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Abstract: Laser-generated focused ultrasound (LGFU) is an emerging modality for cavitation-based
therapy. However, focal pressure amplitudes by LGFU alone to achieve pulsed cavitation are often
lacking as a treatment depth increases. This requires a higher pressure from a transmitter surface
and more laser energies that even approach to a damage threshold of transmitter. To mitigate the
requirement for LGFU-induced cavitation, we propose LGFU configurations with a locally heated
focal zone using an additional high-intensity focused ultrasound (HIFU) transmitter. After confirming
heat-induced cavitation enhancement using two separate transmitters, we then developed a stacked
hybrid optoacoustic-piezoelectric transmitter, which is a unique configuration made by coating an
optoacoustic layer directly onto a piezoelectric substrate. This shared curvature design has great
practical advantage without requiring the complex alignment of two focal zones. Moreover, this
enabled the amplification of cavitation bubble density by 18.5-fold compared to the LGFU operation
alone. Finally, the feasibility of tissue fragmentation was confirmed through a tissue-mimicking
gel, using the combination of LGFU and HIFU (not via a stacked structure). We expect that the
stacked transmitter can be effectively used for stronger and faster tissue fragmentation than the
LGFU transmitter alone.

Keywords: laser-generated focused ultrasound; pulsed cavitation; tissue therapy; precision therapy

1. Introduction

Focused ultrasound (FUS) with high frequencies (a few tens of MHz) and high ampli-
tudes capable of producing acoustic cavitation (tens of MPa) has been generated using an
optoacoustic effect [1]. Nanosecond laser pulses (e.g., 5–10 ns) have enabled the excitation
of thin-film optoacoustic transmitters, e.g., a composite film of carbon nanotube (CNT) and
polydimethylsiloxane (PDMS) [2–5]. An optoacoustic lens with a transmitter layer coated
on a spherically concave substrate has been fabricated to produce powerful FUS with
high-frequency and broad bandwidth [1,6–9]. Such laser-generated focused ultrasound
(LGFU) emitted from the optoacoustic lens produces non-thermal and micro-cavitational
disturbances at a tight focal spot (<100 µm), which has been utilized for micro-precision
treatment such as tissue fragmentation (i.e., histotripsy), cellular membrane opening for
molecular delivery, thrombolysis, and targeted cell detachment/disconnection [10–13].

In such cavitational treatment, a negative peak pressure amplitude of US pulse should
reach a certain threshold to initiate acoustic cavitation. For a given medium, the probability
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of cavitation generation also depends on temperature, acoustic frequency, and initial
gas content. Nominal values for peak pressure amplitudes in properly degassed and
room-temperature environments have been reported as −26 MPa in deionized water,
−15.4 MPa in fatty tissue, −6 MPa in blood, and −19.2 MPa in muscle [14–16]. Considering
the intrinsic attenuation of each medium, which increases with the penetration depth, a
stronger pressure amplitude than such thresholds is necessary from a transmitter surface.
This is to overcome such attenuation and then exceed the threshold for cavitation at a target
depth. LGFU operated in a high center frequency of 13~16 MHz (a 6 dB roll-off point at
approximately ~30 MHz) is especially even more susceptible to attenuation than other US
cases in a low MHz frequency range.

However, the maximum LGFU amplitude is always limited for a given optoacoustic
lens by the physical damage threshold of the transmitter material under pulsed laser
irradiation. Due to the limited LGFU amplitude, the penetration depth for cavitational
treatment has been limited to a few-to-several mm thus far [1,10–13,17]. This demands
an alternative way to produce LGFU-induced cavitation, for example, by employing
an additional transducer whose focal point is superposed [13,18]. Previously, a dual-
focusing scheme was introduced in which LGFU with a tight focal spot of 100 µm is
overlapped with an additional pressure pulse focused by a piezoelectric transducer (800 µm
in focal width) [18]. This superposition configuration allows the amplitude summation of
two pressure pulses without considering any thermal effect at focus. The focal pressure
amplitude to reach the cavitation threshold by LGFU alone could be reduced to some
extent this way.

