrienols, which are a class of
vitamin E, prevented hydrogen peroxide-induced neurite degener-
ation.(12,21) Oxidation of membrane components, including ion
channels and receptors, leads to decreased membrane permea-
bility. For example, N-methyl-D-aspartate and α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic-acid receptors can be
damaged by ROS, which increases the influx of inorganic ions
such as calcium and sodium.(29–31) The influx of calcium ions
enhances ROS production and calcium leakage in the mitochon-
dria and endoplasmic reticulum (ER).(29,32) These reactions further
accelerate the oxidation process in cells.
The second mechanism is through the disruption of cytoskeletal

proteins in the axonal region. Microtubules consist of heterodimers
of alpha- and beta-tubulin, and play a crucial role in the mainte-
nance of axonal morphology.(33,34) Microtubule formation is
typically maintained through the balance of polymerization and
depolymerization of tubulins. Furthermore, microtubules play
pivotal roles in cellular processes, such as a rail function in axonal

transport.(23,35–37) Protein synthesis and proteolysis are not possible
at the distal end of axons, and many substances are moved by
anterograde and retrograde transport in the axon.(38) Microtubule-
related axonal degeneration is divided into two types.(23,39) The
first is anterograde degeneration, which involves degeneration
proceeding from the cell soma to the distal end of a neurite. The
second type is retrograde degeneration, which is also known as a
“dying-back” process. Lunn et al.(40) identified a mouse strain
that was later termed Wallerian degeneration slow (Wlds). These
mice do not exhibit axonal degeneration even 2 weeks after axonal
transection. Because the Wlds mutant mouse has shown resistance
to the dying-back process, this mutant model has been used to
study axonal degeneration. It has been found that nicotinamide
mononucleotide adenyltransferase (Nmnat) 1 and 2 protein
expression protects against ROS-induced axonal degeneration in
the Wlds mutant mice.(37,41) Nmnat is related to NAD synthesis
and is located in the mitochondrial matrix. These studies indicate
that the maintenance of mitochondrial function may be important
for maintaining neurite function. Collapsin response mediator
protein (CRMP)-2 plays a pivotal role in the maintenance of
microtubule stabilization.(42) The function of CRMP-2 is very
similar to tau protein, which is famously involved in the patho-
genesis of Alzheimer’s disease (AD).(43) Excessive phosphoryla-
tion of CRMP-2 induces axonal dysfunction in cultured hippo-
campal neurons.(44) CRMP-2 is phosphorylated by glycogen
synthesis-3 beta (GSK-3β) and cyclin dependent kinase 5.(39)

Calpain is a protease that is activated in the presence of calcium
ions and can cleave CRMP-2.(45) In our previous study, the ratio
of CRMP-2 phosphorylation was remarkably increased in the
cerebellum and hippocampus of young vitamin E-deficient and
normal aged mice compared to age-matched controls.(46) Axonal
degeneration was observed following immunohistochemical
analysis of hippocampal slices from vitamin E-deficient and aged
mice.(47) Recently, the modification of tubulin (acetylation and
nitration) has been identified. Because acetylated tubulin is
enriched in stable microtubules, activation of histone deacetylase
5 (HDAC5), which is activated by calcium ions, accelerates
microtubule depolymerization through tubulin deacetylation.(48,49)

Nitrated alpha-tubulin levels are correlated with microtubule
stabilization in PC12 cells.(50) Although these studies, including
our previous reports, implicate ROS-derived microtubule dysfunc-
tion in axonal degeneration, a detailed correlation between ROS
levels and microtubule disruption is not fully understood.
The third mechanism is through the disruption of the axonal

transport system. Dysfunction of the axonal transport system leads
to the gradual accumulation of vesicles and organelles in the axon,

Fig. 1. Schematic of morphological changes observed in ROS�induced
neurite degeneration. This schematic is based on a subset of the refer�
ences cited in this review.

Fig. 2. Flow chart of ROS�induced neurite degeneration. This flow chart is based on a subset of references cited in this review.
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and the induction of abnormal morphology.(51,52) In our previous
study, microtubule associated protein-light chain 3 (MAP-LC3) II
which is a hallmark of autophagy, was decreased in long-term
vitamin E-deficient mouse brain.(46) Several lines of evidence have
demonstrated the relationship between autophagy and ROS.(53,54)

In mammalian cells, axons are rich in mitochondria, and mito-
chondria-induced ROS plays a role as an activator of mito-
phagy.(53) ER-located bcl-2 plays a pivotal role in autophagy and
is regulated by calcium ions.(54) Changes in the axonal transport
system affect normal mitochondria and organelles in that region of
the cell. Finally, mitochondrial dysfunction is induced, and
leakage of calcium ions and ROS production may occur. The next
section describes ROS-related neurite degeneration and neuro-
degenerative disorders.

