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Introduction

Byssochlamys species produce ascospores which are heat-
resistant, and survive considerable periods of heat above 85 °C 
(Beuchat & Rice 1979, Splittstoesser 1987). In addition to their 
heat resistance, Byssochlamys species can grow under very 
low oxygen tensions (Taniwaki 1995) and can form pectino-
lytic enzymes. The combination of these three physiological 
characteristics makes Byssochlamys species very important 
spoilage fungi in pasteurised and canned fruit. Byssochlamys 
has a Paecilomyces anamorph and the genus was revised by 
Stolk & Samson (1971). Samson (1974) accepted three Bysso­
chlamys species: B. fulva, B. nivea and B. zollerniae with similar 
Paecilomyces anamorphs. Since then only B. verrucosa has 
been added to this genus (Samson & Tansey 1975). 

Paecilomyces was erected by Bainier (1907) to accommodate 
a single species, P. variotii, but many species were added 
(Brown & Smith 1957, Samson 1974). Luangsa-ard et al. 
(2004) presented a phylogenetic analysis of the 18S rDNA, 
demonstrating that Paecilomyces is polyphyletic across the 
Sordariomycetidae and Eurotiomycetidae. The type species  
P. variotii is a morphologically variable taxon, and has been re-
described under a variety of names broadening its circumscrip-
tion. Thom (1930) and Samson (1974) mentioned the diversity 
in conidial shape and size, and Thom made a tentative division 
based on conidial size.

Paecilomyces variotii and anamorphs of Byssochlamys spe-
cies share several micromorphological characters, including 
phialides with cylindrical bases that taper abruptly into long 

cylindrical necks and produce catenate conidia. Some charac-
ters are constant at the species level, but vary among species. 
Houbraken et al. (2006) demonstrated that Byssochlamys and 
its associated anamorph species can be separated into at 
least nine taxa by investigating the micro- and macroscopical 
characteristics of Byssochlamys and Paecilomyces variotii-like 
isolates. In this study, we have extended this to a polyphasic 
approach by adding molecular and extrolite data and present a 
revised taxonomy and nomenclature of the accepted taxa.

MaterialS and Methods

Strains of Byssochlamys and Paecilomyces used in this study 
are listed in Table 1, and are preserved in the Fungal Biodiver-
sity Centre (CBS), Utrecht, the Netherlands.

DNA extraction, sequencing and analysis

Total fungal genomic DNA was isolated using FastDNA® Kit (Bio 
101, Carlsbad, USA) according to the manufacturer’s instruc-
tions. Amplification and sequencing of the ITS region (including 
internal transcribed spacer regions 1 and 2, and the 5.8S rRNA 
regions of the nuclear ribosomal RNA gene cluster), and parts 
of the β-tubulin and calmodulin genes were performed as de-
scribed by Houbraken et al. (2007). Contigs were assembled 
from the forward and reverse sequences with the software 
package SeqMan from the Lasergene package (DNASTAR Inc., 
Madison, WI). The alignments of the sequence datasets were 
performed using Clustal W in MEGA 3.1 (Thompson et al. 1994, 
Kumar et al. 2004) and were, when necessary, adjusted by eye. 
Phylogenetic analyses of alignments were done using PAUP v. 
4.0b10 (Swofford 2000). Alignment gaps were treated as fifth 
character state, missing data were identified by ‘?’, uninforma-
tive characters were excluded and all characters were unor-
dered and of equal weight. Maximum parsimony analysis was 
performed for all datasets using the heuristic search option. The 
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robustness of the most parsimonious trees was evaluated with 
1 000 bootstrap replications (Hillis & Bull 1993). Other statistics, 
including tree length, consistency index, retention index and 
rescaled consistency index (CI, RI and RC) were calculated. 
Monascus pilosus (GenBank accession AY629427) was used 
as an outgroup in the analyses of the ITS dataset; Thermoascus 
crustaceus was used as an outgroup for the β-tubulin and cal-
modulin data. Newly generated sequences were deposited in 
GenBank with accession numbers FJ389920–FJ390009. The 
alignments generated and the most parsimonious trees were 
deposited in TreeBase under accession numbers S2199 and 
M4168–M4170.

Morphological characterisation

The media used for macro-morphological examination included 
Czapek yeast autolysate (CYA) agar, malt extract autolysate 
(MEA) agar, yeast extract sucrose (YES) agar and creatine-
sucrose (CREA) agar (media compositions were according to 
Samson et al. 2004). Isolates were incubated at 25, 30 and 
37 °C. Micromorphological characterisation of the asexual 
Paecilomyces state was carried out on MEA, hay agar (HAY) 
and YES agars. The latter was exclusively used to determine 
the presence of chlamydospores. For the analyses of the fea-
tures of the sexual Byssochlamys state, the media oatmeal 
agar (OA) and potato-dextrose agar (PDA) were used (for 
media formulations, see Samson et al. 2004). The surfaces 
of conidia, chlamydospores and ascospores were examined 
after prolonged incubation (up to 70 d). Conditions and media 
for measuring the microaerophily, growth on 0.5 % acetic acid 
and the resistance to propionic acid are described by Frisvad 
& Samson (2004).