The cavitation process can be thermally facilitated, as the nucleation of vapor phase
in liquid can be triggered by thermal fluctuations [19,20]. This significantly increases
the cavitation probability for a given volume and a treatment time. Thus, such thermal
facilitation to form cavitation is an effective way since the threshold requirement can be
mitigated [21,22]. With a single piezoelectric transducer, this heating approach has been
applied to generate bubbles in boiling histotripsy [23–26]. However, if LGFU is used alone,
it is extremely difficult to cause significant heat deposition by itself due to the low pulse
repetition rate (typically, a few to 20 Hz; limited by laser systems) whose pulse-to-pulse
interval is much longer than heat diffusion time over a microscale focal zone (e.g., in water
or tissues).

We demonstrate LGFU (center frequency ~16 MHz) with a heated focal zone formed
by HIFU. First, thermal enhancement of LGFU-induced cavitation was characterized using
a superposition alignment of two separate focal transmitters in which two FUS transmitters
(i.e., HIFU and LGFU) were arranged perpendicular to each other (i.e., with an angle
difference between two FUS axes θ = 90◦). HIFU-induced temperature enhancement at
the focal zone from 22 up to 35 ◦C in water increased the rate of LGFU-induced cavitation
significantly from 6% to 36% by an input laser energy as low as 4.35 mJ/pulse. Based on
the above feasibility of enhanced cavitation, we developed a longitudinally superposed
configuration (θ = 0◦) by fabricating a stacked hybrid transducer where an optoacoustic
transmitter layer was coated directly on the piezoelectric HIFU transmitter. This allowed
the alignment of two foci to be readily formed by fabrication by sharing a single curvature,
thus significantly resolving the alignment complexity and making a standalone operation
of the single combined device. Importantly, free-boundary cavitation in water was obtained
by the enhanced LGFU performance by HIFU-induced heating, which is an essential step to
move forward for tissue therapy (e.g., micro-histotripsy). Finally, fragmentation of a tissue-
mimicking gel was performed using a disintegrated arrangement of two FUS (θ = 180◦)
whose focal zone shape was almost identical with that of the stacked configuration (θ = 0◦).
The hybrid structure transmitting both LGFU and HIFU from the single shared curvature
would be practically useful for high-precision cavitation therapy, allowing thermal and
non-thermal treatment simultaneously.
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2. Materials and Methods

Figure 1 illustrates the experimental schematic for the dual-focusing configuration of
LGFU and HIFU. Two different transducers were placed with θ = 90◦. This configuration
was primarily used to study the effect of HIFU-induced heating on cavitation generation
by LGFU. We fabricated an optoacoustic lens (40 mm in diameter and with a 26 mm radius
of curvature; f -number = 0.65) by depositing a CNT-PDMS composite film on top of a
concave-shaped glass substrate to produce LGFU. Firstly, a solution of multi-walled CNTs
and toluene (1:100 ratio) was prepared and sonicated for 1 h for homogenized mixing. Then,
the CNT–toluene solution was coated on a concave glass substrate by a spray method. The
prepolymer liquid and curing agent (10:1 ratio) were mixed to prepare a uniform PDMS
solution. Then, this PDMS solution was drop-casted on the CNT layer. Finally, the CNT–
PDMS composite layer on the concave substrate was cured at 90 ◦C for 2 h. Subsequently,
an Nd:YAG pulsed laser beam (Litron Lasers Ltd., Rugby, Warwickshire, United Kingdom.
532 nm wavelength, 7 ns width, and 10 Hz pulse repetition rate) was used for excitation of
the CNT–PDMS-coated lens which had axial and lateral focal widths (6 dB) that were 280
and 85 µm, respectively. We used an HIFU generator (Dongiltech, Republic of Korea, model
number 15B021) as an additional transmitter (22 mm outer diameter, 20 mm diameter of
ceramic disk, 18 mm radius of curvature, and f -number = 0.9) to form a heated zone greater
than the focus of LGFU, which had axial and lateral focal spot widths of 3.5 mm and
0.62 mm. A sinusoidal signal (2 V peak-to-peak and 4 MHz frequency) initially generated
by a function generator (Rigol 1022A, Handelsweg, Germany) and amplified by an RF
amplifier (5082FE, OPHIR, Los Angeles, United States) was used for driving the HIFU
transducer. The focal points of both transmitters were aligned for spatial superposition by
using a single-mode fiber-optic hydrophone as illustrated in Figure 1 [27,28]. The initiation
timing of two US waves was synchronized for temporal superposition. Then, the duty
cycle of the sinusoidal signal was set to 20% and 60% to create the temperature increase
of 9 and 13 ◦C, respectively, at the focus measured by using a k-type thermocouple. Both
transmitters were embedded in a water tank with an ambient temperature of 21~22 ◦C.
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Figure 1. Experimental setup showing the superposition of LGFU and HIFU (θ = 90◦); the focal zone
of LGFU shown with the blue ellipse directed along the x-axis, and the focal zone of HIFU with the
red ellipse along the y-axis).