Does ROS Induce Neurodegenerative Disorders through
Neurite Degeneration?

Several lines of evidence have demonstrated that axonal degen-
eration is observed in neurodegenerative disorders, such as
AD,(23,51,55–57) Parkinson’s disease (PD),(34,35,39) Huntington’s dis-
ease (HD) and amyotrophic lateral sclerosis.(17,32,41,52,58–60) Neurite
degeneration is induced in AD-transgenic mice, and reductions
in the motor protein kinesin-1 accelerate amyloid deposition.(51)

Induction of paired helical filaments produces axonal transport
dysfunction in AD.(55) Phosphorylation of CRMP-2 blocks its
ability to bind microtubules, and has been found in the early stages
of AD.(56) Treatment with beta amyloid induces neurite degenera-
tion in SH-SY5Y cells through CRMP-2 phosphorylation.(57)

We previously reported that vitamin E-deficient mice exhibit
increased phospho-CRMP-2 expression(46) and axonal alterations
in hippocampal slices.(47) Cognitive dysfunction is the character-
istic symptom of AD, and ROS-related cognitive dysfunction
may be related to neurite degeneration.
Axonal degeneration was observed in cultured dopaminergic

neurons isolated from 1-methyl-4-phenylpyridiniumion (MPP+)-
treated C57Bl pregnant mice.(39) The Akt/GSK-3β/CRMP-2
pathway is involved in this model of axonal degeneration. Treat-
ment with MPP+ induces Ca2+ release from mitochondria in
isolated liver mitochondria of female Wistar rats.(61) Microtubule
polymerization is reduced in MPP+ treated calf brain tubulin.(35)

Alim et al.(34) reported that α-synuclein, which is a common
pathogenic molecule in PD, interacts with tubulin. In the PD brain,
the interaction between α-synuclein and tubulin accelerates α-
synuclein aggregation. 6-Hydroxydopamine (6-OHDA) induces
axonal degeneration in dopaminergic neurons, and the mechanism
is related to the induction of mitochondrial transport dysfunction,
microtubule disruption, and autophagy.(62) Treatment with anti-
oxidant substances, such as N-acetyl-cystein, attenuates mito-
chondrial transport dysfunction. Treatment with 6-OHDA inhibits
mitochondrial NADH dehydrogenase (complex 1) activity in
isolated rat brain mitochondria.(63)

ROS-induced damage has been detected in HD patients and
the striatum of an HD mouse model via impairment of the mito-
chondrial tricarboxylic acid-cycle enzyme aconitase.(17) Bogdanov
et al.(58) reported that treatment with the mitochondrial toxin 3-
nitropropionic acid induced hydroxyl radicals in HD transgenic
mice. They emphasized that mitochondria from HD transgenic
mice are vulnerable to ROS. Furthermore, striatal neurons from
HD transgenic mice undergo neurite degeneration via calcium
leakage resultant from alteration in ER ryanodine receptors,(32) and
the accumulation of huntingtin aggregates.(52) Huntingtin aggre-
gates block axonal transport. Treatment with insulin and insulin
like growth factor-1 reduce mitochondrial ROS production through
the PI3K/Akt pathway in striatal cells from mutant HD mice.(59)

Conclusion

Neurodegenerative disorders induce axonal degeneration, and
the development and progression of many neurodegenerative
disorders are correlated with microtubule and mitochondrial
dysfunction. Furthermore, microtubule and mitochondrial dys-
function are induced by changes in calcium homeostasis and
ROS production. Treatment with antioxidant substances, such as
vitamins and polyphenols, decreases the risks of the development
and progression of neurodegenerative disorders,(64,65) and inhibits
axonal degeneration.(12,21,22) Axons are highly elastic, and are more
vulnerable to pathogenic compared to the cell soma, such as
changes in the ion composition and increasing of ROS concentra-
tion of extracellular fluid. Axonal degeneration may be an early
sign of ROS-induced neuronal degeneration.

Abbreviations

AD Alzheimer’s disease
CRMP collapsin response mediator protein
GSK-3β glycogen synthesis-3 beta
HD Huntington’s disease
HDAC5 histone deacetylase 5
MAP-LC3 microtubule associated protein-light chain 3
MPP 1-methyl-4-phenylpyridiniumion
NAD nicotinamide adenine dinucleotide
Nmnat nicotinamide mononucleotide adenyltransferase
6-OHDA 6-hydroxydopamine
PD Parkinson’s disease
PUFAs polyunsaturated fatty acids
ROS reactive oxygen species
SOD super oxide dismutase
Wlds Wallerian degeneration slow
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