Extrolite analysis

Strains studied (Table 1) were three-point inoculated on MEA, 
YES, PDA, OA and CYA agars. All isolates were analysed for 
extrolite metabolites after 2 wk growth at 30 °C. The cultures 
were extracted according the method of Smedsgaard (1997) 
and analysed with high performance liquid chromatography 
(HPLC) with diode array detection (DAD) (Frisvad & Thrane 
1987, 1993). The metabolites found were compared with a 
spectral UV library derived from authentic standards, including 
patulin, viriditoxin, mycophenolic acid, byssochlamic acid and 
physcion, using the same conditions (the maximum similarity 
is a match of 1 000). The retention indices were compared with 
those of standards. 

Results

DNA sequencing 

The trees constructed by maximum parsimony analysis of the 
datasets of the protein coding genes β-tubulin and calmodulin 
and the ITS region exhibited similar topologies (Fig. 1–3). 
Molecular analyses revealed that in the genus Byssochlamys 
nine taxa can be recognised. Five taxa form a teleomorph, 
namely B. fulva, B. lagunculariae, B. nivea, B. spectabilis and 
B. zollerniae, while four are strictly anamorphic, i.e. P. brun­
neolus, P. divaricatus, P. formosus and P. saturatus. Analyses 
of the ITS showed that B. verrucosa is not a member of the 
genus Byssochlamys and is related to Thermoascus (Fig. 1). 
This was also confirmed by analyses of the partial β-tubulin 
and calmodulin sequence data (data not shown). 

The basal nodes were also similar for all three parsimony 
trees (Fig. 1–3). Byssochlamys nivea and B. fulva were sister 

Species	 Accession No.	 Source and notes

B. fulva	 CBS 132.33	 Bottled fruit, UK; ex-type of Paecilomyces fulvus
	 CBS 146.48T	 Bottled fruit, UK
	 CBS 135.62	 Fruit juice, Switzerland; ex-type of Paecilomyces todicus
	 CBS 604.71	 Unknown source
	 CBS 113954	 Unknown source, patulin producer acc. to Rice et al. (1977)
B. lagunculariae	 CBS 373.70T	 Wood of Laguncularia racemosa (Mangue), Brazil
	 CBS 696.95	 Pasteurized strawberries, the Netherlands
	 CBS 110378	 Unknown source, France
B. nivea	 CBS 100.11T	 Unknown source
	 CBS 133.37	 Milk of cow, USA; ex-type of Arachniotus trisporus
	 CBS 271.95	 Mushroom bed, China
	 CBS 102192	 Pasteurized drink yoghurt, Belgium
	 CBS 113245	 Pasteurized fruit juice, Switzerland
B. spectabilis	 CBS 338.51	 Fruit juice, Switzerland
	 CBS 102.74	 Unknown source; ex-type of Paecilomyces variotii
	 CBS 101075T	 Heat processed fruit beverage, Japan
	 CBS 121581	 Spoiled sweetened tea, USA
B. verrucosa	 CBS 605.74T	 Nesting material of Leipoa ocellata, Australia
B. zollerniae	 CBS 374.70T	 Wood of Zollernia ilicifolia and Protium heptaphyllum, Brazil
P. brunneolus	 CBS 370.70T	 Non fat dry milk, Canada
P. divaricatus	 CBS 284.48T	 Mucilage bottle with library paste, USA
	 CBS 110429	 Pectin, Mexico
P. formosus	 CBS 628.66	 Quebracho-tanned sheep leather, France
	 CBS 371.70	 Annona squamosa, Brazil; ex-type of Paecilomyces maximus
	 CBS 990.73BT	 Unknown source
	 CBS 296.93	 Man, bone marrow of patient, Uzbekistan
	 CBS 113247	 Soil, Thailand
	 CBS 372.70	 Lecythis unsitata (Lecythidaceae), wood, Brazil; ex-type strain of P. lecythidis
P. saturatus	 CBS 323.34T	 Unknown source; ex-type of Paecilomyces mandshuricus var. saturatus
	 CBS 368.70	 Medicine containing quinine, UK
	 CBS 251.55T	 Acetic acid, Brazil; ex-type of P. dactylomorphys
	 CBS 990.73A	 Unknown source; ex-type of Penicillium viniferum
	 CBS 492.84	 Lepidium sativum, Denmark
Talaromyces byssochlamydoides	 CBS 413.71T	 Dry soil under Pseudotsuga menziesii, USA
Talaromyces emersonii	 CBS 393.64T	 Compost, Italy
Thermoascus crustaceus	 CBS 181.67T	 Parthenium argentatum (Compositae), decaying plant, USA

Table 1   Byssochlamys and Paecilomyces isolates examined in this study.
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Fig. 2   One of eight equally parsimonious trees of the analysed partial 
calmodulin gene sequences (204 of the 607 characters were parsimony infor-
mative; tree length = 328, CI = 0.708, RI = 0.889, RC = 0.630, HI = 0.292).