As the superposition alignment shown in Figure 1 is a laborious and time-consuming
process, requiring a high spatial accuracy for two separate focal systems, we developed a
stacked hybrid transducer for simultaneous generation of LGFU and HIFU from a single
shared curvature. For fabrication, an optoacoustic transmitter layer was coated directly
onto a piezoelectric HIFU transducer. This combined configuration resolved the alignment
complication, as two focal spots were aligned readily by the single spherical substrate. This
certainly enhanced the accuracy of focal spot superimposition and reduced time required
for precise alignment of two different transducers. For the stacked hybrid transducer, a
CNT–PDMS composite film with a few tens of micrometer in thickness was spray-coated
on the surface of a prefabricated HIFU transducer with a 20 mm diameter and 18 mm
radius of curvature (f -number = 0.9; center frequency = 4 MHz). Then, the composite layer



Micromachines 2021, 12, 1268 4 of 11

on the HIFU transducer was cured for 2 h at 90 ◦C. Figure 2 shows the stacked hybrid
transducer with the bottom piezoelectric layer and the top CNT PDMS layer, both of which
had an identical diameter and a radius of curvature defined by the substrate.
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Figure 2. (a) A cross-sectional schematic of the stacked hybrid transducer. The yellow layer indicates
the piezoelectric transmitter for HIFU. The top black layer presents the CNT–PDMS film which
was directly coated upon the piezoelectric transmitter. (b) Photographs (top view) of the piezo-
electric transmitter (left) and the fabricated hybrid transmitter with the CNT–PDMS layer (right).
(Scale bar = 10 mm).

Figure 3 illustrates the configuration for generating the dual-focused US from the
stacked hybrid transducer. The nanosecond pulsed-laser beam was used for optoacoustic
generation with a slanted angle of 45◦. The HIFU transducer was driven by a RF-amplified
sinusoidal signal (2 V peak-to-peak and 4 MHz frequency, 20% duty cycle) from a function
generator. The dual-focused US waves obtained from this configuration were measured
using the fiber-optic hydrophone aligned at the focal spot. The temperature of the focal
zone was also monitored using the k-type thermocouple. Free-boundary cavitation bubbles
were observed using a laser shadowgraphy system [29,30].
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Figure 3. A schematic arrangement for dual-focused US from the stacked hybrid transducer (θ = 0◦).
It is shown with the input laser beam for optoacoustic generation. The focal zone of the LGFU is
shown with the small blue ellipse. The greater red ellipse indicates the focal zone of the HIFU.

3. Results and Discussion

The major objective of this study was to develop transmitter configurations that
can lower the input laser energy for generating acoustic cavitation by enhancing the
temperature of the focal zone for therapeutic applications. The first step to achieving this
goal is to characterize thermal enhancement of cavitation generation. In this regard, we
used the dual-focus configuration with θ = 90◦.