Fig. 1   One of three equally parsimonious trees of the analysed ITS region 
(55 of the 629 characters were parsimony informative; tree length = 294, 
CI = 0.738, RI = 0.855, RC = 0.631, HI = 0.262).

species, as were B. lagunculariae and P. saturatus. These 
four species form a distinct clade (group I). Byssochlamys 
spectabilis and P. brunneolus also clustered together and form, 
together with P. formosus, another distinct clade in Bysso-
chlamys (group II). Paecilomyces divaricatus was basal to 
these groups in all analyses, while the position of the single 
strain of B. zollerniae varied. Partial β-tubulin data showed that 
B. zollerniae is related to group I with a high bootstrap support 
(92 %; Fig. 3). The partial calmodulin data also showed that 
B. zollerniae is related to group I (Fig. 2), while analyses of the 
ITS regions revealed that it is more related to group II (Fig. 1), 
but its placement was supported only by low bootstrap values 
on these trees (Fig. 1, 2). 

Morphological characterisation

The genus Byssochlamys is morphologically well-defined and 
characterised by almost naked ascomata in which croziers 
and globose asci are formed with ellipsoidal ascospores. The 
ascomatal initials consist of swollen antheridia and coiled 
ascogonia. All Byssochlamys species have a Paecilomyces 
anamorph. The Byssochlamys anamorphs belong to Paecilo­
myces sect. Paecilomyces, containing mesophilic, thermotoler-
ant and thermophilic species (Samson 1974). As discussed by 
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Luangsa-ard et al. (2005), other species previously classified in 
Paecilomyces sect. Isarioidea are now mainly accommodated 
in Isaria or newly described genera. 

Various microscopic characters are valuable for identification 
purposes, including the shape and sizes of conidia and as-
cospores, and presence and ornamentation of chlamydospores. 
Useful macroscopical features are growth rates on MEA and 
CYA, and acid production on CREA. An overview of various 
macro- and microscopical features is presented in Table 2. The 
ratio between the colony diameters on MEA incubated at 30 °C 
or 37 °C is also diagnostic. 

Extrolite analysis

The extrolite profiles of the taxa are listed in Table 3. Most 
strains of B. fulva produced byssochlamic acid, but B. fulva 
could be subdivided into two chemically different groups: one 
group of isolates produced meriditin (a compound produced by 
Eupenicillium meridianum) and a peptide with a cycloaspeptide 

ITS Calmodulin
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chromophore (CBS 132.33, CBS 135.62 and CBS 604.71), 
while the other group produced a series of alkaloids, some 
with UV spectra similar to that of paspaline (named ‘OLK’ in 
Table 2) and some with verrucologen-like UV spectra (called 
‘URT’ in Table 2) (CBS 113225, CBS 113246, CBS 113954 and 
TM 03.048). The ex-type culture of B. fulva was deteriorated 
and only produced byssochlamic acid, and none of the other 
mentioned extrolites. 

Some strains of B. nivea produced the full profile of extrolites: 
patulin, mycophenolic acid, byssochlamic acid and metabolite 
‘OLK’ (CBS 900.70, CBS 271.95 and CBS 102192). Mycophe-
nolic acid, patulin and byssochlamic acid and some of their 
precursors were also found by Puel et al. (2005). Byssochlamys 
lagunculariae produces the same overall extrolite profile as  
B. nivea, except that patulin has not been detected in the 
former species. Byssochlamys spectabilis and isolates with 
only anamorphs (P. variotii) consistently produced viriditoxin, 
which was earlier reported from an isolate identified as Spicaria 
divaricata (Jiu & Mizuba 1974). Other unique extrolites were 
also produced but the structures of these have not yet been 
elucidated.
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Fig. 3   One of 36 equally parsimonious trees of the analysed partial β-tubulin 
gene sequences (156 of the 494 characters were parsimony informative; tree 
length = 304, CI = 0.704, RI = 0.913, RC = 0.643, HI = 0.296).

All strains of P. divaricatus produced anthraquinones including 
emodin. However CBS 110429 only produced another type of 
anthraquinone, CBS 110428 and CBS 110430 produced asco-
furanone. Only the ex-type culture of B. zollerniae was available 
for study and some unique unknown extrolites were found in this 
isolate. In this study, we could not confirm viriditoxin production 
in P. divaricatus and assume that the strain studied by Jiu & 
Mizuba (1974) was probably a B. spectabilis isolate.

Our phylogenetic analysis showed that B. verrucosa is related to 
Thermoascus. Byssochlamys verrucosa produced cornexistin 
and/or byssochlamic acid, and also some specific unidentified  
extrolites only seen in this species. Thermoascus aurantiacus 
also produces compounds with chromophores (UV spectra) 
consistent with cornexistin, byssochlamic acid or similar tropolo-
nes (Frisvad unpubl. data). The production of cornexistin and 
byssochlamic acid demonstrates that the species chemically re-
semble B. fulva, B. laguncularia, B. nivea and P. divaricatus. 

Paecilomyces saturatus is chemically somewhat diverse. Group I  
produced at least one of the following extrolites: patulin, myco-
phenolic acid and a compound which chemically resembles 
aspergillic acid (CBS 251.55T, CBS 223.52, CBS 492.84 and 
IBT 21716), while group II produced brefeldin A (CBS 323.34T 
and CBS 990.73A) and may fit with P. mandshuricus var. satu­
ratus. Paecilomyces formosus consistently produced variotin 
and related compounds, except CBS 296.93, which may be 
chemically close to P. saturatus (group I). 