A temporal profile of each FUS was acquired by using the fiber-optic hydrophone.
Figure 4 shows the measured US waveforms. While the temporal profile of the HIFU
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transducer alone (Figure 4b) illustrated a continuous sinusoidal waveform, the tempo-
ral profile of the LGFU (Figure 4a) showed a narrow-width bipolar waveform (input
laser energy = 4.35 mJ/pulse). Such a pulse shape with the short temporal width was
proportional to the time derivative of input laser pulse, which was observed typically in
optoacoustic generation with a far-field configuration. The normalized magnitude along
frequency spectra is shown in Figure 5. The central frequencies of the HIFU and the LGFU
were 4.5 and 16 MHz, respectively. The 6 dB cut off on the high-frequency edge was
observed at 5 MHz for the HIFU and 23.5 MHz for the LGFU. This indicates that the LGFU
exhibited a broadband and high-frequency spectrum compared to the HIFU. For both cases,
no cavitation signal was detected at the focal zone.
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Then, both transmitters were turned on, synchronized, and overlapped in space and
time as shown in Figure 6. The combined US waveform (from Figure 4a,b) is shown in
Figure 6a. In this case, the HIFU transducer turned on very shortly not to cause significant
temperature enhancement (less than a few ◦C), resulting in the simple non-thermal addition
effect of two US amplitudes. Subsequently, in Figure 6b, the duty cycle of the function
generator for the HIFU increased (~20%) to raise the temperature of the overlapped focus
region. The temperature increased by 9 ◦C. Although there was no change in the peak
amplitude of the HIFU, the acoustic cavitation signal was detected clearly (Figure 6b)
with strong disturbance, following the rarefactional phase of the LGFU waveform. This
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result confirms that cavitation can be achieved by the heated focal zone formed by the
HIFU transducer, although the LGFU amplitude alone is not sufficient to produce acoustic
cavitation. This was further confirmed by enhancing the focal zone temperature to 13 ◦C
by changing the duty cycle (~60%) of the HIFU transducer. Strong acoustic cavitation was
observed due to the temperature enhancement of the focal zone from 9 to 13 ◦C. With
the 13 ◦C enhancement, we observed a stronger cavitation signal with an enhanced peak
amplitude and a longer lifetime than the 9 ◦C enhancement case (not shown here). These
cavitation signals were subsequently utilized to count the cavitation occurrence.
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Figure 6. Combined waveforms of the LGFU and the HIFU are shown with negligible temperature
enhancement in (a) (less than a few ◦C) and 9 ◦C enhancement in (b). While peak amplitudes of the
LGFU and the HIFU were fixed for both figures, the duty cycle of the HIFU transducer was applied
differently. For both operations in (a,b), temporal waveforms were recorded using the fiber-optic
hydrophone after the temperature measurement.

Next, we compared cavitation probabilities for different LGFU and HIFU conditions
(Figure 7). The probability was obtained by dividing the number of cavitation occurrence
at focus by the number of input laser pulses. LGFU was produced by the optoacoustic lens
with an input laser pulse energy of E. Here, Eth is defined as a single-pulse laser energy
to generate the focal pressure near the onset of cavitation (not the cavitation threshold
of 50% probability). The operation with LGFU alone produced cavitation with a 6.1%
probability (98 out of 1600 pulses) at E = Eth which was 4.35 mJ/pulse. The chances of
cavitation occurrence significantly increased by using the dual focusing of LGFU and HIFU.
As the focal zone of the LGFU increased by 9 ◦C, the cavitation probability significantly
improved to 17.5% (140 out of 800 pulses). The focal zone of the LGFU was completely
included by that of the additional low-frequency HIFU with the 83-fold greater volume.
This was further enhanced up to 36% (288 out of 800 pulses) in the 13 ◦C enhancement
condition. These results also suggest that even a lower laser energy than Eth can be used
to produce cavitation as long as the focal zone is sufficiently heated. For this purpose, we
reduced the input laser energy to 3.78 mJ/pulse which corresponds to a sub-threshold
regime for the original value of Eth. With this laser energy, the LGFU alone did not produce
any cavitation, resulting in 0%. However, after increasing the temperature of the focal zone
by 13 ◦C, again by the additional HIFU, the probability significantly increased to 10.3%
(82 out of 800 pulses). This generated the cavitation better than the LGFU alone, previously
excited with 15% higher laser energy (E = 4.35 mJ/pulse) resulting in the onset level (6.1%).
Hence, this is evident from this study that LGFU-induced cavitation can be facilitated by
the heated focal zone and can even be achieved at the sub-threshold regime in terms of the
laser energy required to produce cavitation.
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Figure 7. Cavitation occurrence due to the input laser energies of 4.35 mJ/pulse and 3.78 mJ/pulse.

Based on the feasibility of thermal enhancement of LGFU-induced cavitation, we
employed a stacked hybrid transmitter for standalone operation of two FUS from a single-
shared curvature. The time–domain waveforms from the hybrid transmitter were acquired
at the focal zone. Figure 8a illustrates the bipolar LGFU waveform at ~12 µs (i.e., corre-
sponding to the radius of curvature (~18 mm)) obtained solely by pulsed-laser irradiation
(10 mJ/pulse) without turning on the HIFU transmitter. The ringing effect after the LGFU
pulse resulted from the backing substrate including the piezoelectric layer. Similarly, the
HIFU waveform (20% duty cycle) without LGFU (no laser irradiation) was measured in the
same manner (Figure 8b). The maximum pressure amplitude for HIFU was also obtained
at ~12 µs. Then, the transmitter surface was irradiated with the pulsed-laser beam together
with the application of an amplified sinusoidal waveform for HIFU. Figure 8c illustrates
the time–domain waveform generated by the spatio-temporal superposition of LGFU and
HIFU turned on simultaneously.
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alone; (c) LGFU and HIFU together.