Discussion 

Byssochlamys isolates were included in this study to verify the 
connection between the anamorphic P. variotii complex and 
holomorphic Byssochlamys species. The genus Paecilomyces 
was monographed by Samson (1974) who recognised 31 spe-
cies divided into two sections, Paecilomyces and Isarioidea.  
However, the phylogenetic analysis of the 18S rDNA demon-
strates that Paecilomyces is polyphyletic across two subclasses, 
Sordariomycetidae and Eurotiomycetidae (Luangsa-ard et al. 
2004).

Species	 Extrolites

B. fulva	 Group I: byssochlamic acid, meriditin, ‘cycloaspeptide-like 
compound’

	 Group II: byssochlamic acid, ‘OLK’, ‘URT’
B. lagunculariae	 Byssochlamic acid, mycophenolic acid, ‘OLK’
B. nivea	 Byssochlamic acid, mycophenolic acid,  patulin, ‘OLK’
B. spectabilis	 Viriditoxin and other compounds with characteristic UV 

spectra
B. verrucosa	 Cornexistin and/or byssochlamic acid
B. zollerniae	 No known extrolites, though several compounds character-

ized by a characteristic UV spectrum are  present
P. brunneolus	 ‘Ascofuranone-like compound’, ‘tetracycline-like com-

pounds’
P. divaricatus	 Cornexistin and/or byssochlamic acid, ascofuranone, emodin 

and other anthraquinones
P. formosus	 Variotin
P. saturatus	 Group I: patulin, mycophenolic acid or ‘aspergillic acid-like 

compound’ 
	 Group II: brefeldin A

1	 Byssochlamic acid, mycophenolic acid, patulin, and viriditoxin were available as authentic 
standards. Evidence for production of ascofuranone, cornexistin, meriditin and variotin is 
based on similar UV spectra as those reported in the literature, and their occurrence in 
species already known to produce them. Metabolites in inverted commas have UV spectra 
that indicate a chemical relationship to the compounds mentioned. For example the ‘tetracy-
cline-like compounds’ in P. brunneolus have UV spectra similar to those of tetracycline and 
viridicatumtoxin. ‘OLK’ and ‘URT’ are apolar indole-terpene compounds, but the chemical 
structure is as yet unknown. ‘OLK’ has a paspaline UV spectrum. 

Table 2   Production of extrolites by Byssochlamys and Paecilomyces 
species1.

β-tubulin
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Therefore, Paecilomyces is only monophyletic within the order 
Eurotiales and characterised by a Byssochlamys teleomorph. 
In the present study the P. variotii complex could be divided 
into four species, P. divaricatus, P. formosus, P. saturatus and 
P. variotii.

Udagawa & Suzuki (1994) described Talaromyces spectabilis, 
but phylogenetic analysis of the 18S rDNA clarified that this spe-
cies belongs to the genus Byssochlamys (Luangsa-ard et al.  
2004). Recently, Houbraken et al. (2008) showed that this 
species is heterothallic and that it is linked to the anamorphic 
species P. variotii. This was confirmed in the present study by 
morphological features and extrolite data. The presence of a 
teleomorph with heat-resistant ascospores for P. variotii ex-
plains the ability of this fungus to spoil heat treated fruit juices 
(Piecková & Samson 2000).

Short descriptions of B. lagunculariae, B. spectabilis, P. brun­
neolus, P. divaricatus, P. formosus and P. saturatus are pre-
sented. The concepts of B. fulva, B. nivea and B. zollerniae are 
unchanged since the descriptions by Stolk & Samson (1971), 
with the remark that B. nivea var. langunculariae is elevated to 
species level. Byssochlamys verrucosa is not discussed here, 
because the taxon probably belongs to Thermoascus; it was 
fully described by Samson & Tansey (1975). Microscopic dimen-
sions and cultural characters are summarised in Table 3.

Discussion of accepted taxa

Byssochlamys lagunculariae (C. Ram) Samson, Houbraken 
& Frisvad, comb. nov. — MycoBank MB512557; Fig. 4a–f

	 Basionym. Byssochlamys nivea Westling var. lagunculariae C. Ram, 
Nova Hedwigia 16: 311. 1968.

Byssochlamys lagunculariae strains grow fast on MEA, cover-
ing the dish within 7 d at 30 °C. Depending on the isolate, it 
predominantly forms conidia (CBS 373.70T) or ascomata (CBS 
696.95). Colonies 25–55 mm on MEA at 37 °C after 7 d of 
incubation. Growth occurs under microaerophilic conditions, in 
the presence of 0.5 % acetic acid or 1 000 ppm propionic acid 
(pH 3.8). No growth is observed on CYA with 5 % NaCl. Poor 
growth and no acid production on CREA. 

Morphologically, B. lagunculariae is similar to B. nivea and 
shares various characters such as fast growth rate on MEA at 
30 °C and globose (to ellipsoidal) conidia with a flattened base. 
Chlamydospores are present, uncoloured and smooth-walled. 
Though similar in shape to those of B. nivea, the conidia and 
ascospores of B. lagunculariae are generally smaller in size. 
Another difference is that B. lagunculariae grows well on CYA 
while B. nivea grows rather poorly. 

Our molecular studies and morphological examinations both 
revealed that B. lagunculariae is clearly distinct from B. nivea. 
In the original description by Ram (1968), B. lagunculariae was 
described as a variety of B. nivea, distinguished by its smaller 
conidia and ascospores. Stolk & Samson (1971) synonymised 
it with B. nivea, but the present study showed that the growth 
rate on CYA, and smaller conidial and ascospore sizes are 
constant characters that can be used to differentiate between 
these species. 

This species produces a similar range of extrolites to B. nivea, 
but patulin has not been detected in B. lagunculariae. Dif-
ferentiation between B. nivea and B. lagunculariae, based on 
extrolite profiles, is not possible. 

The ex-type culture was isolated from wood of Laguncularia 
racemosa (mangue) in Brazil and other strains identified as 
this species were found in soil, and pasteurised strawberries 
and aloe juice. The occurrence of this species in heat treated 
products makes it an important food spoilage organism.
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Fig. 4   Byssochlamys lagunculariae. a–d. Conidiophores; e. conidia; f. asci and ascospores. — Byssochlamys zollerniae. g, h. Phialides; i. chlamydospores; 
j. conidia. — Scale bars = 10 µm.
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Fig. 5   Byssochlamys spectabilis. a–e. Conidiophores; f. conidia; g. ascomata; h, i. asci and ascospores. — Scale bars = 10 µm.
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Byssochlamys spectabilis (Udagawa & Shoji Suzuki) Hou-
braken & Samson, Appl. Environm. Microbiol. 74: 1618. 
2008. — Fig. 5

	 Basionym. Talaromyces spectabilis Udagawa & Shoji Suzuki, Mycotaxon 
50: 82. 1994. 
	 Anamorph. Paecilomyces variotii Bainier, Bull. Trimestriel Soc. Mycol. 
France 23: 26. 1907.
	 ≡ Penicillium variotii (Bainier) Sacc., Syll. Fung. 22: 1273. 1913.

Colonies spreading rapidly on MEA at 30 °C and covering the 
Petri dish within 7 d. Similar or higher growth rate at 37 °C 
than at 30 °C. Good growth under microaerophilic conditions, 
on MEA with 0.5 % acetic acid and on CYA with 1 000 ppm 
propionic acid (pH 3.8). No or weak growth on CYA with 5 % 
NaCl (0–10 mm). Since B. spectabilis forms its ascospores in 
a heterothallic manner, only the anamorph is usually produced. 
The conidiophores are irregularly branched and ellipsoidal 
and/or cylindrical; truncate conidia are formed, which are often 
pale yellow brown. Chlamydospores present, smooth-walled, 
in some isolates finely roughened. Often broad, thick-walled 
hyphae are present in fresh isolates. Ascospores are formed 
when strains of opposite mating types are grown together. 
Our recent study (Houbraken et al. 2008) showed that strains 
originating from heat treated products are mostly frequently 
capable of producing fertile progeny. The ascospores are el-
lipsoidal, smooth to finely roughened, 5.5–6.5 × 3.5–4.5 µm. 
Colonies on MEA agar growing rapidly, attaining a diameter of 
7 cm within 7 d at 30 °C. Poor growth and no acid production 
on CREA. 

The extrolite viriditoxin was produced by all investigated iso-
lates. Whether this extrolite is also produced in foodstuffs is 
unknown. 

Byssochlamys spectabilis commonly occurs in air, compost, 
infected humans and various foodstuffs (including pasteurised 
fruit juices, rye bread). It is frequently found in heat treated prod-
ucts, although after isolation only the anamorph is produced.

Paecilomyces brunneolus (N. Inagaki) Samson & Houbraken, 
comb. nov. — MycoBank MB512559; Fig. 6g–i 

	 Basionym. Paecilomyces variotii Bainier var. brunneolus N. Inagaki, Trans. 
Mycol. Soc. Japan 4: 4. 1962.

The type strain of P. brunneolus on MEA in 7 d forms colonies 
of 35–45 mm diam (30 °C) with well-defined margins. Colo-
nies on MEA 20–30 mm diam in 7 d at 37 °C. Growth occurs 
under microaerophilic conditions and in the presence of 0.5 % 
acetic acid or 1 000 ppm propionic acid (pH 3.8). No growth 
is observed on CYA with 5 % NaCl. Poor growth and no acid 
production on CREA. Microscopical examination showed 
short, irregular branched conidiophores (2–3 × 15–25 µm). 
Conidia ellipsoidal to broadly cylindrical with truncate ends 
(1.5–)2–3(–3.5) × (3.5–)4–5(–5.5) µm. Chlamydospores 
present, smooth and hyaline.

Paecilomyces brunneolus is only known from its type culture, 
CBS 370.70. Analyses of a part of the β-tubulin, calmodulin 
gene and the ITS regions showed that this strain is closely 
related to B. spectabilis (P. variotii). However, extrolites and 
morphological data support that this is a distinct species. Viridi- 
toxin is consistently produced by B. spectabilis, while P. brun­
neolus produces an ascofuranone like compound and tetracy-
clic compounds. Paecilomyces brunneolus colonies are more 
restricted than strains of B. spectabilis (P. variotii) on MEA. 
Another difference is that the growth rate of P. brunneolus at 
37 °C is slower than at 30 °C, while this is the opposite for  
B. spectabilis. 