The input laser energy was increased up to 120 mJ/pulse without causing any damage
to the stacked transmitter (i.e., damage threshold energy > ~120 mJ/pulse). We used
such maximum-input laser energy in an effort to check whether LGFU alone can produce
free-boundary cavitation. Figure 9a shows a few micro-bubbles obtained in a free-field
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condition in water. We note that LGFU alone can produce the free-boundary cavitation
which is an essential step to move forward for biomedical treatment. Although our stacked
transmitter can generate free-field cavitation, this was achieved near the upper limit of
input laser energy. This means there was almost no margin to further increase the input
energy and thus enhance the output pressure and cavitation. It would be difficult to
utilize the LGFU-induced cavitation obtained in the above manner for practical treatment
conditions likely having more acoustic attenuation mechanisms than in water. With the
identical optoacoustic excitation condition for LGFU used in Figure 9a, we turned on the
HIFU transmitter simultaneously in Figure 9b to induce localized heating over a region
greater than the focal volume of LGFU and then boost the free-boundary cavitation effect.
The white dotted region in Figure 9b clearly depicts the amplified cavitation effect with the
temperature enhancement from 22 to 30 ◦C. The density of cavitation bubbles increased
drastically from 3778 to 70,084 mm−3, i.e., an 18.5 times enhancement by the heat-induced
boost effect. This amplified cavitation suggests that the combined configuration may
possibly be employed for enhanced tissue fragmentation or faster cavitational treatment by
the larger damage zone.
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Figure 9. Laser shadowgraphy images for free-boundary cavitation in water: (a) a few cavitation bubbles are shown in free
boundary in water, generated by LGFU alone; (b) by HIFU-induced heating (8 ◦C), the LGFU-induced cavitation in free
boundary was greatly enhanced. The cavitation bubbles are shown over a broad range within the white dotted ellipses.

Despite the compact design and the capability of free-boundary cavitation generation,
the focal pressure from the current stacked structure was geometrically limited due to the
f -number of the spherical curvature (~0.9) fixed by the piezoelectric substrate. We note that
optoacoustic lenses previously reported have been designed and fabricated easily a with
lower f -number values (e.g., 0.61) [17]. The focal gain of the current LGFU from the stacked
transducer was estimated to be 169, which is lower than 220 in the previous design with an
f -number of 0.61. Moreover, the short focal distance of the current setup can block the part
of pulsed-laser irradiation that is directed from the top side onto the CNT–PDMS layer. As
we used the slanted angle for optoacoustic excitation, some portion of the laser beam was
shadowed by the rim of transducer, thus reducing the irradiation efficiency. These issues
may be resolved by employing an HIFU transmitter with a lower f -number, larger aperture
dimension, and a longer focal length.