This species has only been isolated from non-fat, dry milk from 
Canada in the 1960s.

Paecilomyces divaricatus (Thom) Samson, Houbraken & 
Frisvad, comb. nov. — MycoBank MB512561; Fig. 6a–f

	 Basiomym. Penicillium divaricatum Thom, Bull. Bur. Anim. Ind. U.S. Dep. 
Agric. 118: 92. 1910.
	 ≡ Spicaria divaricata (Thom) J.C. Gilman & E.C. Abbott, Iowa State Coll. 
J. Sci. 1: 301. 1929. 
	 ≡ Spicaria divaricata (Thom) R.M. Ma, Lingnan Sci. J. (Suppl.) 12: 115. 
1933.

The growth rate of P. divaricatus on MEA is restricted, compared 
with other members of the investigated Byssochlamys clade, 
and colonies of 30–40 mm are attained after 7 d of incubation at 
30 °C. Only P. brunneolus has colony diameters of comparable 
size. Grows at 37 °C, although slower at 30 °C. Weak growth 
and no acid production on CREA. Paecilomyces divaricatus is 
characterised by its ellipsoidal to cylindrical, truncate conidia, 
measuring 3.5–4.5 × 1.5–2 µm and the absence of chlamy-
dospores. Ascomata absent on agar media, though ascomatal 
initials, arising as coils, can be observed. Smooth ellipsoidal 
ascospores were once observed in a fresh isolate (5.3–7 × 
3.8–4.9 µm) but have not been seen since.

Anthraquinones including emodin are produced by all inves-
tigated isolates. The production and presence of emodin, a 
genotoxic and diarrheagenic mycotoxin, in foods and feeds 
is unknown.

Thom (1910) described the species Penicillium divaricatum 
but placed this species later in synonymy with P. variotii (Thom 
1930). We examined the ex-type isolate and conclude that  
P. divaricatus is a distinct species. Microscopical analyses of 
the original type isolate (CBS 284.48) showed a few structures 
resembling ascoma initials. Using a heat treatment, strains of  
P. divaricatus could be isolated from various food products. The 
survival of a heat treatment suggests the presence of a Bysso­
chlamys teleomorph (ascospores), and many Byssochlamys 
initials were present (croziers) in these strains; however, no 
ascomata were detected even after prolonged incubation. 

This species was isolated from a bottle with mucilage library 
paste, heat treated pectin and fruit concentrates. Its pres-
ence in heat treated products and the absence of thick-walled 
chlamydospores, suggests that this species is able to form heat 
resistant ascospores. 

Paecilomyces formosus (Sakag., May. Inoue & Tada) Hou-
braken & Samson, comb. nov. — MycoBank MB512562; 
Fig. 7g–i

	 Basionym. Monilia formosa Sakag., May. Inoue & Tada, Zentralbl. Bak-
teriol., 2. Abt. 100: 302. 1939.
	 = Paecilomyces maximus C. Ram, Nova Hedwigia 16: 306. 1968.
	 = Paecilomyces lecythidis C. Ram (as lecythisii), Nova Hedwigia 16: 307. 
1968.

Fast growth on MEA at 30 °C and covering the dish within 7 d. 
Ratio between growth rates at 30 and 37 °C variable; most 
strains have slower or similar growth rates (< 1), though CBS 
371.70 (ex-type strain of P. maximus) and CBS 113247 are 
exceptions and have a faster growth rate at 37 °C. Growth on 
MEA with 0.5 % acetic acid varying from absence of growth to 
more than 80 mm after 1 wk of incubation. Variable growth pat-
terns on CYA with 5 % NaCl, 0–25 mm. All investigated strains 
have poor growth on CREA and acid production under colonies. 
Conidiophores irregularly branched, with olive-brown conidia. 
Chlamydospores present (often on small stalks), smooth wall- 
ed, globose and (weakly) pigmented. The conidia of this spe-
cies are variable, varying from ellipsoidal to cylindrical; all with 
truncate ends. In some isolates conidial shape might vary from 
ellipsoidal to cylindrical.
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Fig. 6   Paecilomyces divaricatus. a–c. Conidiophores; d. conidia; e. ascoma initials; f. ascospores. — Paecilomyces brunneolus. g, h. Conidiophores;  
i. conidia. — Scale bars = 10 µm.
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Fig. 7   Paecilomyces saturatus. a–e. Conidiophores; f. conidia. — Paecilomyces formosus. g, h. Conidiophores; i. conidia. — Scale bars = 10 µm.
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Ram (1968) described two Paecilomyces species, P. lecythidis 
and P. maximus, based on their cultural characters and their 
large-sized conidia. 

The results of the sequencing of the ITS region, and parts of 
the protein coding genes β-tubulin and calmodulin, showed that  
P. formosus may consist of three taxa, P. formosus, P. lecythidis 
and P. maximus. However, the three species could not be 
distinguished by microscopical examination. One difference 
between strains belonging to the ‘P. maximus-clade’ and the 
other members of this diverse group, is the faster growth rate 
of this species at 37 °C than at 30 °C. The sequence and mor-
phological diversity was not detected by the extrolite analyses: 
the ex-type cultures of P. lecythidis and P. maximus produced 
similar extrolite profiles, while the ex-type culture of P. formosus 
is degenerated and is a weak producer of extrolites. 

For a more detailed conclusion and delimitation of these three 
groups more strains should be studied, particularly emphasis-
ing conidial shape and extrolites production. For the time being 
we propose to place P. lecythidis and P. maximus in synonymy 
with P. formosus. 

This species is morphologically similar to P. variotii and the main 
difference is the consistent acid production on CREA. 

Paecilomyces formosus has been isolated from tropical and 
subtropical soils, wood, sponge, man (bone marrow, blood), 
air in a bedroom (Denmark) and pot plant soil of Senseviera 
trifasciata (Denmark).

Paecilomyces saturatus (Nakaz., Y. Takeda & Suematsu) 
Samson & Houbraken, comb. nov. — MycoBank MB512560; 
Fig. 7a–f

	 Basionym. Paecilomyces mandshuricus (Saito) Thom var. saturatus  
Nakaz., Y. Takeda & Suematsu, J. Agric. Chem. Soc. Japan 10: 102. 1934. 
	 = Penicillium viniferum Sakag., May. Inoue & Tada, Zentralbl. Bakteriol., 
2. Abt. 100: 303. 1939.
	 = Paecilomyces dactylethromorphus Bat. & H. Maia, Anais Soc. Biol. 
Pernambuco 15: 152. 1957.

The oldest basionym available for this taxon is P. mandshuricus 
var. saturatus and therefore the name of this taxon is derived 
from this varietal name.

Isolates growing on MEA at 30 °C cover the Petri dish within 
7 d, with strong olive-brown sporulation. Good growth at 37 °C, 
though slower at 30 °C. Good growth on MEA with 0.5 % ace-
tic acid and CYA with 1 000 ppm propionic acid (pH 3.8). No 
growth observed on CYA with 5 % NaCl. Poor growth and no 
acid production on CREA. 

Morphological examination of various strains showed that this 
species forms fairly regularly branched, penicillium-like conidio
phores, with ellipsoidal and/or cylindrical conidia without a dis-
tinct truncation. Chlamydospores present, hyaline and smooth 
walled. No teleomorph observed.

The production of extrolites depends very much on the growth 
medium; patulin or brefeldin A can be produced. 

Paecilomyces saturatus is an easily recognisable species 
with its ellipsoidal and/or cylindrical conidia and its fairy regu-
larly branched, penicillium-like conidiophores. Sakaguchi et al. 
(1939) described Penicillium viniferum and this species was 
subsequently placed in Paecilomyces by Raper & Thom (1949). 
In retrospect, the placement in Paecilomyces was correct, al-
though this species could be interpreted, with its penicillium-like 
conidiophores and the presence of chlamydospores, as an inter-
mediate form between Penicillium and Paecilomyces. Molecular 
studies now show that this species belongs to the Byssochlamys 
clade and is different from other olive-brown coloured species 
such as Hamigera avellanea (Luangsa-ard et al. 2004), Penicil­
lium digitatum and P. cylindrosporum (unpubl. data). 

This species has been isolated from a variety of substrates, e.g. 
acetic acid, leather, medicine containing quinine, a dispersion 
of fenylacetate and dibutylmaleinate and Lepidium sativum. 

Notes on the ecology and extrolites production

Byssochlamys and Paecilomyces species are often found 
in acidic habitats such as silage (Scurti et al. 1973, Escoula 
1975a, b, Anderson et al. 1979), and in common with Penicillium 
series Roqueforti species (Frisvad & Samson 2004) can also 
tolerate microaerophilic conditions (Escoula 1975a, b, Taniwaki 
1995). Byssochlamys nivea was initially reported to produce 
patulin under the name Gymnoascus sp. (Karow & Forster 
1944, Kuehn 1958), later confirmed by Kis et al. (1969), Scurti 
et al. (1973), Rice et al. (1977) and Draughon & Ayres (1980). 
Byssochlamys fulva was also reported to produce patulin, albeit 
by few strains (Escoula 1975a, b, Percebois et al. 1975, Rice et 
al. 1977). Besides their presence in pasteurised fruit, B. fulva 
and B. nivea also form toxic extrolites, such as byssotoxin A 
and byssochlamic acid (Kramer et al. 1976, Rice et al. 1977). 
Besides mycotoxins, also an antitumor metabolite, byssoch-
lamysol, a steroid against IGF-1 dependent cancer cells, is 
produced by B. nivea (Mori et al. 2003). 