In order to ascertain the tissue fragmentation capability by the dual-focus mode, we
employed an anti-parallel arrangement of the LGFU and HIFU (θ = 180◦) as illustrated
in Figure 10. The focal zone shape formed by this configuration was similar than that of
the stacked configuration (θ = 0◦). This configuration makes an anti-parallel overlap of
two focal zones in which their propagation directions are axially opposite. Cavitation-
induced fragmentation was performed using the tissue-mimicking agarose gel at a depth
of ~15 mm. The HIFU and LGFU were operated with a duty cycle of 20% and a laser
energy of 120 mJ/pulse, respectively. Figure 10 shows the laser shadowgraphy images for
cavitational fragmentation resulted in real time during FUS treatment (Figure 10b,d,f) and
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after treatment (Figure 10c,e,g). Figure 10b confirms that the HIFU alone, inducing the mild
heat deposition from 22 to 30 ◦C, did not produce cavitation bubbles. Here, our heating
condition for the focal zone was far below the denaturization temperature of agarose gel.
Figure 10d shows that the cavitation within the tissue phantom was produced solely by
the LGFU. The black spot in Figure 10d, depicting the LGFU-induced cavitation region,
was slightly greater than the fragmented spot after treatment as shown in Figure 10e.
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Figure 10. Shadowgraphy images of tissue phantom that was fragmentated by an LGFU-HIFU face-to-face (θ = 180◦)
configuration. (a) Agarose gel tissue phantom before applying LGFU and/or HIFU. (b) Real-time FUS operation with
only HIFU and (c) the traces of fragmentation after only HIFU operation. (d) Real-time cavitation in tissue phantom with
only LGFU operation and (e) the fragmentation traces after LGFU operation. (f) Cavitation in tissue phantom with LGFU
and HIFU in real-time and (g) the fragmentation traces after LGFU and HIFU operation. When operating both the LGFU
and HIFU at the same time, cavitation was significantly more intense than operating only the LGFU or HIFU. The lateral
spot dimensions of LGFU and LGFU+HIFU were 236 and 394 µm, respectively. The axial spot dimensions of LGFU and
LGFU+HIFU were 338 and 1302 µm, respectively. (Scale bar = 500 µm).

Figure 10f,g illustrate the fragmentation result by the superposition of LGFU and
HIFU, clearly confirming the stronger fragmentation effect. Figure 10f shows that the
primary zone for cavitational disturbance appeared at the tightly focused spot defined by
LGFU, which was similar in the case of Figure 10d. However, many cavitation bubbles
were also observed along the HIFU focal zone and was much greater than that of LGFU.
As the LGFU amplitude was significantly lower than the 6 dB of peak amplitude of the
LGFU, these scattered cavitation bubbles in Figure 10f led to relatively weak traces after
fragmentation as shown in Figure 10g.

The anti-parallel arrangement in Figure 10 shows the feasibility for cavitation-induced
therapy by our hybrid configuration for LGFU and HIFU. However, this also reveals that
the LGFU amplitude from the stacked structure was relatively limited by the shallow
piezoelectric curvature with the high f -number of 0.9. The LGFU amplitude should be
further enhanced to utilize the stacked structure for therapy applications in a standalone
manner. This requires an HIFU transmitter designed with a low f -number or a large
aperture dimension to achieve a high focal gain for LGFU. Otherwise, the optical irradiation
arrangement or a laser beam profile projected on the transmitter’s surface should be
improved to increase optical absorption [31].



Micromachines 2021, 12, 1268 10 of 11

4. Summary

We demonstrated the dual-focusing configurations of LGFU and HIFU to boost the
LGFU-induced cavitation effect via mild heat deposition obtained by the HIFU transmitter.
The thermal facilitation of LGFU-induced cavitation was characterized by the spatio-
temporal superposition of two different FUS waves: LGFU (16 MHz frequency) and HIFU
(4.5 MHz frequency). The rate of cavitation generation in the detector boundary could
be significantly increased (36%). In addition, the input laser energy required to induce
cavitation (Eth) could be mitigated by 13% via mild heating of 13 ◦C. Then, a stacked
single-element transmitter for both LGFU and HIFU was fabricated and utilized to resolve
the alignment issue of two FUS waves, thus allowing a standalone operation of the single
compact device. This stacked transmitter enabled the great enhancement of the LGFU-
induced free-boundary cavitation effect by 18.5-fold in terms of the volume density of
the cavitation bubbles with the heated focal zone compared to LGFU alone. However,
the current stacked transmitter had limitations such as the geometrically defined focal
gain and the laser irradiation arrangement. For ascertaining the tissue fragmentation
capability using our combined configuration, we adopted the anti-parallel configuration
in two FUS wave propagations, which was chosen to take the advantage of high focal
gain of the optoacoustic lens (f -number ~0.65). Such a combined anti-parallel arrangement
confirmed the feasibility for therapeutic applications by fragmentation of the agarose
gel at the treatment depth of ~15 mm. While the primary cavitational disturbance zone
was formed by strong LGFU amplitudes, the overall damage zone by the heat-induced
cavitation (394 µm in the lateral direction and 1302 µm in the axial direction) was greatly
increased compared to the primary zone obtained by LGFU alone (236 µm (lateral) and
338 µm (axial)). We expect that the proposed stacked transmitter can be used for tissue
fragmentation at long penetration depths or in high acoustic attenuation environments.
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