Paecilomyces variotii s.l. also produces mycotoxins (Scott 
1965), such as patulin (Escoula 1975a, b), sphingofungin E 
and F (Frommer et al. 1992) and viriditoxin, reported originally 
from an isolate named Spicaria divaricata (Jiu & Mizuba 1974). 
Apart from being reported as being a potential mycotoxin, 
viriditoxin has also been reported to be a candidate for treat-
ment of antibiotic resistant bacteria (Wang et al. 2003). Among 
the known extrolites are the antifungal drug variotin (Takeuchi 
et al. 1959, 1964, Suzuki et al. 1990, Omolo et al. 2000), and 
other drug candidates such as cornexistins (Nakajima et al. 
1991, Fields et al. 1996), SCH 643432 (Hegde et al. 2003) 
and a penicillin-like compound (Burton 1949). The sideramins 
ferrirubrin and fusigen (Diekmann 1967, Domsch et al. 1980) 
and the organic acids 3-indole-acetic acid (Bakalinerov 1968, 
Voinova-Raikova et al. 1969), citric acid (Loesecke 1945), 
ethyleneoxide-α, β-dicarboxylic acid (Sakaguchi et al. 1939), 
(3Z,5E)-octa-3,5-diene -1,3,4-tricarboxylic acid 3,4-anhydride 
(Aldridge et al. 1980) have also been reported. The possible 
mycotoxins and/or potential drugs byssotoxin A, sphingofungin 
E and F, SCH 643432 and byssochlamysol were not available to 
us as standards. Given the taxonomic revision presented here, 
it remains to be seen which species produce these extrolites. 
Some connections between species and bioactive extrolites 
were confirmed or established here and several species had a 
high consistent extrolite profile. However, the chemotaxonomy 
of P. saturatus is unresolved, because there appear to be two 
chemotypes, which may or may not indicate that there are two 
species rather than one. Likewise, B. fulva appears to have 
two chemotypes, with only byssochlamic acid as a common 
extrolite in all isolates examined. 

Key to Byssochlamys and related 
PaecilomYces anamorphs*

1.	 Conidia with conspicuously truncate ends or a flattened 
base  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          2

1.	 Conidia ellipsoidal or cylindrical with inconspicuously trun-
cate ends  . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             P. saturatus 

2.	 Conidia predominantly ellipsoidal and/or cylindrical chlamydo
spores absent or present; Byssochlamys teleomorph absent 
or present  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    3

2.	 Conidia predominantly globose to subglobose, chlamydo
spores present; Byssochlamys teleomorph present . . . . .     8
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Fig. 8   Byssochlamys fulva. a. Conidiophores; b. conidia; c. asci and ascospores. — Byssochlamys nivea. d. Conidiophores; e. conidia; f. ascospores. — Bysso­
chlamys verrucosa. g, h. Conidiophores and conidia; i. asci and ascospores. — Scale bars = 10 µm.
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3.	 Conidia cylindrical and/or ellipsoidal; measuring 3.4–4.2 × 
1.7–2.1 µm, colonies on MEA restricted, attaining a diameter 
of less than 45 mm in 7 d at 30 °C  . . . . . . . . . . . . . . . . . .                 4

3.	 Conidia larger 2.3–8(–13) × 1.5–4.5 µm, cylindrical or el-
lipsoidal, colonies on MEA larger than 45 mm after 7 d at 
30 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         5

4.	 Chlamydospores present, ratio between diameters on MEA 
at 37:30 °C between 0.25 and 0.45, colonies with well-
defined margins  . . . . . . . . . . . . . . . . . . . . . .                      P. brunneolus

4.	 Chlamydospores absent, ratio between diameters on MEA 
at 37:30 °C between 0.60 and 0.75, colonies with more or 
less feathery margins  . . . . . . . . . . . . . . . . .                P. divaricatus**

5.	 Conidia predominantly ellipsoidal with truncate ends, chlamy-
dospores present  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               6

5.	 Conidia predominantly cylindrical, chlamydospores absent 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             7

6.	 Conidia measuring 3.7–5.6 × 2.4–3.6 µm, no acid produc-
tion on CREA; Byssochlamys teleomorph produced in a 
heterothallic manner . . . . . . . . . . . . . . . . . . .                    B. spectabilis

6.	 Conidia measuring 3.2–5.7(–10) × 2–2.9(–3.4) µm, acid 
production under colony on CREA; Byssochlamys teleo
morph absent  . . . . . . . . . . . . . . . . . . . . . . . . .                          P. formosus

7.	 Conidia measuring 4.5–6 × 1.7–2.2 µm; ascospores, smooth- 
walled, 5.5–6.5 × 3.5–4.1 µm, acid production under colony 
on CREA . . . . . . . . . . . . . . . . . . . . . . .                        B. fulva (Fig. 8a–c)

7.	 Conidia measuring 9–11.8 × 2.5–4 µm; ascospores, ver-
rucose and large, 7.1–8.1 × 5–5.7 µm, no acid production 
on CREA . . . . . . . . . . . . . . . . . .                    B. verrucosa (Fig. 8g–i)*

8.	 Chlamydospores distinctly rough-walled . . . . . . . . . . . . . . .            
 . . . . . . . . . . . . . . . . . . . . . . . . . . .                           B. zollerniae (Fig. 4g–j)

8.	 Chlamydospores smooth walled or finely roughened . . . .    9

9.	 Conidia measuring 3.1–3.8 × 2.5–3.2 µm, good growth on 
CYA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              B. lagunculariae

9.	 Conidia measuring 3.1–4.3 × 2.6–3.4 µm, moderate growth 
on CYA  . . . . . . . . . . . . . . . . . . . . . . . .                         B. nivea (Fig. 8d–f)
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